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1 Probability “review”

1.1 σ-fields

In probability, the fundamental set Ω describes the set of all possible outcomes (or realizations) of a given
experiment. It might be any set, without any particular structure, such as for example Ω = {1, . . . , 6}
representing the outcomes of a die roll, or Ω = [0, 1] representing e.g. the outcomes of a concentration
measurement of some chemical product. Notice moreover that the set Ω need not be composed of numbers
exclusively. It is e.g. perfectly valid to consider the set Ω = {banana, apple, orange}.

Given a fundamental set Ω, it is important to describe what information does one have on the system,
namely on the outcomes of the experiment. This notion of information is well captured by the math-
ematical notion of σ-field, which is defined below. Notice that in elementary probability courses, it is
generally assumed that the information one has about a system is complete, so that it becomes useless
to introduce the concept below.

Definition 1.1. Let Ω be a set. A σ-field (or σ-algebra) on Ω is a collection F of subsets of Ω (or events)
satisfying the following three properties or axioms:

(i) ∅ ∈ F .

(ii) If A ∈ F , then Ac ∈ F .

(iii) If (An)∞n=1 ⊂ F , then
⋃∞
n=1An ∈ F . In particular, if A,B ∈ F , then A ∪B ∈ F .

The following properties can be further deduced from the above axioms (this is left as an exercise):

(iv) Ω ∈ F .

(v) If (An)∞n=1 ⊂ F , then
⋂∞
n=1An ∈ F . In particular, if A,B ∈ F , then A ∩B ∈ F .

(vi) If A,B ∈ F and A ⊂ B, then B\A ∈ F .

Terminology. The pair (Ω,F) is called a measurable space and the events belonging to F are said to be
F-measurable, that is, they are the events that one can decide on whether they happened or not, given
the information F . In other words, if one knows the information F , then one is able to tell to which
events of F (= subsets of Ω) does the realization of the experiment ω belong.

Example. For a generic set Ω, the following are always σ-fields:

F0 = {∅,Ω} (= trivial σ-field).
P(Ω) = {all subsets of Ω} (= complete σ-field).

Example 1.2. Let Ω = {1, . . . , 6}. The following are σ-fields on Ω:

F1 = {∅, {1}, {2, . . . , 6},Ω}.
F2 = {∅, {1, 3, 5}, {2, 4, 6},Ω}.

Example 1.3. Let Ω = [0, 1] and I1, . . . , In be a family of disjoint intervals in Ω such that I1∪. . .∪In = Ω
({I1, . . . , In} is also called a partition of Ω). The following is a σ-field on Ω:

F3 = {∅, I1, . . . , In, I1 ∪ I2, . . . , I1 ∪ I2 ∪ I3, . . . ,Ω} (NB: there are 2n events in total in F3).

σ-field generated by a collection of events.

An event carries in general more information than itself. As an example, if one knows whether the result
of a die roll is odd (corresponding to the event {1, 3, 5}), then one also knows of course whether the
result is even (corresponding to the event {2, 4, 6}). It is therefore convenient to have a mathematical
description of the information generated by a single event, or more generally by a family of events.
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Definition 1.4. Let A = {Ai, i ∈ I} be a collection of events, where I need not be a countable set. The
σ-field generated by A is the smallest σ-field on Ω containing all the events Ai. It is denoted as σ(A).

Example. Let Ω = {1, . . . , 6} (cf. Example 1.2).

Let A1 = {{1}}. Then σ(A1) = F1.
Let A2 = {{1, 3, 5}}. Then σ(A2) = F2.
Let A = {{1}, . . . , {6}}. Then σ(A) = P(Ω).

Exercise. Let A = {{1, 2, 3}, {1, 3, 5}}. Compute σ(A).

Example. Let Ω = [0, 1] and let A3 = {I1, . . . , In} (cf. Example 1.3). Then σ(A3) = F3.

Borel σ-field. Another important example of generated σ-field on Ω = [0, 1] is the following:

B([0, 1]) = σ({ ]a, b[ : a, b ∈ [0, 1], a < b}),

is the Borel σ-field on [0, 1] and elements of B([0, 1]) are called the Borel subsets of [0, 1]. As surprising
as it may be, B([0, 1]) 6= P([0, 1]), which generates some difficulties from the theoretical point of view.
Nevertheless, it is quite difficult to construct explicit examples of subsets of [0, 1] which are not in B([0, 1]).

Sub-σ-field.

One may have more or less information about a system. In mathematical terms, this translates into the
fact that a σ-field has more or less elements. It is therefore convenient to introduce a (partial) ordering on
the ensemble of existing σ-fields, in order to establish a hierarchy of information. This notion of hierarchy
is important and will come back when we will be studying stochastic processes that evolve in time.

Definition 1.5. Let Ω be a set and F be a σ-field on Ω. A sub-σ-field of F is a collection G of events
such that:

(i) If A ∈ G, then A ∈ F .

(ii) G is itself a σ-field.

Notation. G ⊂ F .

Remark. Let Ω be a generic set. The trivial σ-field F0 = {∅,Ω} is a sub-σ-field of any other σ-field on
Ω. Likewise, any σ-field on Ω is a sub-σ-field of the complete σ-field P(Ω).

Example. Let Ω = {1, . . . , 6} (cf. Example 1.2). Notice that F1 is not a sub-σ-field of F2 (even though
{1} ⊂ {1, 3, 5}), nor is F2 a sub-σ-field of F1. In general, notice that

1) If A ∈ G and G ⊂ F , then it is true that A ∈ F .

but

2) A ⊂ B and B ∈ G together do not imply that A ∈ G.

Example. Let Ω = [0, 1] (cf. Example 1.3). Then F3 is a sub-σ-field of B([0, 1]).

1.2 Random variables

The notion of random variable is usually introduced in elementary probability courses as a vague concept,
essentially characterized by its distribution. In mathematical terms however, random variables do exist
prior to their distribution: they are functions from the fundamental set Ω to R. Here is a preliminary
definition.

Definition 1.6. On the set R, one defines the Borel σ-field as

B(R) = σ({ ]a, b[ : a, b ∈ R, a < b}).

The elements of B(R) are called Borel sets. Again, notice that B(R) is strictly included in P(R).
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Definition 1.7. Let (Ω,F) be a measurable space. A random variable on (Ω,F) is a map X : Ω → R
satisfying

{ω ∈ Ω : X(ω) ∈ B} ∈ F , ∀B ∈ B(R). (1)

Notation. One often simply denotes the set {ω ∈ Ω : X(ω) ∈ B} = {X ∈ B} = X−1(B): it is called
the inverse image of the set B through the map X (watch out that X need not be a bijective function in
order for this set to be well defined).

Terminology. The above random variable X is sometimes called F-measurable, in order to emphasize
that if one knows the information F , then one knows the value of X.

Example. If F = P(Ω), then condition (1) is always satisfied, so every map X : Ω → R is an F-
measurable random variable. On the contrary, if F = {∅,Ω}, then the only random variables which are
F-measurable are the maps X : Ω→ R which are constant.

Remark. Condition (1) can be shown to be equivalent to the following condition:

{ω ∈ Ω : X(ω) ≤ t} ∈ F , ∀t ∈ R,

which is significantly easier to check.

Definition 1.8. Let (Ω,F) be a measurable space and A ∈ F be an event. Then the map Ω→ R defined
as

ω 7→ 1A(ω) =
{

1 if ω ∈ A,
0 otherwise,

is a random variable on (Ω,F). It is called the indicator function of the event A.

Example. Let Ω = {1, . . . , 6} and F = P(Ω) (cf. Example 1.2). Then X1(ω) = ω and X2(ω) =
1{1,3,5}(ω) are both random variables on (Ω,F). Moreover, X2 is F2-measurable, but notice that X1 is
neither F1- nor F2-measurable.

Example. Let Ω = [0, 1] and F = B([0, 1]) (cf. Example 1.3). Then X3(ω) =
∑n
j=1 xj1Ij

(ω) and
X4(ω) = ω are both random variables on (Ω,F). Notice however that only X3 is F3-measurable.

We will need to consider not only random variables, but also functions of random variables. This is why
we introduce the following definition.

Definition 1.9. A map g : R→ R such that

{x ∈ R : g(x) ∈ B} ∈ B(R), ∀B ∈ B(R),

is called a Borel-measurable function on R.

Remark. A Borel-measurable function on R is therefore nothing but a random variable on the measurable
space (R,B(R)).

As it is difficult to construct explicitly sets which are not Borel sets, it is equally difficult to construct
functions which are not Borel-measurable. Nevertheless, one often needs to check that a given function
is Borel-measurable. A useful criterion for this is the following (given here without proof).

Proposition 1.10. If g : R→ R is continuous, then it is Borel-measurable.

Finally, let us mention this useful property of functions of random variables.

Proposition 1.11. If X is an F-measurable random variable and g : R → R is Borel-measurable, then
Y = g(X) is also an F-measurable random variable.

Proof. Let B ∈ B(R). Then

{Y ∈ B} = {g(X) ∈ B} = {X ∈ g−1(B)} ∈ F ,

since X is an F-measurable random variable and g−1(B) ∈ B(R) by assumption.
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σ-field generated by a collection of random variables.

The amount of information contained in a random variable, or more generally in a collection of random
variables, is given by the definition below.

Definition 1.12. Let (Ω,F) be a measurable space and {Xi, i ∈ I} be a collection of random variables
on (Ω,F). The σ-field generated by Xi, i ∈ I, denoted as σ(Xi, i ∈ I), is the smallest σ-field G on Ω such
that all the random variables Xi are G-measurable.

Remark. Notice that
σ(Xi, i ∈ I) = σ({{Xi ∈ B}, i ∈ I, B ∈ B(R)}),

where the right-hand side expression refers to Definition 1.4. It turns out that one also has

σ(Xi, i ∈ I) = σ({{Xi ≤ t}, i ∈ I, t ∈ R}).

Example. Let (Ω,F) be a measurable space. If X0 is a constant random variable (i.e. X0(ω) = c ∈
R, ∀ω ∈ Ω), then σ(X0) = {∅,Ω}.

Example. Let Ω = {1, . . . , 6} and F = P(Ω) (cf. Example 1.2). Then σ(X1) = P(Ω) and σ(X2) = F2.

Example. Let Ω = [0, 1] and F = B([0, 1]) (cf. Example 1.3). Then σ(X3) = F3 and σ(X4) = B([0, 1]).

Following the proof of Proposition 1.11, the proposition below can be easily shown.

Proposition 1.13. If X is a random variable on a measurable space (Ω,F) and g : R → R is Borel-
measurable, then Y = g(X) is a σ(X)-measurable random variable (this applies in particular to Y = X).

As a matter of fact, it turns out that the reciprocal statement is also true: if Y is a σ(X)-measurable
random variable, then there exists a Borel-measurable function g : R→ R such that Y = g(X).

1.3 Probability measures

Definition 1.14. Let (Ω,F) be a measurable space. A probability measure on (Ω,F) is a map P : F →
[0, 1] satisfying the following two axioms:

(i) P(∅) = 0 and P(Ω) = 1.

(ii) If (An)∞n=1 ⊂ F is such that An ∩Am = ∅, ∀n 6= m, then P(∪∞n=1An) =
∑∞
n=1 P(An).

In particular, if A,B ∈ F are such that A ∩B = ∅, then P(A ∪B) = P(A) + P(B).

The following properties can be further deduced from the above axioms:

(iii) If (An)∞n=1 ⊂ F , then P(∪∞n=1An) ≤
∑∞
n=1 P(An).

In particular, if A,B ∈ F , then P(A ∪B) ≤ P(A) + P(B).

(iv) If A,B ∈ F and A ⊂ B, then P(A) ≤ P(B) and P(B\A) = P(B)− P(A).
In particular, P(Ac) = 1− P(A).

(v) If A,B ∈ F , then P(A ∪B) = P(A) + P(B)− P(A ∩B).

(vi) If (An)∞n=1 ⊂ F is such that An ⊂ An+1, ∀n, then P(∪∞n=1An) = limn→∞ P(An).

(vii) If (An)∞n=1 ⊂ F is such that An ⊃ An+1, ∀n, then P(∩∞n=1An) = limn→∞ P(An).

Terminology. The triple (Ω,F ,P) is called a probability space. Property (ii) is referred to as the
σ-additivity (or simply additivity in the finite case) of probability measures.

Example. Let Ω = {1, .., 6} and F = P(Ω) be the measurable space associated to a die roll. The
probability measure associated to a balanced die is defined as

P1({i}) =
1
6
, ∀i ∈ {1, . . . , 6},
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and is extended by additivity to all subsets of Ω. E.g.,

P1({1, 3, 5}) =
1
6

+
1
6

+
1
6

=
1
2
.

The probability measure associated to a loaded die is defined as

P2({6}) = 1 and P2({i}) = 0, ∀i ∈ {1, . . . , 5},

and is extended by additivity to all subsets of Ω.

Example. Let Ω = [0, 1] and F = B([0, 1]). One defines the following probability measure on the
subintervals of [0, 1]:

P( ]a, b[ ) = b− a.

Fact. P can be extended by σ-additivity to all Borel subsets of [0, 1]. It is called the Lebesgue measure
on [0, 1] and is sometimes denoted as P(B) = |B|.

1.4 Distribution of a random variable

Definition 1.15. Let (Ω,F ,P) be a probability space and X be a random variable defined on this
probability space. The distribution of X is the map µX : B(R)→ [0, 1] defined as

µX(B) = P({X ∈ B}), B ∈ B(R).

Remark. The triple (R,B(R), µX) forms a new probability space.

Notation. If a random variable X has distribution µ, this is denoted as X ∼ µ. Likewise, if two random
variables X and Y share the same distribution µ, then they are are said to be identically distributed and
this is denoted as X ∼ Y ∼ µ.

Example 1.16. The probability space describing two independent (and balanced) dice rolls is Ω =
{1, . . . , 6} × {1, . . . , 6}, F = P(Ω) and

P({(i, j)}) =
1
36
, ∀(i, j) ∈ Ω.

Let X1(i, j) = i be the result of the first die, and Y (i, j) = i+ j be the sum of the two dice. Then

µX1({i}) = P({X1 = i}) = P({(i, 1), . . . , (i, 6)}) =
6
36

=
1
6
, ∀i ∈ {1, . . . , 6},

and

µY ({2}) = P({Y = 2}) = P({(1, 1)}) =
1
36
, µY ({3}) = P({Y = 3}) = P({(1, 2), (2, 1)}) =

1
18
.

More generally:

µY ({i}) =
6− |7− i|

36
, i ∈ {2, . . . , 12}.

Cumulative distribution function.

