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Problem 1. Suppose we have a linear time invariant channel, i.e.,

Y (D) = Q(D)X(D) + Z(D);

with Q(D) = Q∗(D−∗). Also there is another process U(D) = H(D)X(D); which we want
to estimate.

(a) Given observations {yk}, find the linear estimator

Û(D) = W (D)Y (D)

which minimizes the mean-squared error, i.e.,

W (D) = argminW (D)E||uk − ûk||2

You can assume that {Xk} and {Zk} are independent and that

Sx(D) = Ex

and
Sz(D) = N0Q(D).

(b) Given the optimum linear MMSE estimator given in part (a) we define the error as

ek = uk − ûk

Find the power spectral density of {ek}, SE(D).

(c) If H(D) = 1, can you comment on the operation performed in part (a)?

Problem 2. Consider estimating the real zero-mean scalar x from:

y = hx+ w

where w ∼ N (0, N0

2
I) is uncorrelated with x and h is a fixed vector in Rn.

(a) Consider the scaled linear estimate cty (with the normalization ||c|| = 1):

x̂ = acty = (acth)x+ actz (1)

Show that the constant a that minimizes the mean square error (x− x̂)2 is equal to

E[x2]|cth|
E[x2]|cth|2 + N0

2

(2)



(b) Calculate the minimal mean square error (denoted by MMSE) of the linear estimate
in (1) (by using the value of a in (2)). Show that

E[x2]

MMSE
= 1 + SNR = 1 +

E[x2]|cth|2
N0

2

(3)

For every fixed linear estimator c, this shows the relationship between the corre-
sponding SNR and MMSE (of an appropriately scaled estimate).

(c) In particular, relation (3) holds when we optimize over all c leading to the best linear
estimator. Find the value of vector c (with the normalization ||c|| = 1) by minimizing
the MMSE derived in part (b). Compute optimal MMSE.

Hint. Use Cauchy-Schwarz inequality.

Problem 3. (Linear Estimation) Consider the additive noise model given below,

Y1 = X + Z1

Y2 = X + Z2

Let X, Y1, Y2, Z1, Z2 ∈ C, i.e. they are complex random variables. Moreover, assume X,Z1

and Z2 are zero mean and Z1 and Z2 are independent of X.

(a) Assume the following: E[|X|2] = Ex,E[|Z1|2] = E[|Z2|2] = 1 and E[Z1Z
∗
2 ] = 0. Given

Y1, Y2 find the best minimum mean squared error linear estimator X̂ , where the
optimization criterion is E[|X − X̂|2].

(b) If E[Z1Z
∗
2 ] = 1√

2
, what is the best MMSE linear estimator of X ?

(c) If E[Z1Z
∗
2 ] = 1, what is the best MMSE linear estimator of X ?

Problem 4. Let Ya and Yb be two separate observations of a zero mean random variable
X such that

Ya = HaX + Va

and Yb = HbX + Vb,

where {Va, Vb, X} are mutually independent and zero-mean random variables, and Va, Vb, X, Ya, Yb ∈
C.

(a) Let X̂a and X̂b denote the linear MMSE estimators for X given Ya and Yb respectively.
That is

Wa = argminWa
E[||X −WaYa||2],

Wb = argminWb
E[||X −WbYb||2]

and
X̂a = WaYa and X̂b = WbYb.

Find X̂a and X̂b given that

E[XX∗] = σ2
x, E[VaV

∗
a ] = σ2

a, E[VbV
∗
b ] = σ2

b .

Also, find the error variances,

Pa = E[(X − X̂a)(X − X̂a)
∗]

Pb = E[(X − X̂b)(X − X̂b)
∗]
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(b) We have the following identities,

RxH
∗ [HRxH

∗ + Rv]
−1 =

[
R−1x + H∗R−1v H

]−1
H∗R−1v

Rx −RxH
∗ [HRxH

∗ + Rv]
−1HRx =

[
R−1x + H∗R−1v H

]−1
where

H =

[
Ha

Hb

]
,Rv =

[
σ2
a 0

0 σ2
b

]
,Rx = σ2

x.

Prove that

P−1a X̂a =
H∗a
σ2
a

Ya, P−1b X̂b =
H∗b
σ2
b

Yb. (4)

and

P−1a =
1

σ2
x

+
HaH

∗
a

σ2
a

, P−1b =
1

σ2
x

+
HbH

∗
b

σ2
b

. (5)

(c) Now we find the estimator X̂, given both observations Ya and Yb, i.e.,(
Ya
Yb

)
=

(
Ha

Hb

)
X +

(
Va
Vb

)
.

We want to find the linear MMSE estimate

X̂ =
(
Ua Ub

)( Ya
Yb

)
,

where (
Ua Ub

)
= argmin(Ua,Ub)

E[||X − X̂||2]

and define the corresponding error variance

P = E[(X − X̂)(X − X̂)∗].

Use (4), (5) to show that

P−1X̂ = P−1a X̂a + P−1b X̂b

and P−1 = P−1a + P−1b −
1

σ2
x

.
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