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Problem 1. Suppose Z is a complex random variable with density pZ .

(a) Let R = |Z|. Show that the density pR of R is given by

pR(r) = r

∫ 2π

0

pZ(r exp(jθ)) dθ.

Hint : Write Pr(R ≤ r) as an integral over x and y, then use polar coordinates.

(b) Let U = R2. Show that its density is given by

pU(u) =
1

2

∫ 2π

0

pZ(
√
u exp(iθ)) dθ.

(c) Suppose now that Z is circularly symmetric. Show that

pU(u) = πpZ(
√
u).

(d) Again suppose Z is circularly symmetric. LetX and Y be its real imaginary parts. We
know that X and Y are identically distributed, call the common density p. Suppose
that X and Y are independent. Show that

pU(x2 + y2) = πp(x)p(y).

(e) Under the assumptions of (d), conclude that

pU(x2 + y2) =
1

πp(0)2
pU(x2)pU(y2).

Assuming that pU is continuous show that it must be given by

pU(u) = α exp(−αu), u ≥ 0,

where α = πp(0)2. Hint: The only continuous functions f that satisfies f(a + b) =
f(a)f(b) are those for which f(a) = exp(βa) for some β.

(f) Show that if Z is circularly symmetric complex random variable with independent
real and imaginary parts, then Z must be Gaussian.

Problem 2. Let Z = (Z1, . . . , Zn)T be a vector of complex iid Gaussian rvs with iid real
and imaginary parts, each N(0, N0

2
). The input U is binary antipodal, taking on values

a or −a, where a = (a1, . . . , an)T is an arbitrary complex n-vector. The observation V is
U + Z, and the probability density of Z is given by

fZ(z) =
1

(πN0)n
e
(
∑n

j=1

−|zj |
2

N0
)

=
1

(πN0)n
e
−||Z||2

N0 .



(a) Give expressions for fV |U(v|a) and fV |U(v| − a).

(b) Show that the log likelihood ratio for the observation v is given by

LLR(v) =
−||v − a||2 + ||v + a||2

N0

.

(c) Explain why this implies that ML detection is minimum distance detection (defining
the distance between two complex vectors as the norm of their difference).

(d) Show that LLR(v) can also be written as 4Re(〈v,a〉)
N0

.

(e) The appearance of the real part, Re(〈v, a〉), in part (d) is surprising. Point out why
log likelihood ratios must be real. Also explain why replacing Re(〈v, a〉) by |〈v, a〉|
in the above expression would give a non-sensical result in the ML test.

(f) Does the set of points {v : LLR(v) = 0} form a complex vector space?

Problem 3. (Amplitude-limited functions) Sometimes it is important to generate base-
band waveforms with bounded amplitude. This problem explores pulse shapes that can
accomplish this.

(a) Find the Fourier transform of g(t) = sinc2(Wt). Show that g(t) is bandlimited to
f ≤ W and sketch both g(t) and ĝ(f). [Hint. Recall that multiplication in the time
domain corresponds to convolution in the frequency domain.]

(b) Let u(t) be a continuous real L2 function baseband-limited to f ≤ W (i.e. a function
such that u(t) =

∑
k u(kT )sinc( t

T
−k), where T = 1

2W
. Let v(t) = u(t)∗g(t). Express

v(t) in terms of the samples {u(kT ); k ∈ Z} of u(t) and the shifts {g(t− kT ); k ∈ Z}
of g(t). [Hint. Use your sketches in part (a) to evaluate g(t) ∗ sinc( t

T
).]

(c) Show that if the T -spaced samples of u(t) are nonnegative, then v(t) ≥ 0 for all t.

(d) Explain why
∑

k sinc( t
T
− k) = 1 for all t.

(e) Using (d), show that
∑

k g( t
T
− k) = c for all t and find the constant c. [Hint. Use

the hint in (b) again.]

(f) Now assume that u(t), as defined in part (b), also satisfies u(kT ) ≤ 1 for all k ∈ Z.
Show that v(t) ≤ c for all t.

(g) Allow u(t) to be complex now, with |u(kT )| ≤ 1. Show that v(t) ≤ c for all t.

Problem 4. (Orthogonal sets) The function rect( t
T

) has the very special property that it,

plus its time and frequency shifts, by kT and j
T

, respectively, form an orthogonal set. The
function sinc( t

T
) has the same property. We explore other functions that are generalizations

of rect( t
T

) and which, as you will show in parts (a)-(d), have this same interesting property.
For simplicity, choose T = 1. These functions take only the values 0 and 1 and are allowed
to be nonzero only over [−1; 1] rather than [−1

2
, 1
2
] as with rect( t

T
). Explicitly, the functions

considered here satisfy the following constraints:

p(t) = p2(t) for all t (0/1 property);
p(t) = 0 for |t| > 1;
p(t) = p(−t) for all t (symmetry);
p(t) = 1− p(t− 1) for 0 ≤ t ≤ 1/2.

2



Note: because of property (3), condition (4) also holds for 1/2 < t ≤ 1. Note also that p(t)
at the single points t = ±1

2
does not affects any orthogonality properties, so you are free

to ignore these points in your arguments.

(a) Show that p(t) is orthogonal to p(t− 1).

Hint. Evaluate p(t)p(t− 1) for each t ∈ [0; 1] other than t = 1
2
.

(b) Show that p(t) is orthogonal to p(t− k) for all integer k 6= 0.

(c) Show that p(t) is orthogonal to p(t− k)ej2πmt for integer k 6= 0 and m 6= 0.

(d) Show that p(t) is orthogonal to p(t)ej2πmt for integer m 6= 0.

Hint. Evaluate p(t)ej2πmt + p(t− 1)ej2πm(t−1).

(e) Let h(t) = p̂(t) where p̂(f) is the Fourier transform of p(t). If p(t) satisfies properties
(1)-(4), does it follow that h(t) has the property that it is orthogonal to h(t−k)ej2πmt

whenever either the integer k or m is nonzero?

Note: almost no calculation is required in this problem.
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