
Introduction to Communication Systems

Luciano Sbaiz, Patrick Thiran, Rüdiger Urbanke

September 18, 2007

Contents

1 Signal processing 3

1.1 Signals and systems . 4

1.1.1 Introduction . 4

1.1.2 Signals . 5

1.1.3 Systems . 16

1.1.4 Exercises . 26

1.2 Filtering . 28

1.2.1 Introduction . 28

1.2.2 Impulse function. Impulse response . 30

1.2.3 Time invariance . 30

1.2.4 Definition of filter . 31

1.2.5 Causality . 31

1.2.6 Stability . 32

1.2.7 Convolution of signals . 33

1.2.8 Finite impulse response (FIR) filters . 38

1.2.9 Infinite impulse response (IIR) filters . 42

1.2.10 Exercises . 44

1.3 The discrete Fourier transform . 50

1.3.1 Introduction . 50

1.3.2 A simple example . 50

1.3.3 Definition . 53

1.3.4 Properties . 54

1.3.5 Convolution . 55

1.3.6 Exercises . 57

1.4 Sampling and interpolation . 57

1

1.4.1 Introduction . 57

1.4.2 Sampling . 59

1.4.3 Interpolation . 64

1.4.4 Exercises . 73

1.5 Solutions to the exercises of the signal processing module 75

1.5.1 Solutions to the exercises of section 1.1 75

1.5.2 Solutions to the exercises of section 1.2 77

1.5.3 Solutions to the exercises of section 1.3 84

1.5.4 Solutions to the exercises of section 1.4 84

2

Chapter 1

Signal processing

3

1.1 Signals and systems

1.1.1 Introduction

In this module, we are going to talk about signal processing. What is a signal? A signal is a
mathematical representation of a physical quantity, for example the air pressure corresponding
to a certain sound. We obtain signals either measuring them with sensors (e.g. a microphone)
or generating them (e.g. a synthesizer of a musical instrument). What can we do with signals?
We can transform them using a “system”. A system takes a signal at the input and produces
a signal at the output. The output signal has some properties we are interested in. Take the
microphone of the previous example. We can consider it as a system that transforms the sound
pressure into an electrical signal. Sound pressure is difficult to amplify or record (even if one
can think of a purely pneumatic system to record sounds) so we convert sound pressure into
an equivalent electrical signal. However, the conversion has some limitations. For example, you
cannot use the same microphone to record a singer and the noise of a jet turbine: there is a limit
to the range of the signal that you can record. Also, normally you cannot record ultrasounds
with a normal microphone (e.g. suppose you want to record a bat) i.e. there is a frequency limit.
In summary, a system like a microphone is not an ideal converter of signals. This is a general
fact about systems: they have some qualities we are interested in and some others that we don’t
like. The work of an engineer is often to design a chain of systems so that the bad qualities are
minimized while keeping the good qualities, at least for a reasonable range of parameters of the
input signal.

Now, how is this related to the transmission/record of audio sounds and mp3? If you take
for example an internet connection, you can consider it as a system that receives bits on one
side and outputs bits on the other side. The bit is the information unit and corresponds to
the information carried by a signal that can take only two values. For an internet connection,
input and output can be very far apart. Unfortunately, when you connect your computer to
the internet you realize how long it takes to transfer a web page in some cases. The system has
some limitations, exactly as in the case of the microphone. For example, there is a maximum
number of bits that you can send per second (what we call bit rate). Also, on this type of
connection you can send only bits. However, a sequence of bits is not that interesting but we
want to transmit audio, images, videos, texts etc. Another problem is the transmission delay.
The system performs some processing on each bit, and that takes time. Also there is a limitation
to the propagation of signals on cables and optic fiber, so at the end there is a transmission delay
which is never zero. Moreover, there are errors! From time to time some of the bits that are
transmitted are not detected correctly. It could be one over one billion but the consequences can
be catastrophic e.g. for a computer program. There are other types of limitations and the same
for other media such as optic disks like Compact Disks (CD) and Digital Video Disks (DVD) or
tapes and mobile phones etc. In conclusion, we need some additional systems that we add to
complete the chain. Every system of the chain will do a transformation on the signal so that the
next system will receive a signal compatible with its input. Now we can answer the question:
what is mp3. Mp3 is a standard that specifies a family of bit sequences. These sequences are
used to describe audio signals. Implicitly mp3 defines how you can build a system that takes an

4

audio signal e.g. from a microphone, and transform it to something suitable to be transmitted
or recorded using few bits. Since the standard specifies only how the output of the system must
be, there is a lot of freedom on the design of the system itself. Hence, two mp3 files of the
same song may sound differently. The standard is the result of compromises, first of all between
quality and number of bits that have to be sent.