Definition 1.17. Let (Ω,F ,P) be a probability space and X be a random variable defined on this
probability space. The cumulative distribution function (or cdf) of X is the map FX : R→ [0, 1] defined
as

FX(t) = µX( ]−∞, t]) = P({X ≤ t}), t ∈ R.
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Fact. The knowledge of FX is equivalent to the knowledge of µX .

From the properties of probability measures, one deduces easily that the cdf of a random variable satisfies
the following properties:

(i) limt→−∞ FX(t) = 0, limt→+∞ FX(t) = 1.

(ii) FX is non-decreasing, i.e. FX(s) ≤ FX(t) for all s < t.

(iii) FX is right-continuous on R, i.e. limε↓0 FX(t+ ε) = FX(t), for all t ∈ R.

Remark. FX has at most a countable number of jumps on the real line. If FX has a jump of size
p ∈ [0, 1] at t ∈ R, this actually means that P({X = t}) = FX(t)− limε↓0 FX(t− ε) = p.

Two important classes of random variables.

Discrete random variables.

Definition 1.18. X is a discrete random variable if it takes values in a countable subset C of R, that
is, P({X ∈ C}) = 1.

The distribution of a discrete random variable is entirely characterized by the numbers px = P({X = x}),
where x ∈ C. Notice that px ≥ 0 for all x ∈ C and that

∑
x∈C px = P({X ∈ C}) = 1. Moreover,

µX(B) = P({X ∈ B}) =
∑
x∈B

px, ∀B ∈ B(R),

and
FX(t) = P({X ≤ t}) =

∑
x≤t

px, ∀t ∈ R,

is a step function.

Example. A binomial random variable X with parameters n ≥ 1 and p ∈ [0, 1] (denoted as X ∼ Bi(n, p))
takes values in {0, . . . , n} and is characterized by the numbers

pk = P({X = k}) =
(
n
k

)
pk (1− p)n−k, k ∈ {0, . . . , n},

where
(
n
k

)
=

n!
k!(n− k)!

are the binomial coefficients.

Continuous random variables.

Definition 1.19. X is a continuous random variable if P({X ∈ B}) = 0 whenever B ∈ B(R) is such that
|B| = 0 (remember that |B| is the Lebesgue measure of B).

In particular, this implies that if X is a continuous random variable, then P({X = x}) = 0 ∀x ∈ R (as
|{x}| = 0 ∀x ∈ R).

Fact. If X is a continuous random variable according to the above definition, then there exists a
function fX : R→ R, called the probability density function (or pdf) of X, such that fX(x) ≥ 0 ∀x ∈ R,∫

R fX(x) dx = 1 and

µX(B) = P({X ∈ B}) =
∫
B

fX(x) dx, ∀B ∈ B(R).

Moreover,

FX(t) = P({X ≤ t}) =
∫ t

−∞
fX(x) dx, ∀t ∈ R,

is a differentiable function (whose derivative is F ′X(t) = fX(t)).
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Example. A Gaussian random variable X with mean µ and variance σ2 (denoted as X ∼ N (µ, σ2))
takes values in R and has pdf

fX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x ∈ R.

1.5 Independence

The notion of independence is a central notion in probability. It is usually defined for events and random
variables in elementary probability courses. Nevertheless, as it will become clear below, the independence
between σ-fields turns out to be the most natural concept (remembering that a σ-field is related to the
amount of information one has on a system).

In the three paragraphs below, (Ω,F ,P) denotes a generic probability space.

Independence of events.

One starts by defining the independence of two events in F .

Definition 1.20. Two events A,B ∈ F are independent if P(A ∩B) = P(A) P(B).

Notation. A ⊥⊥ B.

Proposition 1.21. If two events A,B ∈ F are independent, then it also holds that

P(A ∩Bc) = P(A) P(Bc), P(Ac ∩B) = P(Ac) P(B) and P(Ac ∩Bc) = P(Ac) P(Bc).

Proof. One shows here the first equality (noticing that the other two can be proved in a similar way):

P(A ∩Bc) = P(A\(A ∩B)) = P(A)− P(A ∩B) = P(A)− P(A) P(B) = P(A) (1− P(B)) = P(A) P(Bc).

For a collection of more than 2 events, the property P(A1 ∩ . . . ∩ An) = P(A1) · · ·P(An) does not suffice
to guarantee that the same property holds for complements of the events Ai. A slightly more involved
definition of independence is therefore required.

Definition 1.22. Let {A1, . . . , An} be a collection of events in F . This collection is independent if

P(A∗1 ∩ . . . ∩A∗n) = P(A∗1) · · ·P(A∗n)

where A∗i = either Ai or Aci , i ∈ {1, . . . , n}.

An intuitive reason why complements should be included in the definition of independence is the following.
Let us assume that one rolls a balanced die with four faces. Then the events {the outcome is 1 or 2} and
{the outcome is even} are clearly independent; more precisely, the different informations associated with
these events are. So the events {the outcome is 1 or 2} and {the outcome is odd} are also independent.
This motivates the extension of the definition of independence to σ-fields in the next paragraph.

Fact. It can be shown that Definition 1.22 is equivalent to saying that

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai), ∀I ⊂ {1, . . . , n}.

From the above fact, one deduces that a collection of events might not be independent, even though its
events are two-by-two independent.
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Independence of σ-fields.

Definition 1.23. Let {G1, . . . ,Gn} be a collection of sub-σ-fields of F . This collection is independent if

P(A1 ∩ . . . ∩An) = P(A1) · · ·P(An), ∀A1 ∈ G1, . . . , An ∈ Gn.

Example. Let again {A1, . . . , An} be a collection of events in F . Then the collection of events
{A1, . . . , An} is independent (according to Definition 1.22) if and only if the collection of σ-fields {σ(A1),
. . . , σ(An)} is independent (according to Definition 1.23). In order to see this, observe that σ(Ai) =
{∅, Ai, Aci ,Ω}.

Independence of random variables.

Definition 1.24. Let {X1, . . . , Xn} be a collection of random variables defined on (Ω,F ,P). This
collection is independent if the collection of σ-fields {σ(X1), . . . , σ(Xn)} is independent.

Since σ(Xi) = σ({Xi ∈ B}, B ∈ B(R)), the collection {X1, . . . , Xn} is independent if and only if

P({X1 ∈ B1, . . . , Xn ∈ Bn}) = P({X1 ∈ B1}) · · ·P({Xn ∈ Bn}), ∀B1, . . . , Bn ∈ B(R).

But one also knows that σ(Xi) = σ({Xi ≤ t}, t ∈ R), so it turns out that {X1, . . . , Xn} is independent if
and only if

P({X1 ≤ t1, . . . , Xn ≤ tn}) = P({X1 ≤ t1}) · · ·P({Xn ≤ tn}), ∀t1, . . . , tn ∈ R.

For discrete random variables taking values in a countable set C, this reduces to

P({X1 = x1, . . . , Xn = xn}) = P({X1 = x1}) · · ·P({Xn = xn}), ∀x1, . . . , xn ∈ C.

And for jointly continuous random variables with joint pdf fX1,...,Xn , this reduces to the classical relation

fX1,...,Xn
(x1, . . . , xn) = fX1(x1) · · · fXn

(xn), ∀x1, . . . , xn ∈ R.

The advantage of the above theoretical definition involving σ-fields is the following. Assume {X1, . . . , Xn}
is a collection of independent random variables and let g1, . . . , gn : R → R be Borel-measurable func-
tions. Then one directly deduces from the definition (and the fact that gi(Xi) is σ(Xi)-measurable)
that {g1(X1), . . . , gn(Xn)} is also a collection of independent random variables, which might have been
cumbersome to check using any of the other “simpler” definition.

Example. Let (Ω,F ,P) be a generic probability space and let X0(ω) = c ∈ R, ∀ω ∈ Ω be a constant
random variable. As σ(X0) = F0 = {∅,Ω}, X0 is independent of any other random variable defined on
(Ω,F ,P).

Example. Let (Ω,F ,P) be the probability space describing two independent dice rolls in Example 1.16
and let X1(i, j) = i and X2(i, j) = j. One verifies below that these two random variables are indeed
independent. It was already shown that P({X1 = i}) = 1

6 , ∀i ∈ {1, . . . , 6}. Likewise, P({X2 = j}) = 1
6 ,

∀j ∈ {1, . . . , 6} and

P({X1 = i,X2 = j}) = P({(i, j)}) =
1
36

= P({X1 = i}) P({X2 = j}), ∀(i, j) ∈ Ω,

so X1 and X2 are independent.

1.6 Expectation

From the point of view of measure theory, random variables are maps from Ω to R. Correspondingly, the
expectation (or mean) of a random variable X is the Lebesgue integral of the map X, that is, the “area
under the curve ω 7→ X(ω)”, where the horizontal axis is measured with the probability measure P.
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Definition.

Let (Ω,F ,P) be a probability space and X be a random variable defined on this probability space. The
expectation of X, denoted as E(X), will be defined in three steps.

Step 1. Assume first that X is a non-negative discrete random variable, i.e. that X may be written as

X(ω) =
∞∑
i=i

xi 1Ai
(ω),

where xi ≥ 0 and Ai ∈ F (notice that if the xi are all different, then Ai = {X = xi}). The expectation
of X is then defined as

E(X) =
∞∑
i=1

xi P(Ai),

which corresponds to the traditional definition of expectation in elementary probability courses. Notice
here that since the sum is infinite, E(X) may take the value +∞; but because of the assumption that
xi ≥ 0, E(X) is always non-negative.

Notice also that in the particular case where X = 1A, with A ∈ F , one has E(X) = P(A).

Step 2. Assume now that X is a generic non-negative random variable (i.e. X(ω) ≥ 0, ∀ω ∈ Ω). Let us
define the following sequence of discrete random variables:

Xn(ω) =
∞∑
i=1

i− 1
2n

1{ i−1
2n <X≤ i

2n }(ω).

Notice that xi = i−1
2n ≥ 0 and that { i−1

2n < X ≤ i
2n } ∈ F , since X is F-measurable. So according to Step

1, one has for each n

E(Xn) =
∞∑
i=1

i− 1
2n

P
({

i− 1
2n

< X ≤ i

2n

})
∈ [0,+∞].

It should be observed that (Xn, n ∈ N) is actually an increasing sequence of non-negative “staircases”,
that is,

0 ≤ Xn(ω) ≤ Xn+1(ω), ∀n.

As the size of the steps is divided by two from n to n + 1, the staircase gets refined. Likewise, one
easily sees that E(Xn) ≤ E(Xn+1) for all n, so (E(Xn), n ∈ N) is an increasing sequence, that therefore
converges (possibly to +∞). One defines

E(X) = lim
n→∞

E(Xn) = lim
n→∞

∞∑
i=1

i− 1
2n

P
({

i− 1
2n

< X ≤ i

2n

})
∈ [0,∞].

Step 3. Finally, consider a generic random variable X. One defines its positive and negative parts:

X+(ω) = max(0, X(ω)), X−(ω) = max(0,−X(ω))

Notice that both X+(ω) ≥ 0 and X−(ω) ≥ 0, and that

X+(ω)−X−(ω) = X(ω), X+(ω) +X−(ω) = |X(ω)|.

In measure theory, one does not want to deal with ill defined quantities such as ∞−∞. One therefore
defines E(X) only when E(|X|) = E(X+) + E(X−) <∞:

E(X) = E(X+)− E(X−).

11



Two important particular cases. Let X be a random variable and g : R→ R be a Borel-measurable
function such that E(|g(X)|) <∞ (this last condition is verified if for example g is a bounded function).

- If X is a discrete random variable with values in a countable set C, then

E(g(X)) =
∑
x∈C

g(x) P({X = x}).

- If X is a continuous random variable with pdf fX , then

E(g(X)) =
∫

R
g(x) fX(x) dx.

Terminology. - If E(|X|) <∞, then X is said to be an integrable random variable.
- If E(X2) <∞, then X is said to be a square-integrable random variable.
- If there exists c > 0 such that |X(ω)| ≤ c, ∀ω ∈ Ω, then X is said to be a bounded random variable.
- If E(X) = 0, then X is said to be a centered random variable.

One has the following series of implications:

X is bounded ⇒ X is square-integrable ⇒ X is integrable,
X is integrable and Y is bounded ⇒ XY is integrable,
X,Y are both square-integrable ⇒ XY is integrable.

Negligible and almost sure sets. An event A ∈ F is said to be negligible if P(A) = 0. On the
contrary, an event B ∈ F is said to be almost sure (a.s.) if P(B) = 1. For example, if P({X ≥ c}) = 1,
one says that “X ≥ c almost surely”.

Basic properties of expectation.

Linearity. If c ∈ R and X, Y are integrable, then E(cX + Y ) = cE(X) + E(Y ).

Positivity. If X is integrable and X ≥ 0 a.s., then E(X) ≥ 0.

Strict positivity. If X is integrable, X ≥ 0 a.s. and E(X) = 0, then X = 0 a.s.

Monotonicity. If X, Y are integrable and X ≥ Y a.s., then E(X) ≥ E(Y ).

Inequalities.

Cauchy-Schwarz’s inequality. If X, Y are square-integrable random variables, then the product XY
is integrable and

E(|XY |) ≤
√

E(X2)
√

E(Y 2).

In particular, considering Y = 1 shows that if X is square-integrable, then it is also integrable.

Jensen’s inequality. If X is a random variable and ψ : R→ R is convex and such that E(|ψ(X)|) <∞,
then

ψ(E(X)) ≤ E(ψ(X)).

In particular, |E(X)| ≤ E(|X|).

Also, if X is such that P({X = a}) = P({X = b}) = 1/2, then the above inequality says that

ψ

(
a+ b

2

)
≤ ψ(a) + ψ(b)

2
,

which is pretty much the definition of convexity for ψ.
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Chebychev’s inequality. If X is a random variable and ϕ : R→ R+ is increasing on R+ and such that
E(ϕ(X)) <∞, then for any a > 0, one has

P({X ≥ a}) ≤ E(ϕ(X))
ϕ(a)

.

In particular, if X is square-integrable, then taking ϕ(x) = x2 gives

P({X ≥ a}) ≤ E(X2)
a2

.

Variance, covariance and independence.

Definition 1.25. Let X,Y be two square-integrable random variables. The variance of X is defined as

Var(X) = E((X − E(X))2) = E(X2)− E(X)2 ≥ 0

and the covariance of X and Y is defined as

Cov(X,Y ) = E((X − E(X)) (Y − E(Y ))) = E(XY )− E(X) E(Y ).

Terminology. If Cov(X,Y ) = 0, then X and Y are said to be uncorrelated.

