Problem 1. 1. Show that the set of all ordered \(n \)-tuples \([a_1, a_2, \ldots, a_n]\) with the natural definition for the sum:
\[
[a_1, a_2, \ldots, a_n] + [b_1, b_2, \ldots, b_n] = [a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n]
\]
and the multiplication by a scalar:
\[
\alpha[a_1, a_2, \ldots, a_n] = [\alpha a_1, \alpha a_2, \ldots, \alpha a_n]
\]
form a vector space. Give its dimension and find a basis.

2. Show that the set of signals of the form \(y(x) = a \cos(x) + b \sin(x) \) (for arbitrary \(a, b \)), with the usual addition and multiplication by a scalar, form a vector space. Give its dimension and find a basis.

3. Are the four diagonals of a cube orthogonal?

4. Express the discrete-time impulse \(\delta[n] \) in terms of the discrete-time unit step \(u[n] \) and conversely.

5. Show that any function \(f(t) \) can be written as the sum of an odd and an even function, i.e. \(f(t) = f_o(t) + f_e(t) \) where \(f_o(-t) = -f_o(t) \) and \(f_e(-t) = f_e(t) \).

Problem 2. Let \(\{x(k)\}, k = 0, \ldots, N-1 \), be a basis for a space \(S \). Prove that any vector \(z \in S \) is uniquely represented in this basis.

Hint. Prove by contradiction.

Problem 3. Assume \(v \) and \(w \) are two vectors in the vector space. Prove the triangular inequality for each \(v \) and \(w \).
\[
||v + w|| \leq ||v|| + ||w||.
\]

Hint. Expand \(||v + w||^2 \) and use Cauchy-Schwarz inequality.

Problem 4. Consider the following signal
\[
x[n] = (5 - |n|). (u[n + 5] - u[n - 6]).
\]

Draw the following signals:
- \(x[n] \).
- \(x[-2n + 3] \).
- \(\sum_{k=-\infty}^{n} x[2k] \).

Problem 5. Find the inverse \(z \)-transform of following series.
(a) \(X(z) = \frac{1}{(1-1/4z^{-1})(1-1/2z^{-1})}, \ |z| > 1/2. \)
(b) \(X(z) = \frac{1}{(1-1/5z^{-1})(1+3z^{-1})}, \ 3 > |z| > 1/5. \)