In this module we will see some principles of signal processing and we will describe some of
the modules that are used to design an audio coder. Unfortunately, an accurate description of
these modules would need some advanced math, so you will have to wait a couple more years.
Hopefully, this will motivate you to learn math in the courses of the first two years.

1.1.2 Signals

Intuitive idea of signal

Let us be a bit more formal with the definition of a signal. We already said that the signal is
a function associated with a certain physical quantity. We know that a function has a domain
and a codomain. Which are the domain and the codomain of the signals? The typical domain
is time, so if you believe that time is continuous (probably a pedantic physicist wouldn’t agree
with that) the domain is R . What about the codomain? It is something that we can measure
so it is an integer or a real number. Often, we prefer real numbers because of the nice properties
they have (you will see that in other courses).

Example: temperature vs. time. Continuous and discrete-time signals

Suppose we want to measure the temperature in Lausanne over a certain time. What type of
signal is this? The domain and the range can be represented with real numbers. We call these
type of signal continuous-time signals, because the time axis is continuous (note that the
signal is not necessarily a continuous function!). So one can model temperature as a function
defined on R and values in R. However, it would be difficult to “measure” such function! Our
instruments measure a certain quantity only on discrete-time instants. Even if we use a mercury
thermometer, we would need an operator permanently in front of the thermometer (and he
could not register the measurement). We could plot the temperature directly on a sheet of
paper, that would allow keeping the real function, but later it would be very difficult (even if
not impossible) to do something with the drawing of the function (for example to compute the
average temperature over a year). However, one can take into account that temperature changes
very slowly, so we can decide to measure it for example every hour. It is very unlikely for the
temperature to be very irregular between two measurements, so we can be satisfied with this
approach. We call this type of signals discrete-time signals (because the signal is defined on a
discrete set of points). Modern signal processing deals almost always with discrete-time signals
even if reality is continuous. We will see later how this is possible, however you already have
the intuition that we can at least “approximate” a continuous-time signal with a discrete-time
signal. we have simply to take enough measurements on discrete points of time axis. We call
this procedure sampling (see Figure 1.1). We will see in the third lecture how this works.

5

0 50 100 150 200 250 300 350
12

14

16

18

20

22

24

26

28

(a)
0 50 100 150 200 250 300 350

12

14

16

18

20

22

24

26

28

(b)

Figure 1.1: Example of representation of continuous and discrete-time signals. (a) Continuous-
time signal. (b) Discrete-time signal.

Signals in the computer

Let’s develop further what we have seen in the previous example. First of all, let’s answer
to the following question: what type of information can we store in a computer (or a disk or
send through the net)? Can we store a real number? One can remember that a real number
is something of type “3.1416...”. In general, what comes after the dot can be an infinite non-
periodic series of digits. Can we store that in a computer? Surprisingly we can store “some”
of these numbers. In fact suppose that a certain quantity can take only the values 1, 1/3, e, π,
then we can represent this quantity with simply two bits. In fact, with two bits we have four
combinations that correspond to the four values that we want to represent. For example, if the
two bits are b0 and b1 we choose

Value b0 b1

1 0 0
1/3 0 1
e 1 0
π 1 1

This defines perfectly the values that we want to record even if the values don’t have a finite
decimal representation. As you see, this is a general trick but we can use it only for a finite set of
elements. In fact, all the resources of a computer (or a communication system) are limited. Even
if today we can store many bits in a computer, the number of combinations of all the bits remains
finite and so is the number of values that we can represent (but we have the freedom of choosing
what we associate to each combination). Computer scientists use several representations for
integers, real numbers and other numeric values. To use these representations, one has to
approximate the actual value with one element of the representation.