Fact. If X,Y are independent square-integrable random variables, then

a) Cov(X,Y ) = 0, i.e. X and Y are uncorrelated (but the reciprocal statement is wrong).

b) Var(cX + Y ) = c2 Var(X) + Var(Y ), for any c ∈ R.

1.7 Convergence of sequences of random variables

For a given sequence of random variables (Xn, n ≥ 1) defined on a common probability space (Ω,F ,P),
there are several notions of convergence to a limiting random variableX. Let us review the most important
ones.

Convergence in probability. The sequence (Xn) is said to converge in probability to X (and this is
denoted as Xn

P→ X) if for all ε > 0,

lim
n→∞

P({|Xn −X| > ε}) = 0.

Almost sure convergence. The sequence (Xn) is said to converge almost surely to X (and this is
denoted as Xn → X a.s.) if

P
({

lim
n→∞

Xn = X
})

= 1.

Fact. Almost sure convergence implies convergence in probability, but the reverse implication is wrong.
Nevertheless, it holds that Xn → X a.s. if for all ε > 0,

∞∑
n=1

P({|Xn −X| > ε}) <∞.

Quadratic convergence. Let us moreover assume that the random variables Xn and X are square-
integrable. The sequence (Xn) is then said to converge quadratically to X if

lim
n→∞

E(|Xn −X|2) = 0.
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Fact. By Chebychev’s inequality, quadratic convergence implies convergence in probability (but not
almost sure convergence).

Convergence in distribution. The sequence (Xn) is said to converge in distribution to X (and this is
denoted as Xn

d→ X) if
lim
n→∞

FXn
(t) = FX(t),

for all t ∈ R which are continuity points of FX .

Remark. For this last definition, the random variables Xn need not be all defined on the same proba-
bility space (Ω,F ,P). The knowledge of their respective distributions suffices.

“Examples”: limit theorems.

Weak law of large numbers (not the standard version). Let (ξn, n ≥ 1) be a sequence of square-
integrable and uncorrelated random variables with a common expectation E(ξn) = µ and a common
variance Var(ξn) = σ2. Let also Sn = ξ1 + . . .+ ξn. Then

Sn
n

P→ µ.

Remark. The convergence is also quadratic in this case.

Strong law of large numbers. Let (ξn, n ≥ 1) be a sequence independent and identically distributed
(i.i.d.) random variables such that E(|ξ1|) <∞. Let also µ = E(ξ1) and Sn = ξ1 + . . .+ ξn. Then

Sn
n
→ µ a.s.

Example. Assume that P({ξ1 = 1}) = P({ξ1 = 0}) = 1/2 (so µ = 1/2). Then the above theorem says
approximately that as n gets large,

Sn '
n

2
with high probability.

The next question is: for a given n, how close is Sn from n/2? The answer is given by the following
theorem.

Central limit theorem. Let (ξn) be a sequence of i.i.d. random variables such that E(ξ2
1) < ∞. Let

also µ = E(ξ1), σ2 = Var(ξ1) and Sn = ξ1 + . . .+ ξn. Then

Sn − nµ√
nσ

d→ Z ∼ N (0, 1).

This more specifically says that

lim
n→∞

P
({

Sn − nµ√
nσ

≤ t
})

=
∫ t

−∞

1√
2π

exp
(
−x

2

2

)
dx,

for all t ∈ R (as the cdf of N (0, 1) is continuous on R).

Example. Assume again that P({ξ1 = 1}) = P({ξ1 = 0}) = 1/2 (so µ = 1/2 and σ = 1/2). Then the
above theorem says approximately that as n gets large,

Sn '
n

2
+
√
n

2
Z,

where Z is a standard Gaussian random variable. So typically, the standard deviation of Sn from its
mean n/2 is of order

√
n.
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1.8 Conditional expectation

Let (Ω,F ,P) be a probability space, as usual.

Conditioning with respect to an event B ∈ F .

The conditional probability of an event A ∈ F given another event B ∈ F is defined as

P(A|B) =
P(A ∩B)

P(B)
, given that P(B) > 0.

In a similar way, the conditional expectation of an integrable random variable X given B is defined as

E(X|B) =
E(X 1B)

P(B)
, given that P(B) > 0.

Conditioning with respect to a discrete random variable Y .

Let us assume that the random variable Y (is F-measurable and) takes values in a countable set C.

P(A|Y ) = ϕ(Y ), where ϕ(y) = P(A|{Y = y}), y ∈ C.
E(X|Y ) = ψ(Y ), where ψ(y) = E(X|{Y = y}), y ∈ C.

If X is also a discrete random variable with values in C, then

E(X|Y ) = ψ(Y ), where ψ(y) =
E(X 1{Y=y})
P({Y = y})

=
∑
x∈C

x
E(1{X=x}∩{Y=y})

P({Y = y})
=
∑
x∈C

xP({X = x}|{Y = y}).

Important remark. ϕ(y) and ψ(y) are regular functions, but P(A|Y ) and E(X|Y ) are random variables.
They both are functions of the outcome of the random variable Y , that is, they are σ(Y )-measurable
random variables.

Example. Let X1, X2 be two independent dice rolls and let us compute E(X1 +X2|X2) = ψ(X2), where

ψ(y) = E(X1 +X2|{X2 = y}) =
E((X1 +X2) 1{X2=y})

P({X2 = y})

=
E(X1 1{X2=y}) + E(X2 1{X2=y})

P({X2 = y})
(a)
=

E(X1) E(1{X2=y}) + E(y 1{X2=y})
P({X2 = y})

=
E(X1) P({X2 = y}) + y P({X2 = y})

P({X2 = y})
= E(X1) + y,

where the independence assumption between X1 and X2 has been used in equality (a). So finally (as
one would expect), E(X1 + X2|X2) = E(X1) + X2, which can be explained intuitively as follows: the
expectation of X1 conditioned on X2 is nothing but the expectation of X1, as the outcome of X2 provides
no information on the outcome of X1 (X1 and X2 being independent); on the other side, the expectation
of X2 conditioned on X2 is exactly X2, as the outcome of X2 is known.

Conditioning with respect to a continuous random variable Y ?

In this case, one faces the following problem: if Y is a continuous random variable, P({Y = y}) = 0 for
all y ∈ R. So a direct generalization of the above formulas to the continuous case is impossible at first
sight. A possible solution to this problem is to replace the event {Y = y} by {y ≤ Y < y + ε} and take
the limit ε → 0 for the definition of conditional expectation. This actually works, but also leads to a
paradox in the multidimensional setting (known as Borel’s paradox). In addition, some random variables
are neither discrete, nor continuous. It turns out that the cleanest way to define conditional expectation
in the general case is through σ-fields.
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Conditioning with respect to a sub-σ-field G.

In order to define the conditional expectation in the general case, one needs the following proposition.

Proposition 1.26. Let (Ω,F ,P) be a probability space, G be a sub-σ-field of F and X be an integrable
random variable on (Ω,F ,P). There exists then an integrable random variable Z such that

(i) Z is G-measurable,

(ii) E(ZU) = E(XU) for any random variable U G-measurable and bounded.

Moreover, if Z1, Z2 are two integrable random variables satisfying (i) and (ii), then Z1 = Z2 a.s.

Definition 1.27. The above random variable Z is called the conditional expectation of X given G. It is
defined up to a negligible set.

Notation. Z is denoted as E(X|G).

One further defines P(A|G) = E(1A|G) for A ∈ F .

Remark. Notice that as before, both P(A|G) and E(X|G) are random variables.

Properties.

The above definition does not give a computation rule for the conditional expectation; it is only an
existence theorem. The properties listed below will therefore be of help for computing conditional expec-
tations.

- Linearity. E(cX + Y |G) = cE(X|G) + E(Y |G) a.s.

- Monotonicity. If X ≥ Y a.s., then E(X|G) ≥ E(Y |G) a.s.

- E(E(X|G)) = E(X).

- If X is independent of G, then E(X|G) = E(X) a.s.

- If X is G-measurable, then E(X|G) = X a.s.

- If Y is G-measurable and bounded, then E(XY |G) = E(X|G)Y a.s.

- If H is a sub-σ-field of G, then E(E(X|H)|G) = E(E(X|G)|H) = E(X|H) a.s.

Some of these properties are illustrated below with an example.

Example. Let Ω = {1, . . . , 6}, F = P(Ω) and P({ω}) = 1
6 for ω = 1, . . . , 6 (the probability space of the

die roll). Let also X(ω) = ω be the outcome of the die roll and consider the two sub-σ-fields:

G = σ({1, 3}, {2}, {5}, {4, 6}) and H = σ({1, 3, 5}, {2, 4, 6}).

Then E(X) = 3.5,

E(X|G)(ω) =
{

2 if ω ∈ {1, 3} or ω = 2
5 if ω ∈ {4, 6} or ω = 5 and E(X|H)(ω) =

{
3 if ω ∈ {1, 3, 5}
4 if ω ∈ {2, 4, 6}

So E(E(X|G)) = E(E(X|H)) = E(X). Moreover,

E(E(X|G)|H)(ω) =
{

1
3 (2 + 2 + 5) = 3 if ω ∈ {1, 3, 5}
1
3 (2 + 5 + 5) = 4 if ω ∈ {2, 4, 6} = E(X|H)(ω)

and

E(E(X|H)|G)(ω) =
{

3 if ω ∈ {1, 3} or ω = 5
4 if ω ∈ {4, 6} or ω = 2 = E(X|H)(ω).

On other words, the smallest σ-field always “wins”.
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Proposition 1.28. Let G be a sub-σ-field of F , X, Y be two random variables such that X is independent
of G and Y is G-measurable, an let ϕ : R2 → R be a Borel-measurable function such that E(|ϕ(X,Y )|) <
∞. Then

E(ϕ(X,Y )|G) = ψ(Y ) a.s., where ψ(y) = E(ϕ(X, y)).

This proposition has the following consequence: when computing the expectation of a function ϕ of two
independent random variables X and Y , one can always divide the computation in two steps by writing

E(ϕ(X,Y )) = E(E(ϕ(X,Y )|Y )) = E(ψ(Y ))

where ψ(y) = E(ϕ(X, y)) (this is actually nothing but Fubini’s theorem).

Finally, the proposition below shows that Jensen’s inequality also holds for conditional expectation.

Proposition 1.29. Let X be a random variable, G be a sub-σ-field of F and ψ : R→ R be convex and
such that E(|ψ(X)|) <∞. Then

ψ(E(X|G)) ≤ E(ψ(X)|G) a.s.

In particular, |E(X|G)| ≤ E(|X||G) a.s.

Conditioning with respect to a generic random variable Y .

Once the definition of conditional expectation with respect to a σ-field is set, it is natural to define for a
generic random variable Y :

E(X|Y ) = E(X|σ(Y )) and P(A|G) = P(A|σ(Y )).

Remark. Since any σ(Y )-measurable random variable may be written as g(Y ), where g is a Borel-
measurable function, the definition of E(X|Y ) may be rephrased as follows.

Definition 1.30. E(X|Y ) = ψ(Y ), where ψ : R→ R is the unique Borel-measurable function such that
E(ψ(Y ) g(Y )) = E(X g(Y )) for any function g : R→ R Borel-measurable and bounded.

In two particular cases, the function ψ can be made explicit.

- As already seen above, if X, Y are two discrete random variables with values in a countable set C, then

E(X|Y ) = ψ(Y ), where ψ(y) =
∑
x∈D

x P({X = x}|{Y = y}), y ∈ C.

- If X,Y are two jointly continuous random variables with joint pdf fX,Y , then

E(X|Y ) = ψ(Y ), where ψ(y) =
∫

R
x
fX,Y (x, y)
fY (y)

dy, y ∈ R,

and fY is the marginal pdf of Y given by fY (y) =
∫

R fX,Y (x, y) dy, assumed here to be strictly positive.
Let us check that the random variable ψ(Y ) is indeed the conditional expectation of X given Y according
to Definition 1.30: for any function g : R→ R Borel-measurable and bounded, one has

E(ψ(Y ) g(Y )) =
∫

R
ψ(y) g(y) fY (y) dy

=
∫

R

(∫
R
x
fX,Y (x, y)
fY (y)

dy

)
g(y) fY (y) dy

=
∫∫

R2
x g(y) fX,Y (x, y) dx dy = E(X g(Y )).
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1.9 Random vectors

Preliminary. - The Borel σ-field on Rn is defined as

B(Rn) = σ ({]a1, b1[× . . .×]an, bn[ : ai < bi, ∀i})

It contains nearly all possible subsets of Rn (not only rectangles!).

- The Lebesgue measure on Rn is defined as

| ]a1, b1[× . . .×]an, bn[ | =
n∏
i=1

(bi − ai)

and can be extended by σ-additivity to any Borel subset of Rn.

Let now (Ω,F ,P) be a probability space.

Definition 1.31. A random vector of dimension n ≥ 1 is a mapX :
{

Ω→ Rn
ω 7→ X(ω) = (X1(ω), . . . , Xn(ω))

such that
{ω ∈ Ω : X(ω) ∈ B} ∈ F , ∀B ∈ B(Rn).

Proposition 1.32. - X = (X1, . . . , Xn) is a random vector if and only if

{ω ∈ Ω : X1(ω) ≤ t1, . . . , Xn(ω) ≤ tn} ∈ F , ∀t1, . . . , tn ∈ R.

- If X is a random vector, then each component Xi is a random variable, but the reciprocal statement is
wrong.

Two important classes of random vectors.

Discrete random vectors.

Definition 1.33. X is a discrete random vector if it takes values in a countable subset C of Rn.

If g : Rn → R is a Borel-measurable and bounded function, then

E(g(X1, . . . , Xn)) =
∑

x1,...,xn∈C
g(x1, . . . , xn) P({X1 = x1, . . . , Xn = xn}).

Proposition 1.34. X is a discrete random vector if and only if each Xi, 1 ≤ i ≤ n, is a discrete random
variable.

Continuous random vectors.

Definition 1.35. X is a continuous random vector if P({X ∈ B}) = 0 for every B ∈ B(Rn) such that
|B| = 0.

Fact. If X is a continuous random vector, then there exists a Borel-measurable function fX : Rn → R
such that

fX(x1, . . . , xn) ≥ 0, ∀(x1, . . . , xn) ∈ Rn,
∫

Rn

fX(x1, . . . , xn) dx1 · · · dxn = 1

and
P ({X ∈ B}) =

∫
B

fX(x1, . . . , xn) dx1 · · · dxn, ∀B ∈ B(Rn).

Terminology. fX is called the joint probability density function of the random vector X.

