
Problem 1. .

a) Rate = log(5)
6

b) Since (111111, 101010 are in C but not their summation, this code is
not linear.

c) 101100, 101010 have the minimum distance amoung all the pairs of
codewords so the minimum distance is 2.

d) Since dmin = 2, this code can correct up to 1 erasure. It can not correct
errors and it can detect up to 1 error.

e) 1. Both codewords 111111, 010011 agree with ?1??11 and therefore
we can not correct it.

2. The only codeword which starts with 0 and ends with 1 is 010011
and so we can correct it to 010011.

f) The closest codeword to 111100 is 101100 and therefore the minimum
number of errors that channel could introduce is 1. The farthest code-
word to it is 000000 and the maximum number of errors that channel
could introduce is 4.

Problem 2. Suppose that 0 6= x = (x1, x2, . . . , xn) ∈ C. Therefore xHT = 0.
This means that (x1, x2, . . . , xn)HT = x1.v

T
1 + x2.v

T
2 + . . .+ xn.v

T
n = 0. Since

we assumed that any d columns of H are linearly independent, we can not
have fewer than d+ 1 of xi’s being non-zero. So, x has at least d+ 1 nonzero
entries. Hence, the Hamming weight of any nonzero codeword is at least
d+ 1.

Problem 3. a) Let C be an (n, k) binary linear code with minimum dis-
tance 2d+2. Take an element x of C of Hamming weight 2d+2. Suppose
that the first entry of this vector is nonzero. Remove the first entry of
all the vectors in C. It is clear that the result is also a binary linear code
of length n − 1. Since the minimum distance of C is 2d + 2 > 3 enev
after removing one coordinate, still all the codewords are different and
therefore the number of codewords does not change. So, the result is in
fact an (n−1, k) binary linear code. Finally, for the minimum distance
of the resulting code, since the Hamming weight of x in C is 2d + 2,
after removing a nonzero coordinate of it, its Hamming weight becomes
2d+ 1 and this is indeed the minimum Hamming weight among all the
Hamming weights of nonzero codewords.
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b) Let C be an (n, k) binary linear code with minimum distance 2d+1. We
will construct an (n+ 1, k) binary linear code with minimum distance
2d + 2 as follows. Take any vector x = (x1, x2, . . . , xn) ∈ C define
f(x) = (x0, x1, x2, . . . , xn) where x0 = x1 +x2 + . . .+xn ( mod 2). It is
easy to see that this code is a binary linear code of the same number of
elements as C. We only have to check the minimum Hamming weight
of the nonzero codewords. To see this, first notice that the Hamming
weight of f(x) is at least as large as the Hamming weight of x. Therefore
the minimum distance of the new code is at least 2d+1. But notice that
non of the new codewords have Hamming weight equal to 2d+1. In fact,
the summation of all the entries of f(x) is equal to x0 +x1 + . . .+xn =
(x1 + x2 + . . . + xn) + x1 + x2 + . . . + xn = 0. This means that the
number of entries of f(x) which are equal to 1 is an even number. It
means that the Hamming weight of f(x) is always an even number and
can not be equal to 2d+ 1. So, the minimum distance of the designed
code is at 2d+ 2.

Problem 4. (a) 50 ≡ 1 mod 7, 51 ≡ 5 mod 7, 52 ≡ 4 mod 7, 53 ≡
6 mod 7, 54 ≡ 2 mod 7, 55 ≡ 3 mod 7. Since φ(7) = 6 and gcd(5, 7) =
1, from the Euler’s theorem we have,

56 ≡ mod 7

(b) One can see from the previous part that 5k 6≡ 1 mod 7 for 0 < k < 6.
Since φ(7) = 6, and gcd(5k, 7) = 1 for any k we have from the Euler’s
theorem,

56k = (5k)6 ≡ 1 mod 7

(c) Clearly,

(5k − 1)(1 + 5k + 52k + 53k + 54k + 55k) = 5k(1 + 5k + 52k + 53k + 54k + 55k)

− (1 + 5k + 52k + 53k + 54k + 55k)

= 56k − 1 = 0

The last equality follows from the previous part. This implies that

(5k − 1)
5∑

i=0

5ki = 0
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Again, from the previous part we know that 5k 6≡ 1 mod 7 for 0 < k <
6, this implies that