What about signals? Which are the signals that we can record/process/transmit using digital
systems? Can we treat continuous-time signals? As in the previous case we can show that we
can represent “some” continuous-time signals. In fact, take for example the signal:

y(t) = at2 + bt + c.

6

You probably remember that this function is a parabola. Can we record this type of signals on
a disk? The answer is yes, since every parabola is represented by three real numbers a, b, c and
we know how to represent a finite set of real numbers. As a result we can record a finite set
of continuous-time signals. If we know that a certain physical quantity (like the temperature of
the previous example) has a parabolic variation we can use a device that allows measuring the
parameters of the parabola and store them. Later, we will be able to retrieve the parameters
and reproduce the parabola with another device and do some processing on it.

What about transmission of continuous-time signals? Which are the signals that we can trans-
mit? We can think in the same way as in the previous example but now we don’t need to store
the parameters since we transmit them. The number of parameters that we can send per second
is a finite quantity, so we can transmit signals that “locally” can be represented with a finite
number of parameters. For example, think of a signal which is built of segments of one second
and each segment is a parabola. We can measure the parameters of parabolas segments and
send them to the receiver. There, we are able to reconstruct exactly the input signal simply
generating the pieces of parabolas corresponding to the parameters. We can do this only because
the input signal is taken in a set of functions that can be described locally by a finite number
of parameters. We call the sets of this type “set of signals with finite rate of innovation.”

What about audio signals on a computer? Can we describe them with a function that has a
finite number of parameters? If we consider a generic sound no. We have to approximate it
with a function that has a finite rate of innovation. A common way is to take samples of the
continuous-time signal as we have seen in the temperature example. We will see this in more
detail in the third lecture.

Definition of signal

Let’s see a more formal definition of signal. The first concept that we need is that of the cartesian
product. We assume that you know the concept of set as a “collection of elements”.

Definition 1. The cartesian product of two sets A, B is the set

A × B = {(a, b)|a ∈ A, b ∈ B}

that is, the cartesian product is the set of all the possible ordered pairs of elements of A and B.

Definition 2. A relation R is a subset of the cartesian product of two sets A, B, i.e.

R ⊆ A × B.

In other words, a relation puts in correspondence points of two sets A and B. However, a point
in A can be in relation with more than a point in B (see Figure 1.2). For a function we don’t
allow that and every point in A is in relation with exactly one point in B:

Definition 3. A function is a relation from A to B such that:

1. for each element a ∈ A there is an element b ∈ B, such (a, b) is in the relation

7

b1a1

(a)

a4

a3

a2

b4

b3

b2

BA

(b)

b1a1

a4

a3

a2

b4

b3

b2

BA

Figure 1.2: Relations and functions are both subsets of the cartesian product of two sets A and
B. (a) A relation defines a set of correspondences between elements of two sets. (b) A function
f : A → B is a relation that assigns to each element of A a single element of B.

2. if (a, b) and (a, c) are in the relation, then b = c.

Note that, points in B are not constraint to be in relation with exactly one point in A. They
can be in relation with multiple points or with no point at all.

It is common to write the function f as

f : A → B

where A is called the domain and B the codomain.

Now we can define a signal as the function

f : A → B
a 7→ f(a)

where A is R for continuous-time signals and Z for the discrete-time signals. You may be
surprised that we consider sets with an infinite number of elements. In reality, we always start
our measurement (or transmission or acquisition) at a certain time and probably we will stop it
at a certain time in the future. However, we prefer to define mathematically the signals on the
entire real axis to simplify the notation for many operations. We can simply imagine that we
extend the signal outside of the actual range. Of course, we will have to know how to do that
extension if we want to build a device for signal processing.

The set B is R or C. The complex values are used in some cases because they give a simpler
notation, but most physical quantities are actually real. We have seen that we cannot represent
values taken in an infinite set such as reals. However, the approximation error is normally small
and in the equations we often neglect the rounding errors.

The sinusoid

Let us see a type of signals that engineers like to use (in the second lesson we will see one of the
reasons). It is the sinusoid

y(t) = P sin (2πft + φ) t ∈ R (1.1)

8

φPsin

y

t

t0

Tp

P

Figure 1.3: The parameters of a sinusoid.