If g : Rn → R is a Borel-measurable and bounded function then

E(g(X1, . . . , Xn)) =
∫

Rn

g(x1, . . . , xn) fX(x1, . . . , xn) dx1 · · · dxn.
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Proposition 1.36. If X is a continuous random vector, then each Xi, 1 ≤ i ≤ n, is a continuous random
variable, but the reciprocal statement is wrong.

Here is a counter-example. Let Y be a continuous random variable and X = (Y, Y ); then X is not a
continuous random vector (indeed, let ∆ = {(x, y) ∈ R2 : x = y}: |∆| = 0, but P({X ∈ ∆}) = 1).

Expectation and covariance of random vector.

Let X be an n-dimensional random vector such that each component Xi, 1 ≤ i ≤ n, is square-integrable.

Expectation (or mean) of X : E(X) = (E(X1), . . . ,E(Xn)), n-variate vector.

Covariance (matrix) of X : Cov(X) = K, n× n matrix, where

Kij = Cov(Xi, Xj) = E(XiXj)− E(Xi) E(Xj).

Properties. - K is symmetric, i.e. Kij = Kji.

- K is positive semi-definite, i.e. ∀c1, . . . cn ∈ R,
∑n
i,j=1 ci cj Kij ≥ 0. Indeed,

n∑
i,j=1

ci cj Kij =
n∑

i,j=1

ci cj Cov(Xi, Xj) = Cov

 n∑
i=1

ciXi,

n∑
j=1

cj Xj

 = Var

(
n∑
i=1

ciXi

)
≥ 0.

Remark. If K is a symmetric n × n matrix, then K is positive semi-definite if and only if all its
eigenvalues are non-negative.

Proposition 1.37. If X1, . . . , Xn are independent and square-integrable then X = (X1, . . . , Xn) is a
random vector and Cov(X) is a diagonal matrix (i.e. Cov(Xi, Xj) = 0, ∀i 6= j).

Gaussian random vectors.

Convention. If Y (ω) = c, ∀ω ∈ Ω, then Y is said to be a Gaussian random variable with mean c and
variance 0 (Y ∼ N (c, 0)).

Definition 1.38. A random vector X = (X1, . . . , Xn) is Gaussian if ∀c1, . . . , cn ∈ R, c1X1 + . . .+ cnXn

is a Gaussian random variable (possibly with variance 0).

Remark. This is more than saying that every Xi, 1 ≤ i ≤ n, is Gaussian (see below)!

Proposition 1.39. If X1, . . . , Xn are independent Gaussian random variables, then X = (X1, . . . Xn) is
a Gaussian random vector.

Proposition 1.40. Let X = (X1, . . . , Xn) be a Gaussian random vector. Then the random variables
X1, . . . , Xn are independent if and only if Cov(X) is a diagonal matrix.

But. If X1, . . . , Xn are Gaussian random variables, then it is not necessarily true that X = (X1, . . . , Xn)
is a Gaussian random vector. Also Cov(Xi, Xj) = 0, ∀i 6= j does not imply in general that X1, . . . , Xn

are independent!

Remark. If X is a Gaussian random vector with mean m and covariance K, this is denoted as X ∼
N (m,K). Moreover, X is entirely characterized by its mean m and its covariance K.

Let X be an n-dimensional Gaussian random vector with mean m = E(X) and covariance K = Cov(X).

Definition 1.41. X is non-degenerate if rank(K) = n.

Reminder. Let K be an n× n symmetric matrix.

- rank(K) = n if and only if K is invertible if and only if det(K) 6= 0 if and only if all its eigenvalues are
non-zero.

- More generally, rank(K) = number of non-zero eigenvalues of K.
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Proposition 1.42. Let X be a non-degenerate n-dimensional Gaussian random vector, with mean m
and covariance K. Then X is a continuous random vector with joint pdf

fX(x1, . . . , xn) =
1√

(2π)n det(K)
exp

−1
2

n∑
i,j=1

(xi −mi) (K−1)ij (xj −mj)

 , (x1, . . . , xn) ∈ Rn.

Proposition 1.43. Let X be an n-dimensional Gaussian random vector with mean 0 and covariance K.
Let also k = rank(K) ∈ {0, . . . , n}. Then there exist k i.i.d. random variables U1, . . . , Uk ∼ N (0, 1) and
αij ∈ R (1 ≤ i ≤ n, 1 ≤ j ≤ k) such that Xi =

∑k
j=1 αij Uj , i = 1, . . . , n.

Remark. In matrix form, X = AU and AAT = K.

Example. Let X = (Y, Y ), where Y ∼ N (0, 1). In this simple case, we have

Cov(X) = K =
(

1 1
1 1

)
so k = 1, and U1 = Y , α11 = α21 = 1.

2 Discrete-time stochastic processes

A discrete-time stochastic process can be viewed

a) either as a collection of random variables (Xn, n ∈ N)

b) or as a random sequence X :
{

Ω → RN

ω 7→ (Xn(ω), n ∈ N)

Canonical example: the random walk.

Let (ξn, n ≥ 1) be a collection of i.i.d. random variables such that P({ξ1 = +1}) = P({ξ1 = −1}) = 1/2.
Let S0 = 0, Sn = ξ1 + . . . + ξn, n ≥ 1: the process (Sn, n ∈ N) is called the simple symmetric random
walk. As simple as it may be, this process exhibits already many fascinating properties.

Remarks. - E(ξ1) = 0, so E(Sn) = E(ξ1) + . . .+ E(ξn) = 0.

- Var(ξ1) = 1, so by independence, Var(Sn) = Var(ξ1) + . . .+ Var(ξn) = n.

- By the (strong) law of large numbers, we know that
Sn
n
→

n→∞
0 a.s.

- By the central limit theorem, we also know that
Sn√
n

d→ Z ∼ N (0, 1), i.e. Sn '
√
nZ.

Variations.

- simple asymmetric random walk: Sn = ξ1 + . . . + ξn, with P({ξ1 = +1}) = p = 1 − P({ξ1 = −1}) and
p 6= 1/2.

- random walk with values in R : Sn = ξ1 + . . .+ ξn with ξ1 ∼ N (0, 1) e.g.

- continuous-time random walk = Brownian motion (see next chapter).
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2.1 Martingales

Let (Ω,F ,P) be a probability space.

Definition 2.1. A filtration is a sequence (Fn, n ∈ N) of sub-σ-fields of F such that Fn ⊂ Fn+1, ∀n ∈ N.

Example. Let Ω = [0, 1], F = B([0, 1]), Xn(ω) = nth decimal of ω, for n ≥ 1. Let also F0 = {∅,Ω},
Fn = σ(X1, . . . , Xn). Then Fn ⊂ Fn+1, ∀n ∈ N.

Definitions 2.2. - A discrete-time process (Xn, n ∈ N) is said to be adapted to the filtration (Fn, n ∈ N)
if Xn is Fn-measurable ∀n ∈ N.

- The natural filtration of a process (Xn, n ∈ N) is defined as FXn = σ(X0, . . . , Xn), n ∈ N. It represents
the available amount of information about the process at time n.

Remark. A process is adapted to its natural filtration, by definition.

Let now (Fn, n ∈ N) be a given filtration.

Definition 2.3. A discrete-time process (Mn, n ∈ N) is a martingale with respect to (Fn, n ∈ N) if

(i) E(|Mn|) <∞, ∀n ∈ N.

(ii) Mn is Fn-measurable, ∀n ∈ N (i.e., (Mn, n ∈ N) is adapted to (Fn, n ∈ N)).

(iii) E(Mn+1|Fn) = Mn a.s., ∀n ∈ N.

A martingale is therefore a fair game: the expectation of the process at time n+ 1 given the information
at time n is equal to the value of the process at time n.

Remark. Conditions (ii) and (iii) are actually redundant, as (iii) implies (ii).

Properties. If (Mn, n ∈ N) is a martingale, then

- E(Mn+1) = E(Mn) (= . . . = E(M0)), ∀n ∈ N.

- E(Mn+1 −Mn|Fn) = 0 a.s.

- E(Mn+m|Fn) = Mn a.s., ∀n,m ∈ N.

This last property is important, as it says that the martingale property propagates over time.

Example: the simple symmetric random walk.

Let (Sn, n ∈ N) be the simple symmetric random walk : S0 = 0, Sn = ξ1 + . . . + ξn, where the ξn are
i.i.d. and P({ξ1 = +1}) = P({ξ1 = −1}) = 1/2.

Let us define the following filtration: F0 = {∅, Ω}, Fn = σ({ξ1, . . . , ξn}), n ≥ 1. Then (Sn, n ∈ N) is a
martingale with respect to (Fn, , n ∈ N). Indeed:

(i) E(|Sn|) ≤ E(|ξ1|) + . . .+ E(|ξn|) = 1 + . . .+ 1 = n <∞, ∀n ∈ N.

(ii) Sn = ξ1 + . . .+ ξn is a function of (ξ1, . . . , ξn), i.e., is σ(ξ1, . . . , ξn) = Fn-measurable.

(iii) We have

E(Sn+1|Fn) = E(Sn + ξn+1|Fn) = E(Sn|Fn) + E(ξn+1|Fn)
= Sn + E(ξn+1) = Sn + 0 = Sn a.s.

The first equality on the second line follows from the fact that Sn is Fn-measurable and that ξn+1 is
independent of Fn = σ(ξ1, . . . , ξn).

Generalization. If the random variables ξn are i.i.d. and such that E(|ξ1|) < ∞ and E(ξ1) = 0, then
(Sn, n ∈ N) is also a martingale (in particular, ξ1 ∼ N (0, 1) works).

21



Definition 2.4. Let (Fn, n ∈ N) be a filtration. A process (Mn, n ∈ N) is a submartingale (resp. a
supermartingale) with respect to (Fn, n ∈ N) if

(i) E(|Mn|) <∞, ∀n ∈ N.

(ii) Mn is Fn-measurable, ∀n ∈ N.

(iii) E(Mn+1|Fn) ≥Mn a.s., ∀n ∈ N (resp. E(Mn+1|Fn) ≤Mn a.s., ∀n ∈ N).

Remarks. - Not every process is either a sub- or a supermartingale!

- The appellations sub- and supermartingale are counter-intuitive. They are due to historical reasons.

- Condition (ii) is now necessary in itself, as (iii) does not imply it.

- If (Mn, n ∈ N) is both a submartingale and a supermartingale, then it is a martingale.

Example: the simple asymmetric random walk.

- If P({ξ1 = +1}) = p = 1− P({ξ1 = −1}) with p ≥ 1/2, then Sn = ξ1 + . . .+ ξn is a submartingale.

- More generally, Sn = ξ1 + . . .+ ξn is a submartingale if E(ξ1) ≥ 0.

Proposition 2.5. If (Mn, n ∈ N) is a martingale with respect to a filtration (Fn, n ∈ N) and ϕ : R→ R
is a Borel-measurable and convex function such that E(|ϕ(Mn)|) < ∞, ∀n ∈ N, then (ϕ(Mn), n ∈ N) is
a submartingale.

Proof. (i) E(|ϕ(Mn)|) <∞ by assumption.

(ii) ϕ(Mn) is Fn-measurable as Mn is (and ϕ is Borel-measurable).

(iii) E(ϕ(Mn+1)|Fn) ≥ ϕ(E(Mn+1|Fn)) = ϕ(Mn) a.s.

In (iii), the first inequality follows from Jensen’s inequality and the second follows from the fact that M
is a martingale.

Example. If (Mn, n ∈ N) is a square-integrable martingale (i.e., E(M2
n) <∞, ∀n ∈ N), then the process

(M2
n, n ∈ N) is a submartingale (as x 7→ x2 is convex).

Doob’s Decomposition theorem.

Definition 2.6. A process (An, n ∈ N) is said to be predictable with respect to a filtration (Fn, n ∈ N)
if A0 = 0 and An is Fn−1-measurable ∀n ≥ 1.

Remark. If a process is predictable, then it is adapted.

Theorem 2.7. Let (Xn, n ∈ N) be a submartingale with respect to a filtration (Fn, n ∈ N). Then there
exists a martingale (Mn, n ∈ N) with respect to (Fn, n ∈ N) and a process (An, n ∈ N) predictable with
respect to (Fn, n ∈ N) and increasing (i.e, An ≤ An+1 ∀n ∈ N) such that A0 = 0 and Xn = Mn + An,
∀n ∈ N. Moreover, this decomposition of the process X is unique.

Proof. (main idea)
E(Xn+1|Fn) ≥ Xn, so a natural candidate for the process A is to set A0 = 0 and An+1 = An +
E(Xn+1|Fn) −Xn (≥ An), which is a predictable and increasing process. Then, M0 = X0 and Mn+1 −
Mn = Xn+1−Xn− (An+1−An) = Xn+1−E(Xn+1|Fn) is indeed a martingale, as E(Mn+1−Mn|Fn) =
0.
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2.2 Stopping times

Definitions 2.8. - A random time is a random variable T with values in N ∪ {+∞}.

- Given a process (Xn, n ∈ N), one defines XT (ω) = XT (ω)(ω) =
∑
n∈N Xn(ω) 1{T=n}(ω).

- A stopping time with respect to a filtration (Fn, n ∈ N) is a random time T such that {T ≤ n} ∈ Fn,
∀n ∈ N.

Proposition 2.9. T is a stopping time with respect to (Fn, n ∈ N) if and only if {T = n} ∈ Fn, ∀n ∈ N.

Example. Let (Xn, n ∈ N) be a process adapted to (Fn, n ∈ N) and a > 0. Then, Ta = inf{n ∈ N :
|Xn| ≥ a} is a stopping time with respect to (Fn, n ∈ N). Indeed:

{Ta = n} = {|Xi| < a, ∀0 ≤ i ≤ n− 1 and |Xn| ≥ a}

=
n−1⋂
i=0

{|Xi| < a}︸ ︷︷ ︸
∈Fi⊂Fn ∀i=0,...,n−1

∩ {|Xn| ≥ a} ∈ Fn, ∀n ∈ N.

Definition 2.10. Let T be a stopping time with respect to a filtration (Fn, n ∈ N). One defines the
information one possesses at time T as the following σ-field:

FT = {A ∈ F : A ∩ {T = n} ∈ Fn, ∀n ∈ N}.

Facts.

- If T (ω) = N , ∀ω ∈ Ω, then FT = FN .

- If T1(ω) ≤ T2(ω), ∀ω ∈ Ω, then FT1 ⊂ FT2 .

[Here is an example of stopping times T1, T2 such that T1 ≤ T2:
let 0 < a < b and consider T1 = inf{n ∈ N : |Xn| ≥ a} and T2 = inf{n ∈ N : |Xn| ≥ b}.]

