ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 6	Introduction to Communication Systems
Solutions to Homework 3	October 15, 2009

Problem 1.

Erroneous answer. We pick up a random bit by first picking a random source symbol x_i with probability p_i , then picking a random bit from $c(x_i)$. If we define f_i to be the fraction of the bits of $c(x_i)$ that are 1s, we find

Pr(bit is 1) =
$$\sum_{i=1}^{4} p_i f_i = 1/2 * 0 + 1/4 * 1/2 + 1/8 * 2/3 + 1/8 * 1 = 1/3.$$

This answer is wrong. Do you see why?

The symbol c and d get encoded into longer-length binary strings than a, so when we pick up a bit from the compressed string at random we are more likely to land in a bit belonging to a c or a d than would be given by probability p_i . This means that all the probability need to be scaled up by l_i and renormalized.

Correct answer. Every time symbol x_i is encoded, l_i bits are added to the binary string, of which $f_i l_i$ are 1s. The average number of 1s added per symbol is

$$\sum_{i=1}^{4} p_i f_i l_i,$$

and the average total number of bits added per symbol is

$$\sum_{i=1}^{4} p_i l_i.$$

So the fraction of 1s in the transmitted string is

$$\Pr(\text{bit is } 1) = \frac{\sum_{i=1}^{4} p_i f_i l_i}{\sum_{i=1}^{4} p_i l_i} = \frac{1/2 * 0 + 1/4 * 1 + 1/8 * 2 + 1/8 * 3}{7/4} = 1/2.$$

PROBLEM 2. The set of probabilities $\{p_1, p_2, p_3, p_4\} = \{1/6, 1/6, 1/3, 1/3\}$ gives rise to two different optimal sets of code-lengths, because at the second step of the Huffman coding we can choose any of the three possible pairings. We may either put them in a constant length code $\{00, 01, 10, 11\}$ or the code $\{000, 001, 01, 1\}$. Both codes have average length 2. Can you think of other solutions?

Problem 3.

There are 2 (FFFF,NNNN) World Series with 4 games. Each happens with probability $(1/2)^4$.

There are $8 = 2\binom{4}{3}$ World Series with 5 games. Each happens with probability $(1/2)^5$. There are $20 = 2\binom{5}{3}$ World Series with 6 games. Each happens with probability $(1/2)^6$. There are $40 = 2\binom{6}{3}$ World Series with 5 games. Each happens with probability $(1/2)^7$. The entropy of X is

$$H(X) = \sum p(x) \log \frac{1}{p(x)}$$

= 2(1/16 * log 16) + 8(1/32 * log 32) + 20(1/64 * log 64) + 40(1/128 * log 128)
= 5.81.

The probability of a 4 game series (Y = 4) is $2(1/2)^4 = 1/8$. The probability of a 5 game series (Y = 5) is $8(1/2)^5 = 1/4$. The probability of a 6 game series (Y = 6) is $20(1/2)^6 = 5/16$. The probability of a 7 game series (Y = 7) is $40(1/2)^7 = 5/16$. The entropy of Y is

$$H(Y) = \sum p(y) \log \frac{1}{p(y)}$$

= 1/8 * \log 8 + 1/4 * \log 4 + 5/16 * \log 16/5 + 5/16 * \log 16/5
= 1.92.

PROBLEM 4. • The code $\{0, 10, 11\}$ is a Huffman code for the distribution $\{1/2, 1/4, 1/4\}$.

- The code {00, 01, 10, 110} can be shortened to {00, 01, 10, 11} without losing its instantaneous property and therefore it is not optimal, so it cannot be a Huffman code.
- The code {01, 10} can be shortened to {0, 1}. Therefore it is not optimal and not a Huffman code.

PROBLEM 5. • The entropy of the source is 1.75.

- The corresponding Huffman code is $\{0, 10, 110, 111\}$ and its average length is 1.75
- The corresponding Shannon-Fano code is as follows. In this case, the average codeword length is 2.75

Symbol	Probability	F(x)	F(x)	$\overline{F}(x)$ in binary	Codeword
a	1/2	0.25	0.125	0.001	001
b	1/4	0.75	0.5	0.10	10
с	1/8	0.875	0.8125	0.1101	1101
d	1/8	1	0.9375	0.1111	1111