This is a continuous-time signal. The time t is on the real axis and the instantaneous value y is
also real (actually it belongs to the range [−P,P]. The parameter P is called amplitude and f
is the frequency and is measured in Hertz (Hz). The frequency corresponds to the number of
periods completed in one second. For example, a frequency of 440 Hz means that the sinusoid
completes 440 cycles per second1. Alternatively, one can specify the time needed to complete
one cycle of the sinusoid. This is called the period TP = 1/f . The sinusoid becomes

y(t) = P sin

(

2π
t

TP
+ φ

)

(1.2)

Often we want to get rid of the factor 2π so we prefer to measure the frequency in radians per
second. The symbol ω is commonly used to denote the frequency in radians per second. Of
course, the relation between the frequency in Hertz and in radians per second is:

ω = 2πf =
2π

TP
(1.3)

The phase φ can be considered as a shift of the sinusoid along the time axis. In fact we can
write

y(t) = P sin(2πf(t − t0)) (1.4)

with t0 = −φ/(2πf) (see Figure 1.3).

1This is actually the note “middle A” in western music (a “La”)

9

This was a continuous-time sinusoid. We can define the discrete-time sinusoid:

y(n) = P sin(2πfDn + φ) = P sin(ωDn + φ) n ∈ Z (1.5)

You noted that now we use the variable n instead of t to stress that the signal is defined on
the integers. If you plot the discrete-time sinusoid and you compare with the continuous-time
sinusoid you will see that they look quite similar. However, there is a main difference that
concerns the periodicity of the discrete-time sinusoid. Remember that a function h : A → B is
periodic with period p if

h(x) = h(x + lp) ∀x ∈ A, l ∈ Z,

i.e. the signal repeats itself every shift p along the time coordinate. It is trivial to verify that the
sinusoid is a periodic signal with period p = TP . However, the discrete-time sinusoid in general
is not periodic. In fact, if the frequency fD is not rational, there is no value of n ∈ Z such that
fDn is an integer. That is, the angles on which we compute the sin are always different and the
signal never repeats.

Multidimensional signals. Images, television and video

The signals that we have seen so far are one-dimensional since they are function only of time.
However, many physical phenomena cannot be described by a function of a single coordinate.
A typical example is a measurement on surface (temperature, pressure, deformation, etc.). The
position on a surface is described by two coordinates so it is natural to model the measurement
with a two-dimensional signal. A multidimensional signal is a function

f : A → B

as for a one-dimensional signal, but in this case the domain A is obtained composing R and/or
Z with the cartesian product. For example, consider the intensity of light reaching the film of a
camera. We can define a system of coordinates on the surface of the film, and the intensity is
described by a two-dimensional signal:

iC : R × R → R

In the following, we use the shorthand A × A = A2 to simplify the notation.

What we have discussed on recording of one-dimensional signals can be repeated for two-
dimensional signals. Again, we can only store images that we can describe with a finite number
of parameters. Normally the parameters are the values of the image on a uniformly spaced grid.
We obtain a discrete image:

iD Z2 → R.

Today, it is very easy to obtain discrete images, since with have digital cameras. A digital
camera instead of a film contains a Charge-Coupled Device (CCD). The CCD has many elements
sensitive to light. Such elements are organized as a matrix of points called pixels (the name
“pixel” is derived from the abbreviation of “picture element”). A recent camera can have several

10

Figure 1.4: A discrete image is a function of two indexes defining the pixel intensity.

11

millions pixels (or megapixels). Each sensor of the CCD measures light intensity corresponding
to one pixel, hence we obtain directly a discrete image without conversion (see Figure 1.4).

Note that we can mix continuous and discrete coordinates and define signals like:

iCD : R × Z → R

We can obtain a signal like that by taking lines of a continuous image at discrete positions (this
procedure is called “sampling” and it will be better explained in the third lecture). An example,
of a signal of this type is a TV signal. We consider black and white signal television for the time
being. At the beginning of television everything was analog (actually TV was invented before
digital electronics). The TV signal was obtained using an electronic beam to scan a surface
sensitive to light. The result can be described with the signal that we have seen. Today cameras
contain also CCDs but the signal that is broadcasted is still of the same type.