5∑
i=0

5ki = 0

for 0 < k < 6. For k = 0 we have

5∑
i=0

5ki = 1 + 1 + 1 + 1 + 1 + 1 ≡ 6 mod 7

(e) From the definition of Fourier transform we have,

ûi =
∑

l=0,1,...,5

ul3
il

Performing all computations modulo 7, we have

û0 =
∑

l=0,1,...,5

ul3
0l =

∑
l=0,1,...,5

ul = 0

û1 =
∑

l=0,1,...,5

ul3
1l = 3

û2 =
∑

l=0,1,...,5

ul3
2l = 6

û3 =
∑

l=0,1,...,5

ul3
3l = 4

û4 =
∑

l=0,1,...,5

ul3
4l = 2

û5 =
∑

l=0,1,...,5

ul3
5l = 5

(f) From the definition of the inverse Fourier transform we have

uj = 6
∑

i=0,1,...,5

ûi5
ij

Since ûi is the ith component of the Fourier transform of u, we use the
its definition to get

uj = 6
∑

i=0,1,...,5

∑
l=0,1,...,5

ul3
il5ij
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Since 5 ·3 ≡ 1 mod 7, 3 is the inverse of 5, i.e. 3 = 5−1 modulo 7. Thus
we have

uj = 6
∑

i=0,1,...,5

∑
l=0,1,...,5

ul5
−il5ij = 6

∑
i=0,1,...,5

∑
l=0,1,...,5

ul5
i(j−l)

=
∑

l=0,1,...,5

ul6
∑

i=0,1,...,5

(5(j−l))i

where in the last equality we exchanged the order of two summations.

Now using the results of part (c) we know that j = l implies
∑

i=0,1,...,5(5
(j−l))i =

6 mod 7 and 6 · 6 = 36 ≡ 1 mod 7. Also for j 6= l we have∑
i=0,1,...,5

(5(j−l))i =
∑

i=0,1,...,5

(5ki)

where 0 < |k| < 6. Thus if k > 0 then from the results of part (c) we
have that ∑

i=0,1,...,5

(5ki) = 0

if k < 0, then we know that 5−1 = 3, thus∑
i=0,1,...,5

(5ki) =
∑

i=0,1,...,5

(3−ki)

Here 0 < −k < 6. One can easily verify that the results of part (c) are
valid if we replace 5 by 3, thus we get∑

i=0,1,...,5

(3−ki) = 0

and hence

uj =
∑

l=0,1,...,5

ul6
∑

i=0,1,...,5

(5(j−l))i = uj

(g) (i) Cyclic convolution y, of two vectors u, v is given by,

y[n] =
∑

m=0,1,...,5

u[m]v[n−m mod 6]
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Note that here the signals are periodic with period 6. Thus we
have

y[0] =
∑

m=0,1,...,5

u[m]v[−m mod 6]

= u[0]v[0] + u[1]v[5] + u[2]v[4] + u[3]v[3] + u[4]v[2] + u[5]v[1] = 5

y[1] =
∑

m=0,1,...,5

u[m]v[1−m mod 6]

= u[0]v[1] + u[1]v[0] + u[2]v[5] + u[3]v[4] + u[4]v[3] + u[5]v[2] = 2

y[2] =
∑

m=0,1,...,5

u[m]v[2−m mod 6]

= u[0]v[2] + u[1]v[1] + u[2]v[0] + u[3]v[5] + u[4]v[4] + u[5]v[3] = 5

y[3] =
∑

m=0,1,...,5

u[m]v[3−m mod 6]

= u[0]v[3] + u[1]v[2] + u[2]v[1] + u[3]v[0] + u[4]v[5] + u[5]v[4] = 2

y[4] =
∑

m=0,1,...,5

u[m]v[4−m mod 6]

= u[0]v[4] + u[1]v[3] + u[2]v[2] + u[3]v[1] + u[4]v[0] + u[5]v[5] = 5

y[5] =
∑

m=0,1,...,5

u[m]v[5−m mod 6]

= u[0]v[5] + u[1]v[4] + u[2]v[3] + u[3]v[2] + u[4]v[1] + u[5]v[0] = 2
(1)

