
�ECOLE POLYTECHNIQUE F�ED�ERALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 15 Signal Processing for Communications
Homework 6 Solution April 26, 2010

Problem 1. See the comments for more explanation.

• (a)

% Homework 6

% Problem 1

% deletes all current figures.

close all;

% removes all variables from the workspace.

clc;

N = 2^20;

% starts a stopwatch timer.

tic;

% compute DFT of a random vector using FFT.

x=fft(rand(1,N));

% prints the elapsed time since tic was used.

toc

• (b)

function out vector=MYDFT(in vector)

%-----------------------------------

% Computation of DFT using for.

%-----------------------------------

L = length(in vector);

for k=1:L

out vector(k) = 0;

for j=1:L

temp = in vector(j) * exp(-i*2*pi*(j-1)*(k-1)/L);

out vector(k) = out vector(k) + temp;

end

end

%-----------------------------------

• (c)

function out vector=MYmodDFT(in vector)

%-----------------------------------

% Computation of DFT using butterfly method.

%-----------------------------------

L=length(in vector);

% add a zero entry if the length of in vector is odd

if (mod(L,2)~=0)

input=zeros(1,L+1);

input(1:end-1)=in vector;

in vector=input;

L=L+1;

end

% separate odd and even parts

in even=in vector(1:2:end-1);

in odd=in vector(2:2:end);

% take DFT from both parts

out even=MYDFT(in even);

out odd=MYDFT(in odd);

% compute out-vector considering correct weights

W=exp(-i*2*pi/L);

2

weights=W.^(0:(L/2)-1); % half of the weights are sufficient.

out vector 1 = out even + weights .* out odd;

out vector 2 = out even + W^(L/2)* weights .* out odd;

out vector=[out vector 1, out vector 2];

%-----------------------------------

• (d)

It is a program for comparing elapsed time for taking DFT using different methods

% Homework 6

% Problem 1

close all;

clc;

N= 9:13 ;

t=zeros(3,5);

for i = 9:13

x=rand(2^i,1);

tic;

X=fft(x);

t(1,i-8) = toc

tic;

X=MYDFT(x);

t(2,i-8) = toc

tic;

X=MymodDFT(x);

t(3,i-8) = toc

end

hold on;

3

plot(t(1,:),’r’)

plot(t(2,:),’b’)

plot(t(3,:),’g’)

Problem 2. conv(x,h) in MATLAB uses DFT in order to convolve x and h linearly. In
fact, it uses fft to compute DFT of x and h and then multiplies their DFTs and finally
takes the inverse DFT to obtain result (recall: convolution in time domain is equivalent to
multiplication in frequency domain).

In order to compare elapsed time for running convolution operation in different methods
we should write down convolution formula without using conv. Since it is not so interesting,
we just focus on theoretical results instead of time comparison.

In this problem you are be familiar with overlap-add and overlap-save methods in order
to compute linear convolution more easily than direct method when the length of input
signal is large.

• (a)

% L is length of input signal and P is length of impulse response.

L=100000; P=20;

x=rand(1,L);

h=100./((0:P-1)+13);

% Direct convolution

tic;

y1=conv(x,h);

toc

• (b)

y[n] = x[n] ∗ h[n]

= (
+∞∑
r=0

xr[n− rB]) ∗ h[n]

=
+∞∑
r=0

(xr[n− rB] ∗ h[n])

=
+∞∑
r=0

yr[n− rB]

• (c)

% overlap-add method : "add" in output(!)

4

y2=zeros(size(y1));

temp=zeros(size(y1));

B=50;

tic;

for i=1:(L/B)

% each time we consider a B-points window of x, convolve it with h and

% save the output in B+(P-1) points of temp

temp((i-1)*B + 1 : i*B + (P-1))=conv(x((i-1)*B + 1 : i*B),h);

% add with previous results considering overlaps

y2=y2+temp;

% make temp zero

temp=zeros(size(y1));

end

toc

• (d) Assume that y1 is the output of linear convolution between B-points signal x and
P -points impulse response h (where P < B). So, length of y1 is B + P − 1. We also
know that the output of circular convolution of x and h has length B (it must have
the same length as input signal x). If we call this signal y2, we will have:

y2[0] = y1[0] + y1[B]

y2[1] = y1[1] + y1[B + 1]

...

y2[P − 2] = y1[P − 2] + y1[B + P − 2]

and

y2[P − 1] = y1[P − 1]

...

y2[B − 1] = y1[B − 1]

So, y2[n] = y1[n] except for first P − 1 indices.

• (e)

xr[n] = x[n + r(B − P + 1)− P + 1] 0 ≤ n ≤ B − 1

y[n] =
+∞∑
r=0

yr[n− r(B − P + 1) + P − 1]

5

where {
yr[n] = yrp[n] P − 1 ≤ n ≤ B − 1
yr[n] = 0 otherwise

and yrp[n] is the circular convolution of xr[n] with h[n].

• (f)

% overlap-save method: "save" in input(!)

% add P-1 extra zeros at input

extra zeros=zeros(1,P-1);

x=[extra zeros, x];

L=length(x);

y3=[];

tic

while(length(x)>=B)

% circular convolution using cconv; recall: cconv(x,h,length(x))

% returns the output of filter h when input is x.

% Lengths of input and output are equal to each other.

% circular convolve for one B-points window from x

temp3=cconv(x(1:B),h,B);

% save results without considering first P-1 points

y3=[y3, temp3(P:end)];

% shift window to the right considering P-1 points overlapped

% with preceding section.

x=x(((B+1)-(P-1)) : end);

end

toc

6