On TV you don’t have just a static image but you have an image that changes over time, i.e. a
video signal. We can describe a video signal in continuous-time as the function:

vC : R3 → R

i.e. a video is a function v(x, y, t) where x and y are the spacial coordinates and t the temporal
coordinate. Where can we find such a signal? We can find it on the surface of the sensor of
any video camera. However, the sensor operates a transformation to a discrete-time signal. An
analog camera (still commonly used in broadcasting) “samples” along the temporal and the y
coordinate giving a signal of the form:

vCD : R × Z × Z → R

i.e. now we have a signal vD(x,m, n) where x ∈ R is the continuous horizontal position along a
certain line, m is the index of the line and n is the temporal index (see Figure 1.5).

To store a video on a digital support we need to sample also along the lines (as consumer digital
cameras). We obtain a signal of the form

vD : Z3 → R

i.e. now a video is a function of three indexes corresponding to position and time. This is the
type of videos that are stored on computers, DVD and CD.

What about color? Vectorial signals

You probably notice that in the previous discussions we neglected color, i.e. what we said is
correct for black and white images and videos. How do we deal with color? We see colors because
light is composed by different spectral components, i.e. components with different frequencies.
Our eyes have cells which have different sensitivities to the spectral components. There are
three types of sensor, so a certain color can be described by three quantities. Hence, a color
image is also described by three values for each position. We can do that using three distinct
signals. However, the three images are strictly related, so we prefer to use a vectorial signal (see

12

t

x

y

Figure 1.5: A video sequence can be considered as a signal defined on Z3. The temporal index
defines an image of the sequence (called also a frame), the remaining two indexes determine
the position of a pixel.

Figure 1.6: Four images (called also frames) of a video sequence.

13

Figure 1.7). We can consider a vector as an ordered set of numbers, so it is also an element of
a cartesian product of R with itself. A color image is represented on a computer with a signal:

i
(3)
D : Z2 → R3

and a color video with the signal

v
(3)
D : Z3 → R3

You probably know other types of signal that can be described using a vectorial representation.
For example, stereo audio: you have two channels that are related and synchronized on time, so
it is convenient to represent them using a vectorial signal with two components. The principle
can be extended to multichannel audio which are used in cinemas and home cinema systems.
They normally use five or six channels to record audio. With the progress of technology sensors
and processing devices are becoming cheaper and smaller. It is reasonable to expect that we
will have more and more applications that use arrays of sensors.

Symbols and sequences

We have seen examples in which temporal or spatial information is represented by functions of a
variable representing time or space. In many situations, information is represented as sequences
of symbols that represent data or an event stream. The main difference with signals is that
the values of a sequence are taken in a set that is not directly related to a physical quantity.
For example, in a text file each letter can be considered as a symbol but it doesn’t correspond
to something that we can measure. As you see, symbols are abstract entities which do not
correspond directly to a specific physical representation (i.e. a certain signal.) However, they
need a physical representation to exist. For example, you can read this text on a computer
monitor or printed on paper. In both cases, there are certain signals associated to each letter
of the text which will be different for the two media. However, the information carried by the
signals, i.e. the symbols, is the same. If you print the text with a different quality or you change
the settings of the monitor you will change the signals used to represent the symbols but not the
symbols themselves. Hence, the concept of symbol is related to the semantics, i.e. the meaning
that we associate to a class of signals.

We need devices to change the representation of symbols. For example, a text is represented in
the computer memory as a certain combination of charges on certain components. To show the
text on the computer screen, we need to measure the charges corresponding to each letter and
convert to a set of points that represent each pixel. The status of each pixel is used to generate
the signals that drive the CRT of the monitor. There are many devices that do this type of
conversion: printers, scanners, modems, CD reader/writer, keyboards and many others.

What is a symbol exactly? Since it is an abstract object, it is arbitrary to define what a symbol
is. In a text file, are the symbols the letters or the words? It seams that we can define a hierarchy
of symbols: letters are grouped together to form words, words are grouped to form sentences
and so on (see Figure 1.8). At the basis of the hierarchy we have signals, i.e. the physical
support, at the higher levels we represent symbols with higher information content. This is a
general concept applied by engineers. Information is organized in layers, each layer is associated

14

(a) (b)

(c) (d)

Figure 1.7: A color image and its decomposition into three color components. (a) Original
image. (b) Red component. (c) Green component. (d) Blue component.