- A random variable Y is FT -measurable if and only if Y 1{T=n} is Fn-measurable, ∀n ∈ N.

As a consequence:

- If (Xn, n ∈ N) is adapted to (Fn, n ∈ N), then XT is FT -measurable.

Doob’s optional sampling theorem.
Let (Mn, n ∈ N) be a martingale with respect to (Fn, n ∈ N) and T1, T2 be two stopping times such
that 0 ≤ T1(ω) ≤ T2(ω) ≤ N <∞, ∀ω ∈ Ω. Then

E(MT2 |FT1) = MT1 a.s.

In particular, E(MT2) = E(MT1) (this consequence is referred to as the optional stopping theorem).

In particular, if T is a stopping time such that 0 ≤ T (ω) ≤ N <∞, ∀ω ∈ Ω, then

E(MT ) = E(M0).

Remarks. - The above theorem says that the martingale property holds even if one is given the option
to stop at any (bounded) stopping time.

- The theorem also holds for sub- and supermartingales.

Proof. - We first show that if T is a stopping time such that 0 ≤ T (ω) ≤ N , then E(MN |FT ) = MT (∗):

Indeed, let Z = MT =
∑N
n=0Mn 1{T=n}. We check below that Z is the conditional expectation of MN

given FT :
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(i) Z is FT -measurable: Z 1{T=n} = Mn 1{T=n}, so by the above mentioned fact, Z is FT -measurable.

(ii) E(ZU) = E(MNU), ∀U FT -measurable and bounded:

E(ZU) =
N∑
n=0

E(Mn1{T=n}U) =
N∑
n=0

E(E(MN |Fn) 1{T=n}U︸ ︷︷ ︸
Fn−measurable

) =
N∑
n=0

E(MN1{T=n}U) = E(MNU).

- Second, let us check that E(MT2 |FT1) = MT1 :

MT1 =
(∗) with T=T1

E(MN |FT1) =
FT1⊂FT2

E(E(MN |FT2)|FT1) =
(∗) with T=T2

E(MT2 |FT1).

This concludes the proof of the theorem.

2.3 Martingale transforms

Let (Fn, n ∈ N) be a filtration, (Hn, n ∈ N) be a predictable process with respect to (Fn, n ∈ N) and
(Mn, n ∈ N) be a martingale with respect to (Fn, n ∈ N).

Definition 2.11. The process G defined as

G0 = 0, Gn = (H ·M)n =
n∑
i=1

Hi(Mi −Mi−1), n ≥ 1,

is called the martingale transform of M through H.

Remark. This process is the discrete version of the stochastic integral. It represents the gain obtained
by applying the strategy H to the game M :

- Hi = amount bet on day i (Fi−1-measurable)

- Mi −Mi−1 = increment of the process M on day i.

- Gn = gain on day n.

Proposition 2.12. If Hn is a bounded random variable for each n (i.e, |Hn(ω)| ≤ Kn ∀ω ∈ Ω), then
the process G is a martingale with respect to (Fn, n ∈ N).

In other words, one cannot win on a martingale!

Proof. (i) E(|Gn|) ≤
∑n
i=1 E(|Hi| |Mi −Mi−1|) ≤

∑n
i=1Ki (E(|Mi|) + E(|Mi−1|)) <∞.

(ii) Gn is Fn-measurable by construction.

(iii) E(Gn+1|Fn) = E(Gn+Hn+1 (Mn+1−Mn)|Fn) = Gn+Hn+1 E(Mn+1−Mn|Fn) = Gn+0 = Gn.

Example: “the” martingale.

Let (Mn, n ∈ N) be the simple symmetric random walk (Mn = ξ1 + . . .+ ξn) and consider the following
strategy:

H0 = 0, H1 = 1, Hn+1 =
{

2Hn, if ξ1 = . . . = ξn = −1,
0. otherwise.

Notice that all the Hn are bounded random variables. Then by the above proposition, the process G
defined as

G0 = 0, Gn =
n∑
i=1

Hi (Mi −Mi−1) =
n∑
i=1

Hi ξi, n ≥ 1,
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is a martingale. So E(Gn) = E(G0) = 0, ∀n ∈ N. Let now

T = inf{n ≥ 1 : ξn = +1}.

T is a stopping time and it is easily seen that GT = +1. But then E(GT ) = 1 6= 0 = E(G0)? Is there a
contradiction? Actually no. The optional stopping theorem does not apply here, because the time T is
unbounded: P(T = n) = 2−n, ∀n ∈ N, i.e., there does not exist N fixed such that T (ω) ≤ N , ∀ω ∈ Ω.

2.4 Markov processes

Let (Xn, n ∈ N) be a discrete-time process adapted to a filtration (Fn, n ∈ N).

Definition 2.13. (Xn, n ∈ N) is said to be a Markov process with respect to (Fn, n ∈ N) if

P(Xn+1 ∈ B | Fn) = P(Xn+1 ∈ B |Xn), ∀n ∈ N, B ∈ B(R).

(remember that P(Xn+1 ∈ B |Xn) = P(Xn+1 ∈ B |σ(Xn)) by definition.)

Proposition 2.14. (Xn, n ∈ N) is a Markov process with respect to (Fn, n ∈ N) if and only if

E(g(Xn+1)|Fn) = E(g(Xn+1)|Xn), ∀n ∈ N

and ∀g : R→ R Borel-measurable and bounded.

Particular class of Markov process. Let (ξn, n ≥ 1) be a sequence of independent random variables
(not necessarily i.i.d.) and

F0 = {∅, Ω}, Fn = σ(ξ1, . . . , ξn).

Then any process defined recursively as

X0 = cst, Xn+1 = f(Xn, ξn+1), n ≥ 0,

with f : R2 → R a Borel-measurable function, is a Markov process with respect to (Fn, n ∈ N).

Proof. As Xn is both and Fn-measurable and σ(Xn)-measurable, and ξn+1 is independent of Fn, and
therefore of Xn, we have by Proposition 1.28:

E(g(Xn+1)|Fn) = E(g(f(Xn, ξn+1))|Fn) = ψ(Xn), where ψ(y) = E(g(f(y, ξn+1)))

and also
E(g(Xn+1)|Xn) = E(g(f(Xn, ξn+1))|Xn) = ψ(Xn).

Example. Let S be a “generalized” random walk with independent increments, i.e. S0 = 0, Sn =
ξ1 + . . . + ξn, n ≥ 1, where the random variables ξi are independent. Then Sn+1 = Sn + ξn+1 is indeed
a Borel-measurable function of Sn and ξn+1; it falls therefore into the above-mentioned class of Markov
processes.

Remarks.

- It is important not to mix martingale property (E(Xn+1|Fn) = Xn) with the Markov property
(E(g(Xn+1)|Fn) = E(g(Xn+1)|Xn), ∀g). None of the two implies the other one.

- Markov chains form a particular class of Markov processes (those with discrete state space).

- Stationarity is not included in the above definition of a Markov process.
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3 Continuous-time stochastic processes

Definition 3.1. A continuous-time stochastic process is a collection of random variables (Xt, t ∈ R+)
defined on a common probability space (Ω,F ,P). Alternatively, a stochastic process may be seen as a
random function

X :
{

Ω → {f : R+ → R}
ω 7→ {t 7→ Xt(ω)}

Remark. In order to describe a continuous-time stochastic process, one generally needs a LARGE
probability space Ω!

Question. For a single random variable X, the knowledge of its cdf P(X ≤ x), ∀x ∈ R characterizes
entirely the random variable. In the case of a stochastic process (Xt, t ∈ R+), what is needed in order
to characterize the process entirely?

First answer. Specify P(Xt ≤ x), ∀t ∈ R+, ∀x ∈ R ? This is insufficient. Here is why: assume we only
know that Xt ∼ N (0, t), ∀t ∈ R+. Let us then define

- X(1)
t =

√
t Y , where Y ∼ N (0, 1).

- X(2)
t = standard Brownian motion (defined below).

It turns out that these two processes satisfy both X
(1)
t ∼ N (0, t) and X

(2)
t ∼ N (0, t), ∀t ∈ R+, even

though they have little to do with each other!

Second answer. Specify P(Xt1 ≤ x1, Xt2 ≤ x2), ∀t1, t2 ∈ R+, x1, x2 ∈ R? This is better, but still
insufficient! (Actually, it is sufficient for Gaussian processes: see below).

nth answer. Specify P(Xt1 ≤ x1, . . . , Xtn ≤ xn), ∀t1, . . . , tn ∈ R+ and n ≥ 1! This is the correct
answer. Specifying all these joint distributions is cumbersome in general, but we will focus our attention
on specific classes of processes for which a simpler description is possible.

Processes with independent and stationary increments

Definition 3.2. The random variables Xt −Xs, for t ≥ s ≥ 0, are called the increments of the process
X = (Xt, t ∈ R+).

Definition 3.3. A process X = (Xt, t ∈ R+) is said to have independent and stationary increments if

- Xt −Xs ⊥⊥ FXs = σ(Xr, 0 ≤ r ≤ s), ∀t ≥ s ≥ 0 (independence).

- Xt −Xs ∼ Xt−s −X0, ∀t ≥ s ≥ 0 (stationarity).

(Remember that X ∼ Y means “X has the same distribution as Y ”).

For such process, it is sufficient to specify the distribution of X0 and Xt − X0, ∀t ∈ R+, in order to
fully characterize the process. So in some sense in this case, the first answer above is valid. But having
independent and stationary increments is a strong requirement for a continuous-time process.

Processes with continuous trajectories

Definition 3.4. A process X = (Xt, t ∈ R+) is said to have continuous trajectories if

P({ω ∈ Ω : the function t 7→ Xt(ω) is continuous }) = 1.

We now have all the concepts in our hands in order to define the standard Brownian motion, which
exhibits many interesting properties and plays a central role in the theory of stochastic calculus.
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3.1 Standard Brownian motion

Definition 3.5. (first version) A standard Brownian motion is a continuous-time stochastic process
B = (Bt, t ∈ R+) such that

- B0 = 0 a.s.

- B has independent and stationary increments.

- Bt ∼ N (0, t), ∀t ∈ R+.

- B has continuous trajectories.

Basic properties. - E(Bt) = 0, E(B2
t ) = t, ∀t ∈ R+.

- Bt −Bs ∼ Bt−s −B0 = Bt−s ∼ N (0, t− s), so E(Bt −Bs) = 0, E((Bt −Bs)2) = t− s, ∀t ≥ s ≥ 0.

- By the law of large numbers, limt→∞
Bt

t = 0 a.s.

- Moreover, Bt√
t
∼ N (0, 1), ∀t ≥ 0, so the central limit theorem applies trivially here: Bt√

t

d→
n→∞

Z ∼ N (0, 1),
i.e.

lim
t→∞

P
(
Bt√
t
≤ x

)
=
∫ x

−∞

1√
2π

exp(−y2/2) dy, ∀x ∈ R.

Remarks. - These properties are reminiscent from those of the random walk.

- The existence of a process B that satisfies all the above properties is ensured by a deep and important
theorem of Kolmogorov, but we shall not state it explicitly here.

Construction from the random walk.

- Let (Sn, n ∈ N) be the simple symmetric random walk (i.e S0 = 0, Sn = ξ1 + . . . + ξn with ξi i.i.d.,
P(ξ1 = 1) = P(ξ1 = −1) = 1

2 ). Remember that by the central limit theorem, Sn√
n

d→
n→∞

Z ∼ N (0, 1).

- Let now

Yt = S[t] + (t− [t]) ξ[t]+1, t ∈ R+, i.e., if t = n+ ε, ε ∈ [0, 1], then Yt = Sn + ε ξn+1.

This process is known as the broken line process.

Remark. Y is not a process with independent increments, nor is it a standard Brownian motion!

- Let us define B(n)
t = Ynt√

n
, t ∈ R+: this amounts to looking at the process Y from far away, rescaling the

x-axis by a factor n, while rescaling the y-axis by a factor
√
n. Assume now for simplicity that nt ∈ N.

Then
B

(n)
t =

Snt√
n

=
√
t
Snt√
nt

d→
n→∞

√
t Z ∼ N (0, t) i.e. P(B(n)

t ≤ x) →
n→∞

P(Bt ≤ x).

as Bt ∼ N (0, t).

- Similarly, one can show that

P(B(n)
t1 ≤ x1, . . . , B

(n)
tm ≤ xm) →

n→∞
P(Bt1 ≤ x1, . . . , Btm ≤ xm),

∀t1, . . . , tm ∈ R+, x1, . . . , xm ∈ R and m ≥ 1. This shows that the sequence of processes B(n) converges
in distribution to the process B.

Remark. From this, we deduce that even though the limiting process B has continuous trajectories,
these are nowhere differentiable. Indeed, the slope of B(n)

t is ±
√
n, so the “slope” of Bt is ±∞. The

derivative of Bt is formally called the white noise process (although this process does not exist!).
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3.2 Mean and covariance

Let X = (Xt, t ∈ R+) be a square integrable (i.e. E(X2
t ) <∞, ∀t ∈ R+) continuous-time process.

Definition 3.6. - The mean of the process X is the function m : R+ → R given by m(t) = E(Xt),
t ∈ R+.

- The covariance of the process X is the function K : R+ × R+ → R given by K(t, s) = Cov(Xt, Xs),
t, s ∈ R+.

Properties. - K is symmetric, i.e. K(t, s) = K(s, t).

- K is positive semi-definite, i.e.

n∑
i,j=1

ci cj K(ti, tj) ≥ 0, ∀c1, . . . , cn ∈ R, t1, . . . tn ∈ R+ and n ≥ 1.

The proof of this follows the same lines as the proof for the covariance of a random vector.

In general, the mean m and the covariance K alone do not fully characterize a process X (as it is the
case for random variables and random vectors). The only exception is given in the following paragraph.

3.3 Gaussian processes

Definition 3.7. A Gaussian process is a process (Xt, t ∈ R+) such that c1Xt1 + . . .+cnXtn is a Gaussian
random variable ∀c1, . . . cn ∈ R, t1, . . . , tn ∈ R+ and n ≥ 1.

In other words, the process X is a Gaussian process if and only if each sample (Xt1 , . . . , Xtn) is a Gaussian
vector.

Theorem 3.8. (Kolmogorov) Given m : R+ → R and K : R+ × R+ → R symmetric and positive
semi-definite, there exists a Gaussian process X with mean m and covariance K. In addition, m and K
characterize entirely the process X.

Proposition 3.9. (second possible definition of the standard Brownian motion)
The standard Brownian motion B = (Bt, t ∈ R+) is a Gaussian process with continuous trajectories,
with mean m(t) = 0 and covariance K(t, s) = t ∧ s (= min(t, s)).

