Problem 1. Consider the transmit pulse:

\[g_{TX}(t) = \text{sinc} \left(\frac{t}{T} \right) \cdot \text{sinc} \left(\frac{t}{2T} \right) \]

(a) Prove that it satisfies the Nyquist condition at symbol rate \(\frac{1}{T} \).

(b) If \(g_{TX}(t) \) is used for Nyquist signaling using 8-PSK (the constellation formed by 8 points equally distributed on the unit circle) at 6 Mbit/s, what is the minimum required channel bandwidth?

(c) For the setting in (b), suppose that the complex baseband channel has impulse response \(g_{C}(t) = \delta(t - 0.5T) - \frac{1}{2} \delta(t - 1.5T) + \frac{1}{4} \delta(t - 2.5T) \). What is the minimum number of states in the trellis for MLSE using the Viterbi algorithm?

Problem 2. Consider the noisy ISI channel given by

\[Y_i = X_i + X_{i-1} + Z_i \]

where \(X_i \) and \(Y_i \) are the channel input and output, respectively at time index \(i \), \(Z \) is a sequence of i.i.d. Gaussian random variables, with zero mean and unit variance and \(x_i \in \{-1, 1\} \).

Calculate the symbol-wise MAP estimate of \(X \), using the BCJR algorithm, if the received sequence \(Y = [0.28, -0.54, -0.46, 2.26, 1.52] \). You may assume that the channel is in state +1 at the beginning and at the end of the sequence. Compare this to the decoding estimate from the MLSE decoder.

Problem 3. Consider the following real channel,

\[y = hx + z, \]

where \(x \in \mathbb{R} \) is a random variable, with \(E[x] = 0 \) and \(E[x^2] = \mathcal{E} \), \(h \) is a fixed real vector, and \(z \) is a zero-mean random vector with covariance matrix \(I \), chosen independently of the value of \(x \).

(i) An estimator \(\hat{x} = \mathcal{F}(y) \) is said to be unbiased if \(E[\hat{x}|x] = x \).

(1) Consider the mentioned channel, what is the constraint for a linear estimator, i.e., \(\hat{x} = a^t y \) to be unbiased?

(2) Find the unbiased linear estimator that minimizes the mean squared error:

\[\sigma^2_{\text{unbiased}} = E[(x - \hat{x})^2] \]

and the value of \(\sigma^2_{\text{unbiased}} \) for this estimator.

Hint. By the Cauchy-Schwartz inequality, \((a^t a)(h^t h) \geq |a^t h|^2 \).
(ii) In this part, we don’t restrict ourselves to unbiased estimators. Suppose F is a linear estimator. Find the linear estimator that minimizes the mean squared error $\sigma^2 = E[(x - \hat{x})^2]$ and the value of σ^2 for this estimator.

Hint. Consider $\hat{x} = a^T y$, and minimize σ^2 with respect to vector a. Do the minimization in two steps, first assume $a^T h = c$, and minimize σ^2 with respect to vector a with the constraint $a^T h = c$, and then minimize the result with respect to c.

(iii) Compare the two “signal to noise ratio”s $\mathcal{E}/\sigma^2_{\text{unbiased}}$ and \mathcal{E}/σ^2.

(iv) Now assume x is equally likely to be $+1$ or -1. Suppose a decision is made by quantizing the estimate \hat{x} from either part (i) or (ii) to ± 1. Which estimator would you choose to minimize the probability of error?