15

1 1 1 1 1 1 1 1 1 1 1 1 10 011 1 0

characters L S

LASCIATE OGNI SPERANZA VOIwords

sentences

, CH’ INTRATE
Symbols

LASCIATE OGNI SPERANZA, VOI CH’INTRATE. QUESTE PAROLE DI COLORE OSCURO VIDI IO SCRITTE ALSOMMO DI UNA PORTA

bits 0 0 0 0 0 0 0 0 0 0 0 0 0

A C

Signal

Figure 1.8: Information can be organized in layers. The bottom layer represents signals. The
higher layers represent information using symbols.

to a certain representation. We can also consider the operations that we do on the information
as a transformation at a specific layer. For example, the text file can be transmitted using a
modem: that changes the signal used to represent the text. We can operate at a higher level of
the hierarchy and change a character with a text editor, or we can change a word. At a higher
level we can change the meaning of a sentence and so on.

1.1.3 Systems

The device (or the software) that realizes a transformation of the information is called a “sys-
tem”. This is a generic term that denotes something that takes a sequence or a signal at its input
and produces a sequence or a signal at its output. Mathematically we can describe a system
as a function that takes a function at its input (the input sequence or signal) and produces a
function at the output (the output sequence or signal). In signal processing we are interested in
systems whose input, output or both input and output are signals.

There are many cases where we need a system to change the media on which the information is
represented. For example, to send a text file over a telephone line, you have to convert it to a
signal which is similar to voice. We can describe mathematically the device that performs the
transformation as a function that takes symbols at its input, i.e. the characters, and produces
a voice-like signal at its output. We call this function a modulator. At the receiver side the
voice-like signal is transformed to a sequence of symbols by the demodulator. A device that is
composed by a modulator and a demodulator is called a modem. Note that the use of symbols
to represent the input of the modulator and the output of the demodulator is a mathematical
formalism to get rid of the representation of such symbols using signals. A real device always
deals only with signals.

There are many other cases where we need to convert signals to use a different medium to
store/transmit information. Since every medium has some specific characteristics we need some
specific devices. Among the different media we have cables, optic fibers, optic disks (CD, DVD,
etc.), magnetic supports (disks and tapes), paper, air (acoustic signals) and many others.

Other types of systems deal with the transformation of signals in order to improve some qualities.

16

−

+ y = x1 − x2x1

x2

y2 = x

y1 = x

x

y = axx
a

x y = h(x)
h

Figure 1.9: Symbols used in block diagrams.

For example, we can think of the tone control of an HiFi chain: the signal is filtered to amplify
or attenuate certain frequencies. We can think to more sophisticated examples of system for
enhancement. For example to improve an image you acquired with a digital camera (e.g. to
eliminate the effect “red eyes”).

Another type of systems are used to control a physical process. Think for example to a heating
system. There are a number of sensors that measure temperature and a number of heating
devices that we can control. A system is needed to process the measurements and compute the
control signals so that some conditions on the temperature are satisfied. For example, we can
impose a certain constant temperature that we want to keep with the minimum error, or we can
impose a certain temperature profile over time.

Block representation. Subsystems

We often represent systems with blocks. A sequence of systems is represented by a chain of
blocks interconnected by arrows. We can also write names for the signals at the input and
output of each block. Some common systems are represented by special symbols. For example,
the addition of two signals is represented by a circle. If we want to send a certain signal to two
systems, we simply draw a bifurcation (this can also be considered a system). In Figure 1.9
some block symbols are shown.

The block representation is a way of representing a complex system in term of subsystems. Each
subsystem is represented as a “black box,” that is, we know the functionality of the block but we
don’t put our attention to the way it is implemented. It is the layer representation that we have
seen previously. If you are programming a computer, you have to deal only with the language
syntax and not with the current flowing in each of the millions transistors of the processor. If
the layers below are working properly, the method works and you can concentrate only on that
that you are designing.

An example of modulator: dual-tone multifrequency (DTMF)

Let us see an example of a modulator. It is called dual-tone multifrequency and used in telephony
to transmit a telephone number through the telephone line. There is one of these in every

17

Telephone
network

Bit sequence

Bit sequence

Bit sequence

Bit sequence

Voice−like
signal

Voice−like
signal

Voice−like
signal

Voice−like
signal

Modem

Modem

Modulator

Demodulator

Modulator

Demodulator

Figure 1.10: Voice band data modems.

telephone.