Proof. (that the first definition implies the second)
- One should first check that c1Bt1 +. . .+cnBtn is a Gaussian random variable ∀c1, . . . , cn ∈ R, t1, . . . , tn ∈
R+ and n ≥ 1. Let us simply check that Bt +Bs is Gaussian ∀t ≥ s ≥ 0:

Bt +Bs = Bt −Bs + 2Bs is Gaussian,

as Bt −Bs and 2Bs are independent and Gaussian. The proof in the general case follows the same idea.

- m(t) = E(Bt) = 0.

- Let t ≥ s ≥ 0 :

K(t, s) = E(BtBs) = E((Bt −Bs +Bs)Bs) = E((Bt −Bs)Bs) + E(B2
s )

= E(Bt −Bs) E(Bs) + E(B2
s ) = 0 + E(B2

s ) = s = min(t, s).
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3.4 Markov processes

Definition 3.10. A (continuous-time) Markov process with respect to a filtration (Ft, t ∈ R+) is a
process (Xt, t ∈ R+) such that

P(Xt ∈ B | Fs) = P(Xt ∈ B |Xs) ∀t ≥ s ≥ 0, ∀B ∈ B(R).

Equivalently,
E(g(Xt) | Fs) = E(g(Xt) |Xs) ∀t ≥ s ≥ 0

and g : R→ R Borel-measurable and bounded.

Proposition 3.11. The standard Brownian motion is a Markov process with respect to its natural
filtration FBs = σ(Br, 0 ≤ r ≤ s).

Proof. - E(g(Bt) | FBs ) = E(g(Bt−Bs +Bs) | Fs) = ψ(Bs), where ψ(y) = E(g(Bt−Bs + y)) (this follows
from the fact that Bt −Bs ⊥⊥ Fs and that Bs is Fs-measurable).

- Similarly, E(g(Bt) |Bs) = E(g(Bt −Bs +Bs) |Bs) = ψ(Bs) given above.

Remark. More generally, any process with independent increments (but not necessarily stationary) is a
Markov process with respect to its natural filtration.

3.5 Martingales

Let (Ω,F ,P) be a probability space.

Definitions 3.12. - A (continuous-time) filtration is a collection (Ft, t ∈ R+) of sub-σ-fields of F such
that Fs ⊂ Ft, ∀t ≥ s ≥ 0.

- A process (Xt, t ∈ R+) is said to be adapted to the filtration (Ft, t ∈ R+) if Xt is Ft-measurable
∀t ∈ R+.

- The natural filtration of a process (Xt, t ∈ R+) is defined as FXt = σ(Xs, 0 ≤ s ≤ t), t ∈ R+.

Remark. Every process is adapted to its natural filtration.

Definition 3.13. A process (Mt, t ∈ R+) is said to be a (continuous-time) martingale with respect to a
filtration (Ft, t ∈ R+) if

(i) E(|Mt|) <∞, ∀t ∈ R+.

(ii) Mt is Ft-measurable, ∀t ∈ R+.

(iii) E(Mt | Fs) = Ms, ∀t ≥ s ≥ 0.

Generalization. The process M is said to be a submartingale (respectively a supermartingale) if condi-
tion (iii) is replaced by E(Mt | Fs) ≥Ms (respectively E(Mt | Fs) ≤Ms), ∀t ≥ s ≥ 0.

Proposition 3.14. If (Mt, t ∈ R+) is a martingale and ϕ : R→ R is convex and such that E(|ϕ(Mt)|) <
∞ for all t ∈ R+, then the process (ϕ(Mt), t ∈ R+) is a submartingale.

Proposition 3.15. The standard Brownian motion (Bt, t ∈ R+) is a martingale with respect to its
natural filtration (FBt , t ∈ R+).

Proof. (i) E(|Bt|) ≤
√

E(B2
t ) =

√
t <∞, ∀t ∈ R+.

(ii) Bt is FCBt -measurable, by definition, ∀t ∈ R+.
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(iii) Let t ≥ s ≥ 0:

E(Bt | FBs ) = E(Bt −Bs +Bs | FBs ) = E(Bt −Bs | FBs ) + E(Bs | FBs ) = E(Bt −Bs) +Bs = 0 +Bs = Bs.

Proposition 3.16. The following processes are also martingales with respect to (FBt , t ∈ R+):

- (Mt = B2
t − t, t ∈ R+).

- (Nt = exp(Bt − t
2 ), t ∈ R+).

Theorem 3.17. (Lévy) (third possible definition of the standard Brownian motion)

Let (Xt, t ∈ R+) be a process with continuous trajectories, adapted to a filtration (Ft, t ∈ R+) and such
that X0 = 0 a.s. and

(i) (Xt, t ∈ R+) is a martingale with respect to (Ft, t ∈ R+).

(ii) (X2
t − t, t ∈ R+) is also a martingale with respect to (Ft, t ∈ R+).

Then (Xt, t ∈ R+) is a standard Brownian motion.

Definitions 3.18. - A stopping time with respect to a filtration (Ft, t ∈ R+) is a random time T with
values in R+ ∪ {+∞} such that {T ≤ t} ∈ Ft, ∀t ∈ R+.

- If X is a process, then XT (ω) = XT (ω)(ω), ω ∈ Ω (process evaluated at time T ).

- FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft, ∀t ∈ R+} (information one possesses at time T ).

Doob’s optional sampling theorem.
Let (Mt, t ∈ R+) be a martingale with respect to a filtration (Ft, t ∈ R+), with continuous trajectories
(from now on, we will also say equivalently: a continuous martingale). Let T1, T2 be two stopping times
such that 0 ≤ T1(ω) ≤ T2(ω) ≤ K < ∞, ∀ω ∈ Ω. Then E(MT2 | FT1) = MT1 a.s. In particular,
E(MT2) = E(MT1) (optional stopping).

Remarks. - The proof of the theorem is much more involved than in the discrete-time setting.

- The theorem remains valid for sub- and supermartingales (with corresponding inequalities).

Doob’s inequalities.
Let (Mt, t ∈ R+) be continuous square-integrable martingale with respect to (Ft, t ∈ R+) such that
M0 = 0 a.s. Then

a) P(sup0≤s≤t |Ms| ≥ λ) ≤ E(|Mt|)
λ , ∀t > 0, λ > 0.

b) E(sup0≤s≤t |Ms|2) ≤ 4E(|Mt|2), ∀t > 0.

Doob’s decomposition theorem.
Let (Xt, t ∈ R+) be a continuous submartingale with respect to a filtration (Ft, t ∈ R+). Then there
exists a unique process (At, t ∈ R+) which is increasing (i.e. As ≤ At if s ≤ t), continuous and adapted
to (Ft, t ∈ R+) such that A0 = 0 and (Xt −At, t ∈ R+) is a martingale with respect to (Ft, t ∈ R+).

Application. Let (Mt, t ∈ R+) be a continuous square-integrable martingale with respect to (Ft, t ∈
R+). Then there exists a unique process (At, t ∈ R+) which is increasing, continuous and adapted to
(Ft, t ∈ R+) such that A0 = 0 and (M2

t −At, t ∈ R+) is a martingale with respect to (Ft, t ∈ R+).

This process will play a particular role in the following.

Examples. - If Mt = Bt, then At = t (indeed, B2
t − t =martingale)

- If M has independent increments, then At = E(M2
t )− E(M2

0 ).
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4 Stochastic integral

4.1 Functions with bounded variation

Definition 4.1. A function g : R+ → R is said to have bounded variation if ∀t > 0,

sup
n∑
i=1

|g(ti)− g(ti−1)| <∞,

where the supremum is taken over all partitions 0 = t0 < t1 < . . . < tn = t of [0, t] (and n is arbitrary).

Examples. - If g is increasing (or decreasing), then g has bounded variation. Indeed, in this case:

n∑
i=1

|g(ti)− g(ti−1)| =
n∑
i=1

g(ti)− g(ti−1) = g(tn)− g(t0) = g(t)− g(0)

for all partitions of [0, t], so

sup
n∑
i=1

|g(ti)− g(ti−1)| = g(t)− g(0) <∞.

- If g = g1 − g2, where g1 and g2 are both increasing, then g also has bounded variation.

- If g is continuously differentiable, then g has bounded variation. Indeed,

n∑
i=1

|g(ti)− g(ti−1)| =
n∑
i=1

∣∣∣∣∣
∫ ti

ti−1

g′(s) ds

∣∣∣∣∣ ≤
n∑
i=1

∫ ti

ti−1

|g′(s)| ds =
∫ t

0

|g′(s)| ds <∞.

Again, this expression does not depend on the chosen partition, so

sup
n∑
i=1

|g(ti)− g(ti−1)| ≤
∫ t

0

|g′(s)| ds <∞.

Generalization to processes.

Definition 4.2. A continuous-time stochastic process (Xt, t ∈ R+) is said to have bounded variation if
its trajectories have bounded variation a.s.

We will see that the trajectories of the standard Brownian motion have unbounded variation, a.s.

4.2 Quadratic variation

Quadratic variation of the standard Brownian motion.

Let (Bt, t ∈ R+) be a standard Brownian motion. For t > 0 and n ≥ 1 fixed, let

〈B〉(n)
t =

2n∑
i=1

(
B

(
it

2n

)
−B

(
(i− 1)t

2n

))2

.

Notation. We use indifferently the notation Bt ≡ B(t).

Definition 4.3. The (almost sure) limit 〈B〉t = limn→∞〈B〉(n)
t is called the quadratic variation of the

Brownian motion. We show below that it exists and is equal to t.
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Proposition 4.4. For every fixed t ≥ 0, 〈B〉t = t, a.s.

Proof. Recall that in order to show that Zn → Z a.s., it is sufficient to check that∑
n≥1

P({|ZN − Z| > ε}) <∞, ∀ε > 0.

Here, Zn = 〈B〉(n)
t and Z = t, which is fixed. Let us first compute E(〈B〉(n)

t ) and Var(〈B〉(n)
t ):

E(〈B〉(n)
t ) =

2n∑
i=1

E
((

B
(
it
2n

)
−B

(
(i−1)t

2n

)
︸ ︷︷ ︸

∼ N (0, t
2n )

)2)
=

2n∑
i=1

t

2n
= t

and

Var(〈B〉(n)
t ) =

2n∑
i=1

Var
((
B
(
it
2n

)
−B

(
(i−1)t

2n

))2)
by independence of the increments of B. Moreover, if X ∼ N (0, σ2), then

Var(X2) = E(X4)− E(X2)2 = 3σ4 − σ4 = 2σ4, so Var(〈B〉(n)
t ) =

2n∑
i=1

2
(
t

2n

)2 =
t2

2n−1
.

Therefore, by Chebychev’s inequality,

P({|〈B〉(n)
t − t| > ε}) ≤ 1

ε2
E((〈B〉(n)

t − t)2) =
1
ε2

Var(〈B〉(n)
t ) =

t2

ε2 2n−1

and ∑
n≥1

P({|〈B〉(n)
t − t| > ε}) ≤ t2

ε2

∑
n≥1

1
2n−1︸ ︷︷ ︸

=1

<∞, ∀ε > 0,

so the proposition is proved.

Corollary 4.5. For all t > 0, we have

lim
n→∞

2n∑
i=1

∣∣∣∣B( it

2n

)
−B

(
(i− 1)t

2n

)∣∣∣∣ =∞ a.s.

Consequently, the process (Bt, t ∈ R+) has unbounded variation, a.s.

Proof. Let us first check that if g : R+ → R is a continuous function such that

lim
n→∞

2n∑
i=1

∣∣∣∣g( it

2n

)
− g

(
(i− 1)t

2n

)∣∣∣∣ <∞, then 〈g〉t = lim
n→∞

2n∑
i=1

(
g

(
it

2n

)
− g

(
(i− 1)t

2n

))2

= 0.

Indeed,

lim
n→∞

2n∑
i=1

(
g

(
it

2n

)
− g

(
(i− 1)t

2n

))2

≤ lim
n→∞

max
1≤i≤2n

∣∣∣∣g( it

2n

)
− g

(
(i− 1)t

2n

)∣∣∣∣︸ ︷︷ ︸
=0

· lim
n→∞

2n∑
i=1

∣∣∣∣g( it

2n

)
− g

(
(i− 1)t

2n

)∣∣∣∣︸ ︷︷ ︸
<∞

= 0.
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So, as we know that the Brownian motion B has continuous trajectories, if it was the case that

P

(
lim
n→∞

2n∑
i=1

∣∣∣∣B( it

2n

)
−B

(
(i− 1)t

2n

)∣∣∣∣ <∞
)
> 0,

then this would imply that P(〈B〉t = 0) > 0, which is in contradiction with the previous result (〈B〉t = t
a.s.). In conclusion,

P

(
lim
n→∞

2n∑
i=1

∣∣∣∣B( it

2n

)
−B

(
(i− 1)t

2n

)∣∣∣∣ =∞

)
= 1.

Final remark. Notice that B2
t − 〈B〉t = B2

t − t is a martingale. This is not a coincidence.

Quadratic variation of a martingale.

Reminder(from Doob’s decomposition theorem). If (Mt, t ∈ R+) is a continuous square-integrable
martingale, then there exists a unique process (At, t ∈ R+) which is increasing, continuous and adapted
to the same filtration as (Mt, t ∈ R+), such that A0 = 0 and (M2

t −At, t ∈ R+) is a martingale.

Definition 4.6. The process A is called the quadratic variation of the martingale M and is denoted as
At = 〈M〉t, t ∈ R+.

Proposition 4.7. If (Mt, t ∈ R+) is a continuous square-integrable martingale, then

〈M〉(n)
t =

2n∑
i=1

(
M

(
it

2n

)
−M

(
(i− 1)t

2n

))2
P→

n→∞
〈M〉t, ∀t > 0,

where (〈M〉t, t ∈ R+) is the process defined above.

Remarks. - By the above definition, E(〈M〉t) = E(M2
t )− E(M2

0 ).

- The process 〈M〉 is increasing : it therefore has bounded variation itself.

- The only martingales with quadratic variation equal to zero are constant processes! So all non-constant
martingales have unbounded variation!

Quadratic covariation.

Let M,N be two continuous square-integrable martingales (adapted to the same filtration (Ft, t ∈ R+)).

Definition 4.8. The quadratic covariation of M and N is the unique process 〈M,N〉 which is continuous,
adapted, has bounded variation and is such that 〈M,N〉0 = 0 and (MtNt − 〈M,N〉t, t ∈ R+) is a
martingale.

Remark. 〈M,M〉t = 〈M〉t.

Proposition 4.9.