(ii) Fourier transform of u is given by

û0 =
∑

l=0,1,...,5

ul3
0l =

∑
l=0,1,...,5

ul = 0

û1 =
∑

l=0,1,...,5

ul3
1l = 3

û2 =
∑

l=0,1,...,5

ul3
2l = 6

û3 =
∑

l=0,1,...,5

ul3
3l = 4

û4 =
∑

l=0,1,...,5

ul3
4l = 2

û5 =
∑

l=0,1,...,5

ul3
5l = 5
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The Fourier transform of v is given by

v̂0 =
∑

l=0,1,...,5

vl3
0l =

∑
l=0,1,...,5

vl = 2

v̂1 =
∑

l=0,1,...,5

vl3
1l = 0

v̂2 =
∑

l=0,1,...,5

vl3
2l = 0

v̂3 =
∑

l=0,1,...,5

vl3
3l = 4

v̂4 =
∑

l=0,1,...,5

vl3
4l = 0

v̂5 =
∑

l=0,1,...,5

vl3
5l = 0

Multiplying û and v̂ component wise we get

ŵ0 = û0v̂0 = 0

ŵ1 = û1v̂1 = 0

ŵ2 = û2v̂2 = 0

ŵ3 = û3v̂3 = 16 = 2 mod 7

ŵ4 = û4v̂4 = 0

ŵ5 = û5v̂5 = 0

We take the inverse Fourier transform of ŵ = (000200) is given by
w = (525252) which matches the original calculation in equation
(1).

(h) (a) For the canonical definition of RS codes, we consider n non-zero
distinct elements (a0, a1, . . . , an−1) of the field Fq where n < q.
Then we consider all polynomials A(x) of degree at most k − 1
and then evaluate (A(a0), A(a1), . . . , A(an−1)) to form the code of
length n and dimension k. Here n = 6 and q = 7. Thus clearly
the only 6 non-zero distinct elements are 1, 2, 3, 4, 5, 6. Also since
k = 2 we have that A(x) = c1 + c2x where both c1, c2 ∈ F7. Thus
there are 49 codewords.

Now we know from the previous part (a) that 3 is a generator of
the field F7, i.e. 3i for 0 ≤ i ≤ 5 covers all the non-zero elements
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of the field F7. Indeed this is easily checked: 30 ≡ 1 mod 7, 31 ≡
3 mod 7, 32 ≡ 2 mod 7, 33 ≡ 6 mod 7, 34 ≡ 4 mod 7, 35 ≡ 5 mod 7.

Now consider the Fourier transform of the set ĉ = (c1, c2, 0, 0, 0)
for c1, c2 ∈ F7. We have

ˆ̂ci =
∑

j=0,1,...,5

ĉj3
ij

= c1 + c23
i

The equivalence of the definitions is now got as follows: let the 6
distinct, non-zero elements required for the canonical definition of
RS codes be given by

a0 = 30 ≡ 1; a1 = 31 ≡ 3; a2 = 32 ≡ 2; a3 = 33 ≡ 6; a4 = 34 ≡ 4; a5 = 35 ≡ 5.

Thus according to the canonical definition of RS codes, a codeword
is given by

yi = c1 + c23
i

which is exactly the Fourier transform of the set ĉ = (c1, c2, 0, 0, 0, 0).

(b) Code is generated by the generator matrix G as follows: consider
the vector u = (u1, . . . , uk), where k is the dimension of the code
and each ui ∈ Fq. Then a codeword x is given by u · G. Here
k = 2, q = 7. Thus we have u = (u1, u2) and the codeword x is
given by

xi = u1g1i + u2g2i mod 7 (2)

where (g1i, g2i) is the ith column of the matrix G.

From the Fourier transform definition of the RS code, we see that

xi = u1 + u23
i

where u1, u2 ∈ F7. Thus together with equation (2), this implies
that the ith column of G is given by (1, 3i). One easily verifies
that G is thus given by

G =

(
1 1 1 1 1 1
1 3 2 6 4 5

)
.

(c) The codeword is given by

xi = 1 + 4 · 3i mod 7
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Thus

x0 = 5;x1 = 6;x2 = 2;x3 = 4;x4 = 3;x5 = 0

Thus the transmitted codeword is given by (5, 6, 2, 4, 3, 0).

(d) Let us denote the codeword by x = (x0, x1, x2, x3, x4, x5). Using
the generator matrix definition of the code we get,

c1 + 3c2 = 4 (3)

c1 + 6c2 = 6 (4)

c1 + 4c2 = 0 (5)

Solving equation (1), (2) we get c1 = 2, c2 = 3. Thus the trans-
mitted codeword is given by (541603).
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