
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Problem 1 (Binary Erasure Channel). (a) Let the input distribution be Pr{X = 1} =
α and Pr{X = 0} = 1 − α.
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Figure 1: Binary Erasure Channel

(i)

H(Y |X) = Pr{X = 0}H(Y |X = 0)
︸ ︷︷ ︸

=Hb(ǫ)

+ Pr{X = 1}H(Y |X = 1)
︸ ︷︷ ︸

=Hb(ǫ)

= (1 − α)Hb(ǫ) + αHb(ǫ)

= Hb(ǫ).

(ii) From Figure 1, it can be seen that Pr{Y = 0} = (1− ǫ)(1−α), Pr{Y = e} = ǫ,
and Pr{Y = 1} = (1 − ǫ)α. Therefore,

H(Y ) = −(1 − ǫ)(1 − α) log((1 − ǫ)(1 − α)) − ǫ log ǫ − (1 − ǫ)α log((1 − ǫ)α)

= Hb(ǫ) + (1 − ǫ)Hb(α).

(iii) Iα(X; Y ) = H(Y ) − H(Y |X) = (1 − ǫ)Hb(α).

(b) CBEC = max0≤α≤1 I(X; Y ) = max0≤α≤1(1−ǫ)Hb(α) = (1−ǫ). The capacity achieving
distribution corresponds to α∗ = 1/2, which is the uniform distribution.

Problem 2 (Z Channel). Let the input distribution be Pr{X = 1} = α and Pr{X = 0} =
1 − α.

(a) (i)

H(Y |X) = Pr{X = 0}H(Y |X = 0)
︸ ︷︷ ︸

=0

+ Pr{X = 1}H(Y |X = 1)
︸ ︷︷ ︸

=Hb(ǫ)

= αHb(ǫ).

(ii) From Figure 2, it can be seen that Pr{Y = 0} = 1− α(1− ǫ) and Pr{Y = 1} =
α(1 − ǫ). Therefore, H(Y ) = Hb(α(1 − ǫ)).
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Figure 2: Z Channel

(b) CZ := max0≤α≤1 Iα(X; Y ) = max0≤α≤1 Hb(α(1 − ǫ)) − αHb(ǫ).

Iα(X; Y ) = Hb(α(1 − ǫ)) − αHb(ǫ)

= −αǭ ln(αǭ) − (1 − αǭ) ln(1 − αǭ) − αHb(ǫ), (1)

where ǭ := (1 − ǫ). Differentiating Iα(X; Y ) with respect to α we get

d

dα
Iα(X; Y ) = −ǭ ln(αǭ) − ǭ + ǭ ln(1 − αǭ) + ǭ − Hb(ǫ). (2)

Setting the above expression to zero, we get

ǭ ln

(
1 − α∗ǭ
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The above α∗ corresponds to the capacity achieving input distribution. From (1) and
(2), we note that

CZ = Iα∗(X; Y ) = α∗ d

dα
Iα(X; Y )
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(c) Figure 3 shows the plots of capacity CZ and the information rate I1/2(X; Y ) versus
ǫ. We lose approximately a maximum of 6% on the information rate by using the
uniform input distribution instead of the capacity achieving distribution. In fact, the
following general result holds: for any binary input discrete memoryless channel, the
uniform input distribution achieves at least a fraction 1

2
e ln 2 ≈ 0.942 of the channel

capacity of that channel. [Refer E. E. Majani and H. Rumsey, Jr., Two results on

binary-input discrete memoryless channels, in Proc. of the IEEE Int. Symposium on
Information Theory, June 1991, p. 104]

Problem 3 (Symmetric Channels). Let r be a row of the transition matrix. Then

I(X; Y ) = H(Y ) − H(Y |X)

= H(Y ) − H(r)

≤ log n − H(r),
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Figure 3: Comparison of CZ and the information rate I1/2(X; Y ) for the Z channel.

where the last step follows from the fact that the entropy of a discrete random variable is
always less than the logarithm of the alphabet size of the random variable. The condition
for equality is when the distribution of Y is uniform on its alphabet. If there exists a
input distribution that makes the distribution of Y uniform on its alphabet, it will be the
capacity-achieving distribution and the RHS in the above inequality will be the capacity.
Let us check if that is true for weakly symmetric channels with uniform distribution on the
input alphabet:

Pr{Y = y} =
m∑

x=1

Pr{Y = y|X = x}Pr{X = x}
︸ ︷︷ ︸

=1/m

=
1

m

m∑

x=1

Pr{Y = y|X = x}

︸ ︷︷ ︸

=:c

=
c

m
,

where the second equality arises because the input is uniformly distributed, and the third
equality is due to the property of weakly symmetric channels (sum of rows of the transition
matrix are the same).

Problem 4 (Fano Inequality). (a) By inspection, we see that the estimator that mini-
mizes Pe would be

X̂(y) =







1 if y = a
2 if y = b
3 if y = c

The associated Pe is the sum of Pr{X = x, Y = y}, x 6= X̂(y). Therefore, Pe = 1/2.

(b) One form of Fano’s inequality is:

Pe ≥
H(X|Y ) − 1

log2 |X |
,
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where X is the alphabet of X, which is our case is X = {1, 2, 3}. We have

H(X|Y ) = H(X|Y = a) Pr{Y = a} + H(X|Y = b) Pr{Y = b} + H(X|Y = c) Pr{Y = c}

= H

(
1

2
,
1

4
,
1

4

)

(Pr{Y = a} + Pr{Y = b} + Pr{Y = c})

= H

(
1

2
,
1

4
,
1

4

)

= 1.5 bits.

Therefore,

Pe ≥
1.5 − 1

log2 3
= 0.316.

The estimator X̂(Y ) is not very close to the above form of Fano’s bound (because
Pe = 1/2 for the estimator).

The reason is as follows: In the derivation of Fano’s inequality, we had to bound
H(X|E, X̂), where E = 0 if X̂ = X and E = 1 if X̂ 6= X:

H(X|E, X̂) = Pr{E = 0}H(X|X̂, E = 0)
︸ ︷︷ ︸

=0

+ Pr{E = 1}
︸ ︷︷ ︸

=Pe

H(X|X̂, E = 1)

= PeH(X|X̂, E = 1),

where the first entropy is zero because, given that E = 0, X is completely determined
by X̂. If the alphabet of X̂ is not the same as the alphabet of X, then in general,
the entropy H(X|X̂, E = 1) can be bounded by log2 |X |. However, if the alphabets
of X̂ and X are the same, then given that E = 1, we can rule out the possibility of
X = X̂ ∈ X . Therefore, the entropy H(X|X̂, E = 1) can be bounded by log2(|X |−1),
and a tighter bound can be obtained:

Pe ≥
H(X|Y ) − 1

log2(|X | − 1)
.

By this tighter bound, we get

Pe ≥
1.5 − 1

log2 2
=

1

2
.

Therefore the estimator in (a) is actually quite good.
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