〈M,N〉(n)
t =

2n∑
i=1

(
M

(
it

2n

)
−M

(
(i− 1)t

2n

)) (
N

(
it

2n

)
−N

(
(i− 1)t

2n

))
P→

n→∞
〈M,N〉t, ∀t > 0.

Proposition 4.10. If c ∈ R and M , N are independent, then for all t ∈ R+,

〈M,N〉t = 0 and 〈cM +N〉t = c2〈M〉t + 〈N〉t.

Remark. From the above two propositions, we see that the quadratic variation of a martingale plays the
same role as the variance of a random variable. Likewise, the quadratic covariation of two martingales
plays the same role as the covariance of two random variables.
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4.3 Riemann-Stieltjes’ integral

Let T > 0, f : R+ → R be a continuous function and g : R+ → R be a function with bounded variation.

Definition 4.11. The Riemann-Stieltjes integral of f with respect to g is defined as∫ T

0

f(s) dg(s) = lim
n→∞

2n∑
i=1

f
(
s

(n)
i

) (
g

(
iT

2n

)
− g

(
(i− 1)T

2n

))
,

where s(n)
i is a sequence of numbers such that (i−1)T

2n ≤ s(n)
i ≤ iT

2n .

Proposition 4.12. If moreover g is continuously differentiable, then
∫ T

0
f(s) dg(s) =

∫ T
0
f(s) g′(s) ds.

Proposition 4.13. (classical integration by parts formula)
If f, g are both continuous and with bounded variation, then∫ T

0

f(s) dg(s) = f(T ) g(T )− f(0) g(0)−
∫ T

0

g(s) df(s).

In particular, ∫ T

0

f(s) df(s) =
1
2

(f(T )2 − f(0)2).

Generalization to continuous-time stochastic processes.

Definition 4.14. If (Ht, t ∈ R+) is a process with continuous trajectories and (Vt, t ∈ R+) is a process
with bounded variation, then (∫ T

0

Hs dVs

)
(ω) =

∫ T

0

Hs(ω) dVs(ω).

Remark. If V represents the evolution of a stock price and Hs represents the amount of stock V owned
at time s, then

∫ T
0
Hs dVs represents the gain made on the period [0, T ] by investing with the strategy H

on the stock V .

Now, what if the stock price evolution is a standard Brownian motion, or more generally a martingale?

Problem. The trajectories of the Brownian motion or a martingale have unbounded variation, almost
surely, so how to define

∫ T
0
Hs dBs?

Partial solution. If H has continuous trajectories with bounded variation, then using formally the
above integration by parts formula, we could define∫ T

0

Hs dBs = HT BT −H0B0 −
∫ T

0

Bs dHs,

as B has continuous trajectories and H has trajectories with bounded variation. This is fine, but then,
how to define

∫ T
0
Bs dBs?
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4.4 Ito’s stochastic integral

Our aim in the following is to define the process ((H ·B)t ≡
∫ t

0
Hs dBs, t ∈ [0, T ]), where

- T > 0 is a fixed time horizon,

- (Bt, t ∈ R+) is a standard Brownian motion with respect to a filtration (Ft, t ∈ R+), that is:

(i) Bt is Ft-measurable, ∀t ∈ R+,
(ii) Bt −Bs ⊥⊥ Fs, ∀t ≥ s ≥ 0,

- (Ht, t ∈ R+) is a continuous process, adapted to (Ft, t ∈ R+) and such that E
(∫ T

0
H2
s ds

)
<∞.

First step.

For n ≥ 1 fixed, let us define

H
(n)
t =

2n∑
i=1

H

(
(i− 1)T

2n

)
1

]
(i−1)T

2n , iT
2n ]

(t), t ∈ [0, T ].

Preliminary fact. Under the above assumption made on H, we have

E

(∫ T

0

(H(n)
s −Hs)2 ds

)
→

n→∞
0.

Let us now define, for a fixed n ≥ 1,

(H(n) ·B)T ≡
∫ T

0

H(n)
s dBs =

2n∑
i=1

H

(
(i− 1)T

2n

)(
B

(
iT

2n

)
−B

(
(i− 1)T

2n

))
.

For ease of notation, let us write ti = iT
2n , so

(H(n) ·B)T =
2n∑
i=1

Hti−1(Bti −Bti−1).

Properties.

- Linearity: ((cH(n) +K(n)) ·B)T = c (H(n) ·B)T + (K(n) ·B)T .

- E((H(n) ·B)T ) = 0. Indeed:

E((H(n) ·B)T ) =
2n∑
i=1

E(Hti−1 (Bti −Bti−1)) =
2n∑
i=1

E(Hti−1) E(Bti −Bti−1) = 0,

as Hti−1 is Fti-measurable and Bti −Bti−1 ⊥⊥ Fti−1 .

- Isometry property: Var((H(n) ·B)T ) = E((H(n) ·B)2
T ) = E

(∫ T
0

(H(n)
s )2 ds

)
. Indeed:

E((H(n) ·B)2
T ) =

2n∑
i,j=1

E(Hti−1 (Bti −Bti−1)Htj−1 (Btj −Btj−1))

=
2n∑
i=1

E(E(H2
ti−1

(Bti −Bti−1)2|Fti−1)) + 2
∑
i<j

E(E(Hti−1 (Bti −Bti−1)Htj−1(Btj −Btj−1)|Ftj−1))

=
2n∑
i=1

E(H2
ti−1

E((Bti −Bti−1)2|Fti−1)) + 2
∑
i<j

E(Hti−1 (Bti −Bti−1)Htj−1E(Btj −Btj−1 |Ftj−1))
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as Hti−1 is Fti−1-measurable and Hti−1 (Bti −Bti−1)Htj−1 is Ftj−1-measurable for i < j. Therefore,

E((H(n) ·B)2
T ) =

2n∑
i=1

E(H2
ti−1

E((Bti −Bti−1)2)︸ ︷︷ ︸
=ti−ti−1

) + 2
∑
i<j

E(Hti−1 (Bti −Bti−1)Htj−1 E(Btj −Btj−1)︸ ︷︷ ︸
=0

)

= E

(
2n∑
i=1

H2
ti−1

(ti − ti−1)

)
= E

(∫ T

0

(H(n)
s )2 ds

)
.

Similarly, if K is another continuous and adapted process such that E
(∫ T

0
K2
s ds

)
<∞, then

- E((H(n) ·B)T (K(n) ·B)T ) = E
(∫ T

0
H

(n)
s K

(n)
s ds

)
.

Second step.

Let us now define, for t ∈ [0, T ] (and keeping the notation ti = iT
2n ):

(H(n) ·B)t =
k−1∑
i=1

Hti−1 (Bti −Bti−1) +Htk−1 (Bt −Btk−1), if tk−1 < t ≤ tk.

Proposition 4.15. For all n ≥ 1 fixed, the process ((H(n) · B)t, t ∈ [0, T ]) is a continuous square-
integrable martingale with respect to (Ft, t ∈ [0, T ]).

Proof. The fact that the process is continuous is clear from the definition. It is also easily checked that it
is square-integrable (and actually that E((H(n) ·B)2

t ) = E
(∫ t

0
(H(n)

s )2 ds
)

, ∀t ∈ [0, T ]). Let us now prove
that it is a martingale:

(i) E(|(H(n) ·B)t|) <∞, as E((H(n) ·B)2
t ) <∞.

(ii) (H(n) ·B)t is clearly Ft-measurable, for all t ∈ [0, T ].

(iii) Let us now check that E((H(n) ·B)T |Ft) = (H(n) ·B)t, ∀t ∈ [0, T ], assuming that tk−1 < t ≤ tk:

E((H(n) ·B)T |Ft)

= E

(
k−1∑
i=1

Hti−1 (Bti −Bti−1)
∣∣∣∣Ft
)

+ E(Htk−1 (Btk −Btk−1)|Ft) + E

(
2n∑

i=k+1

Hti−1 (Bti −Bti−1)
∣∣∣∣Ft
)

=
k−1∑
i=1

Hti−1 (Bti −Bti−1) +Htk−1 E(Btk −Btk−1 |Ft) +
2n∑

i=k+1

E(E(Hti−1 (Bti −Bti−1)|Fti−1)|Ft)

as the first sum is Ft-measurable, Htk−1 is Ft-measurable and Ft ⊂ Fti−1 for all i ≥ k + 1. Therefore,

E((H(n) ·B)T |Ft) =
k−1∑
i=1

Hti−1 (Bti −Bti−1) +Htk−1 (Bt −Btk−1) +
2n∑

i=k−1

E(Hti−1 E(Bti −Bti−1)︸ ︷︷ ︸
=0

|Ft)

= (H(n) ·B)t.

From this, we deduce that ∀0 ≤ s < t ≤ T ,

E((H(n) ·B)t|Fs) = E(E((H(n) ·B)T |Ft)|Fs) = E((H(n) ·B)T |Fs) = (H(n) ·B)s,

which proves the martingale property.
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Third step.

Important fact. For every continuous and adapted process H such that E
(∫ T

0
H2
s ds

)
< ∞, there

exists a process ((H ·B)t, t ∈ [0, T ]) such that

E
(

sup
0≤t≤T

((H(n) ·B)t − (H ·B)t)2

)
→

n→∞
0

In particular, (H(n) · B)t
P→ (H · B)t, ∀t ∈ [0, T ]. In addition, the process (H · B) possesses all the

properties mentioned above, namely :

- ((cH +K) ·B)t = c (H ·B)t + (K ·B)t.

- E((H ·B)t) = 0, ∀t ∈ [0, T ].

- E((H ·B)2
t ) = E

(∫ T
0
H2
s ds

)
, ∀t ∈ [0, T ].

- E((H ·B)t(K ·B)s) = E
(∫ t∧s

0
HrKr dr

)
, ∀0 ≤ s ≤ t ≤ T .

- ((H ·B)t, t ∈ [0, T ]) is a continuous square-integrable martingale.

Alternate notation. (H ·B)t ≡
∫ t

0
Hs dBs.

Remark. In the definition of the Riemann-Stieltjes integral, the choice of the point s(n)
i ∈ [ (i−1)T

2n , iT2n ]
is arbitrary. But in the definition of Ito’s integral, the choice s(n)

i = (i−1)T
2n is crucial in order to preserve

the martingale property of the integral. Another choice leads to a different integral.

Example: Fisk-Stratonovič’s integral.

(H ◦B)T ≡
∫ T

0

Hs ◦ dBs = lim
n→∞

2n∑
i=1

H
(

(i−1)T
2n

)
+H

(
iT
2n

)
2

(B( iT
2n

)
−B

(
(i− 1)T

2n

))

= (H ·B)T +
1
2
〈H,B〉T ,

where 〈H,B〉T is the quadratic covariation of H and B defined as

〈H,B〉T = lim
n→∞

2n∑
i=1

(
H

(
iT

2n

)
−H

(
(i− 1)T

2n

))(
B

(
iT

2n

)
−B

(
(i− 1)T

2n

))
.

As soon as this quadratic covariation is non-zero, the process (H ◦ B) is not a martingale. Notice that
in the case where H is a continuous process with bounded variation, the quadratic covariation is zero,
so the two definitions of integral coincide. It was already suggested at the end of Section 4.3 that in this
case, an alternate definition of the integral

∫ T
0
Hs dBs is possible.

Quadratic variation of the stochastic integral.

Proposition 4.16. Let H,K be continuous and adapted processes such that E
(∫ T

0
H2
s ds

)
< ∞ and

E
(∫ T

0
K2
s ds

)
<∞. Then

〈(H ·B)〉t =
∫ t

0

H2
s ds and 〈(H ·B), (K ·B)〉t =

∫ t

0

HsKs ds, t ∈ [0, T ].

That is, the processes
(

(H ·B)2
t −

∫ t
0
H2
s ds, t ∈ [0, T ]

)
and

(
(H ·B)t (K ·B)t −

∫ t
0
HsKs ds, t ∈ [0, T ]

)
are martingales.
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Remarks. - The process
(
〈(H ·B)〉t =

∫ t
0
H2
s ds, t ∈ [0, T ]

)
is continuous, adapted and increasing (as

H2
s ≥ 0). It therefore has bounded variation itself.

- The process
(
〈(H ·B), (K ·B)〉t =

∫ t
0
HsKs ds, t ∈ [0, T ]

)
is continuous, adapted and has bounded

variation.

- If Ht ≡ 1, then 〈(H ·B)〉t = 〈B〉t = t, as we already knew.

- E(〈(H ·B)〉t) = E
(∫ t

0
H2
s ds

)
= E((H ·B)2

t ), as we already knew also.

Particular case of stochastic integral: the Wiener integral.

If Ht(ω) = f(t) is a deterministic function, then the stochastic integral (f ·B) has the following additional
properties :

- ((f ·B)t, t ∈ [0, T ]) is a Gaussian process with mean m(t) = E((f ·B)t) = 0 and covariance

K(t, s) = E((f ·B)t (f ·B)s) =
∫ t∧s

0

f(r)2 dr.

- ((f ·B)t, t ∈ [0, T ]) has independent increments.

- 〈(f ·B)〉t =
∫ t

0
f(s)2 ds is a deterministic process.

5 Stochastic calculus

5.1 Ito-Doeblin’s formula(s)

Preliminary. If V is a process with bounded variation and f : R→ R is differentiable, then

f(Vt)− f(V0) =
∫ t

0

f ′(Vs) dVs.

This rule changes if the process V does not have bounded variation: this is Ito-Doeblin’s formula.

First version.

Theorem 5.1. Let (Bt, t ∈ R+) be a standard Brownian motion and f : R → R be twice continuously
differentiable and such that E(

∫ t
0
(f ′(Bs))2 ds) <∞, ∀t ≥ 0. Then

f(Bt)− f(B0) =
∫ t

0

f ′(Bs) dBs +
1
2

∫ t

0

f ′′(Bs) ds, a.s. ∀t ≥ 0.

Remarks.

-
∫ t

0
f ′(Bs) dBs is a well-defined stochastic integral, because of the assumptions made.

- 1
2

∫ t
0
f ′′(Bs) ds is a correction term that arises because of the non-zero quadratic variation of B.
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Proof. (main idea) Let ti = it
2n be a partition of [0, t]. Then

f(Bt)− f(B0) =
2n∑
i=1

(f(Bti)− f(Bti−1)).

Using the classical Taylor expansion

f(y)− f(x) = f ′′(x) (y − x) +
1
2
f ′′(x) (y − x)2 + o((y − x)2),

where by definition, limh→0
o(h2)
h2 = 0, we obtain

f(Bt)− f(B0) =
2n∑
i=1

f ′(Bti) (Bti −Bti−1) +
1
2

2n∑
i=1

f ′′(Bti−1) (Bti −Bti−1)2 +
2n∑
i=1

o((Bti −Bti−1)2)

P→
n→∞

∫ t

0

f ′(Bs) dBS︸ ︷︷ ︸
by definition

+
1
2

∫ t

0

f ′′(Bs) d〈B〉s︸ ︷︷ ︸
=ds

+0.

In order to get an intuition as to why the second term converges to 1
2

∫ t
0
f ′′(Bs) ds, remember that in the

case where f ′′(x) ≡ 1, we have
2n∑
i=1

(Bti −Bti−1)2 P→
n→∞

〈B〉t = t.

Examples. - Let f(x) = x: then f ′(x) = 1, f ′′(x) = 0 and E
(∫ t

0
f ′(Bs)2 ds

)
= t <∞, so

Bt −B0 =
∫ t

0

1 dBs + 0.

Here, the classical rule applies.

- Let f(x) = x2: then f ′(x) = 2x, f ′′(x) = 2 and

E
(∫ t

0

f ′(Bs)2 ds

)
= E

(∫ t

0

4B2
s ds

)
= 4

∫ t

0

E(B2
s ) ds = 4

∫ t

0

s ds = 2t2 <∞.

So

B2
t −B2

0 = B2
t =

∫ t

0

2Bs dBs +
1
2

∫ t

0

2 ds = 2
∫ t

0

Bs dBs + t

This is actually Doob’s decomposition of the submartingale B2
t : 2

∫ t
0
Bs dBs is a martingale and t is

an increasing deterministic process, which is the quadratic variation of the standard Brownian motion.
Notice that the above formula may be rewritten as∫ t

0

Bs dBs =
1
2

(B2
t − t)

and that the two processes on both sides are martingales (this by the way shows why the formula∫ t
0
Bs dBs = 1

2 B
2
t cannot hold, as 1

2 B
2
t is a submartingale, but not a martingale).

- Let f(x) = ex: then f ′(x) = f ′′(x) = ex and

E
(∫ t

0

(f ′(Bs))2 ds

)
= E

(∫ t

0

e2Bs ds

)
=
∫ t

0

e
4s
2 ds =

e2t − 1
2

<∞.
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So

eBt − eB0 = eBt − 1 =
∫ t

0

eBs dBs +
1
2

∫ t

0

eBs ds.

This is again Doob’s decomposition of the submartingale eBt − 1: the stochastic integral is a martingale,
while the Riemann integral is an increasing process (as eBs > 0).

Remark. Let Xt = eBt . The above formula then reads

Xt − 1 =
∫ t

0

Xs dBs +
1
2

∫ t

0

Xs ds.

This is our first example of stochastic differential equation (in integral form!).

Second version.

Notation. For a function f of two variables t, x, we adopt the following notation for partial derivatives:
f ′t ,f

′
x, f ′′xx and so on.

Theorem 5.2. Let (Bt, t ∈ R+) be a standard Brownian motion and f :
{

R+ × R → R
(t, x) 7→ f(t, x) be

continuously differentiable in t, twice continuously differentiable in x and such that

E
(∫ t

0

(f ′x(s,Bs))2 ds

)
<∞, ∀t ≥ 0.

Then

f(t, Bt)− f(0, B0) =
∫ t

0

f ′t(s,Bs) ds+
∫ t

0

f ′x(s,Bs) dBs +
1
2

∫ t

0

f ′′xx(s,Bs) ds, a.s. ∀t ≥ 0.

The proof follows the same lines as for the first version, this time using the Taylor expansion :

f(s, y)− f(t, x) = f ′t(t, x) (s− t) + f ′x(t, x) (y − x) +
1
2
f ′′xx(t, x) (y − x)2 + o((s− t), (y − x)2).

Examples. - Let f(t, x) = x2 − t: then f ′t(t, x) = −1, f ′x(t, x) = 2x, f ′′xx(t, x) = 2, so

B2
t − t =

∫ t

0

(−1) ds+
∫ t

0

2Bs dBs +
1
2

∫ t

0

2 ds = 2
∫ t

0

Bs dBs.

This is the same formula as above, actually.

- Let f(t, x) = ex−t/2: then f ′t(t, x) = − 1
2 f(t, x), f ′x = (t, x) = f ′′xx(t, x) = f(t, x), so

eBt−t/2 − 1 = −1
2

∫ t

0

eBs−s/2 ds+
∫ t

0

eBs−s/2 dBs +
1
2

∫ t

0

eBs−s/2 ds =
∫ t

0

eBs−s/2 dBs.

Again, notice that the two processes on both sides are martingales.

Remark. Let Yt = eBt−t/2. The above formula then reads

Yt − 1 =
∫ t

0

Ys dBs.

This is our second example of stochastic differential equation (again in integral form).

Remark. In the above two examples, f ′t(t, x) + 1
2 f
′′
xx(t, x) = 0. From the Ito-Doeblin formula, we see

that if f satisfies this partial differential equation, then (f(t, Bt), t ∈ R+) is a martingale.
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Third version.

This version is yet a generalization of the previous one. Let (Bt, t ∈ R+) be a standard Brownian motion,
(Ht, t ∈ R+) be a continuous and adapted process such that

E
(∫ t

0

H2
s ds

)
<∞, ∀t ≥ 0,

and (Kt, t ∈ R+) be a continuous and adapted process. Let now Mt =
∫ t

0
Hs dBs (M is a continuous

square-integrable martingale) and Vt =
∫ t

0
Ks ds (V is a continuous process with bounded variation). Let

finally f : R× R→ R be continuously differentiable in t, twice continuously differentiable in x and such
that

E
(∫ t

0

(f ′x(Vs,Ms))2H2
s ds

)
<∞, ∀t ≥ 0.

Then for all t ≥ 0,

f(Vt,Mt)− f(V0,M0) =
∫ t

0

f ′t(Vs,Ms)Ks ds+
∫ t

0

f ′x(Vs,Ms)Hs dBs +
1
2

∫ t

0

f ′′xx(Vs,Ms)H2
s ds, a.s.

Examples. - Let f(t, x) = t+ x : then f ′t(t, x) = f ′x(t, x) = 1, f ′′xx = 0, so

(Vt +Mt)− (V0 +M0) =
∫ t

0

Ks ds+
∫ t

0

Hs dBs.

- Let f(t, x) = tx: then f ′t(t, x) = x, f ′x(t, x) = t, f ′′xx(t, x) = 0, so

VtMt − V0M0 =
∫ t

0

MsKs ds+
∫ t

0

VsHs dBs.

5.2 Stochastic differential equations: a first approach through examples

A (time-homogeneous) stochastic differential equation (SDE) reads :

Xt = x0 +
∫ t

0

f(Xs) ds+
∫ t

0

g(Xs) dBs, in integral form

and  dXt = f(Xt) dt+ g(Xt) dBt,
in differential form.

X0 = x0,

Here x0 ∈ R, B is a standard Brownian motion and f, g : R → R are deterministic functions. Notice
that the differential form is deduced from the integral form, but has no meaning per se, as the Brownian
motion is not differentiable.

Remark. Solving an SDE is in general much more difficult than solving an ordinary differential equation
(ODE) of the form dXt/dt = f(Xt). Beyond the issue of knowing whether a solution exists and is unique,
there are actually not that many functions f and g for which the solution is known explicitly. The
behaviour of the solution of an SDE is also very different from that of an ODE.

Terminology.

- The term with the function f is called the drift term.

- The term with the function g is called the diffusive term.

We are now going to see various examples of SDE’s.
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Black-Scholes equation.  dXt = µXt dt+ σXt dBt,

X0 = x0 > 0,

where µ ∈ R is the drift, σ ≥ 0 is the volatility of the process X.

In the case where σ = 0, the equation becomes an ODE:

dXt

Xt
= µdt, so lnXt − lnx0 = µt, Xt = x0 exp(µt).

In the case where σ > 0, on could be tempted to solve the equation with the following WRONG reasoning:

dXt

Xt
= µdt+ σXt dBt, so lnXt − lnx0 = µt+ σBt, Xt = x0 exp(µt+ σBt)?

But actually, the correct solution is Xt = x0 exp((µ− σ2

2 )t+σBt). This can be verified using Ito-Doeblin’s
formula (we have already seen this for µ = 1

2 , σ = 1 and µ = 0, σ = 1, by the way). The rules of standard
calculus do not apply here! The mistake in the above reasoning is to “integrate” dXt/Xt classically to
lnXt.

The process X describes (relatively) well the evolution of a stock price. Here are some important features
of X :

- Xt > 0, ∀t ≥ 0, as it is an exponential.

- Xt = exp(Gaussian), i.e. Xt has a log-normal distribution.

- ln(Xt) is a process with independent increments.

Notice also that

E(Xt) = exp
((

µ− σ2

2

)
t

)
E(exp(σBt)) = exp(µt),

whereas

E(lnXt) =
(
µ− σ2

2

)
t+ E(σBt) =

(
µ− σ2

2

)
t < µt.

Finally, X is a martingale if and only if µ = 0 (as in this case, Xt = x0 +
∫ t

0
σXs dBs).

Ornstein-Uhlenbeck’s process.
(also known as Langevin’s or autoregressive or mean-reverting process!) dXt = −aXt dt+ σ dBt,

X0 = x0 ∈ R,

where a ≥ 0 and σ ≥ 0. The solution to this equation reads:

Xt = x0 e
−at + σ

∫ t

0

e−a(t−s) dBs.

Notice that even though Xt may be written as a Wiener integral, it is not a martingale (even in the case
x0 = 0), as the integrand itself e−a(t−s) depends on t.

Here, E(Xt) = x0e
−at and

Var(Xt) = σ2

∫ t

0

e−2a(t−s) ds = σ2

(
1− e−2at

2a

)
→
t→∞

σ2

2a
,

whereas when σ = 0, X(t) = x0 e
−at →

t→∞
0 and when a = 0, Xt = σBt diverges when t→∞.
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Brownian bridge. 
dXt = − Xt

T − t
dt+ σ dBt,

X0 = x0 ∈ R,
where T > 0 and σ ≥ 0. The solution reads:

Xt = (T − t)x0 + σ

∫ t

0

(
T − t
T − s

)
dBs.

Here, E(Xt) = (T − t)x0 and

Var(Xt) = σ2

∫ t

0

(
T − t
T − s

)2

ds = σ2 t(T − t) →
t→T

0

so XT = 0, in all cases!

Bessel’s process. 
dXt =

a

Xt
dt+ dBt,

X0 = 0,

where a ≥ 1
2 . An explicit solution is known when a = n−1

2 , for some integer n ≥ 2; then Xt = ‖W t‖,
where W t is an n-dimensional standard Brownian motion.

5.3 Numerical simulation of stochastic differential equations

As stochastic differential equations are typically hard to solve, it is good to know how to obtain solutions
by means of numerical simulation. The aim here is to obtain approximations for expressions such as
E(h(XT )) where T > 0, h : R→ R is some function and X is the solution of the SDE: dXt = f(Xt) dt+ g(Xt) dBt,

X0 = x0 ∈ R.

A natural procedure is to perform M independent runs X(1), . . . , X(M) of the process X and to approx-
imate the above expectation by the empirical mean :

E(h(XT )) ≈ 1
M

M∑
j=1

h(X(j)
T ),

which is known to be correct up to a term of order O( 1√
M

), by the central limit theorem. How to run

each process X(j) up to time T is a more delicate question that is addressed in the following.

Euler-Maruyama’s scheme.

First remember that the above SDE reads in integral form:

Xt = x0 +
∫ t

0

f(Xr) dr +
∫ t

0

g(Xt) dBr, t ≥ 0. (2)

From this, we deduce that for t ≥ s ≥ 0,

Xt = Xs +
∫ t

s

f(Xr) dr +
∫ t

s

g(Xr) dBr.
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If the difference t− s is small, this gives us an idea as how to approximate the value of Xt given the value
of Xs, by noticing that

Xt ≈ Xs + f(Xs) (t− s) + g(Xs) (Bt −Bs)︸ ︷︷ ︸
∼N (0,t−s)

. (3)

From there, we define the following numerical scheme: let N ≥ 1, ∆ = T
N and

X
(N)
0 = x0,

X
(N)
(n+1)∆ = X

(N)
n∆ + f(X(N)

n∆ ) ∆ + g(X(N)
n∆ )

√
∆ ξn+1, 0 ≤ n ≤ N − 1,

where (ξn, n ≥ 1) is a sequence of i.i.d.∼ N (0, 1) random variables. The process X at time T is then
approximated by XT ≈ X(N)

T = X
(N)
N∆ (and this has to be done for each independent run of the process).

Now, how close is X(N)
T to XT ? Without entering in to much detail here, let us simply say approximately

that if h is a continuous function and f and g are such that equation (2) admits a unique solution, then

|E(h(X(N)
T ))− E(h(XT ))| ≤ CT√

N
,

where CT is a constant (growing exponentially with T ).

Remark. For ODE’s, the convergence of the corresponding Euler scheme is better, namely

|h(X(N)
T )− h(XT )| ≤ CT

N
.

The explanation for this difference in the order of convergence is that the approximation (3) is correct up to
a term of order O(t−s), whereas for ODE’s, the corresponding approximation givesXt ≈ Xs+f(Xs) (t−s)
up to a term of order O((t− s)2), therefore much smaller that O(t− s) when t− s is small.

The final approximation formula is

E(h(XT )) ≈ 1
M

M∑
j=1

h(X(j,N)
T ),

where X(j,N)
T represents the final value at time T of the jth run of the numerical scheme.

Milstein’s scheme.

A better approximation than (3) turns out to be the following:

Xt ≈ Xs + f(Xs) (t− s) + g(Xs) (Bt −Bs) + g(Xs) g′(Xs)
(

(Bt −Bs)2 − (t− s)
2

)
.

This approximation is correct up to a term of order O((t − s)3/2). From there, we define the following
numerical scheme:

X
(N)
0 = x0

X
(N)
(n+1)∆ = X

(N)
n∆ + f(X(N)

n∆ ) ∆ + g(X(N)
n∆ )

√
∆ ξn+1

+ g(X(N)
n∆ ) g′(X(N)

n∆ ) ∆
(
ξ2n+1−1

2

)
, 0 ≤ n ≤ N − 1,

where (ξn, n ≥ 1) is again a sequence of i.i.d.∼ N (0, 1) random variables. Under additional regularity
assumptions on the function g, it can be shown that in this case,

|E(h(X(N)
T ))− E(h(XT ))| ≤ CT

N
,

which has the same order as that obtained for ODE’s with the classical Euler scheme (but here, a higher
order expansion is needed in order to obtain the result).
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