The system is based on a keyboard with twelve keys. On the keys the ten figures plus the
special symbols “*” and “#” are represented. The symbols are organized as a rectangle of four
lines and three columns. To each line and to each column distinct frequencies are associated.
When the user presses one of the keys, the modulator generates a signal by adding two sinusoids
of frequencies corresponding to the line and the column of the key. For example, a “0” is
represented as a sum of two sinusoids with frequencies 941 Hz and 1,336 Hz.

We will see in the second lecture how we can demodulate the output signal and recognize which
key was pressed, but you can already think of something similar to the tone control of an HiFi
chain to separate the different sinusoids.

Quantization of signals

In the previous sections we have discussed about several types of signals. We said that we
assume that they take values in R. However, we have seen that computers and communication
systems have finite resources and they can only deal with finite sets of values. Therefore, real
numbers are approximated with appropriate values. There are different ways to choose the set
of values. Every choice corresponds to a different amount of memory needed to represent the
values and a different precision of the representation.

In signal processing, we call quantization the procedure of conversion of a real number to a finite
size representation. We call quantizer the device that performs the conversion. Sometimes,
we want to change from one representation to another. For example, this is done to reduce the
amount of memory needed to store information. Even in this case we talk about quantization.

Since quantization is a transformation on signals we can call it a system. Let us call I the finite

18

#

4

697 Hz

770 Hz

852 Hz

941 Hz

12
09

 H
z

13
36

 H
z

14
77

 H
z

Numbers
DTMF

Voice−like
signal

0

1 2 3

65

7 8 9

*

Figure 1.11: A dual-tone multifrequency system converts numbers from a keypad into a voice-like
signal.

set that we decide to use to approximate real numbers. The quantizer, for one-dimensional
discrete-time signals, is represented by the function:

q : [Z → R] → [Z → I].

In the same way we can define the quantization of other types of signal.

A quantizer that converts values in the representation IA to representation IB is represented by
the function:

q : [Z → IA] → [Z → IB].

There is a type of quantization that you probably know. It is the rounding and the truncation
of real numbers. These are ways to map a real number to an integer. Integers are still an infinite
set so we have also to fix a minimum and a maximum value to the values that we are going
to represent. Let us see how it works considering an example. Suppose we want to acquire an
image with a computer. In order to do that, we need to convert the output signal of a camera
to a digital representation that can be stored in the computer. The output of the camera is
an an analog signal v. There is a maximum value of the light intensity that can be measured.
Suppose that such an intensity corresponds to the output signal V0. We also know that v ≥ 0,
since light intensity is not negative. To convert such a signal to a digital representation, we
need a device called Analog to Digital Converter (ADC or AD). The AD combines in the same
device the quantizer and the sampler. The sampler transform the signal from continuous-time
to discrete-time. We will see it in the third lecture. The quantizer represents the amplitude
using a finite number of values, L. We normally choose L = 2b, i.e. a power of 2. In this way,
we use all the combinations of b bits to represent the values. We show an example using b = 3
in Figure 1.12. The input range is decomposed in intervals of size

∆ =
V0

2b
.

The output y is computed by

y = q(v) =
⌊ v

∆

⌋

∆.

19

In other words, the values of a certain interval are mapped to the minimum value of the interval.
The quantization error e = v − y is always positive and its maximum value is ∆ (provided that
the input signal remains in the expected range).

In practice, the number of bits b is normally higher than 3. For example, it is common to
represent a black and white image with values in the range [0, 255]. This range can be represented
with b=8 bits, i.e. one byte of memory. A black and white image becomes a function

iD : Z2 → I8,

where I8 is the set of integers in [0, 255]. Color images need three values for every pixel so they
require 24 bits, i.e. three bytes. Therefore a color image is a function

i
(3)
D : Z2 → I3

8 .

For audio signals, we use even more bits. Compact-Disks are recorded using 16 bits and DVD-
Audio uses 24 bits.

Image warping

Let us see another system that transforms an image to another one. The main idea is to take
the pixels of the input image and reorganize them to obtain the output image. To move the
pixels we use continuous functions, so the result is a deformation of the image. This is also a
system. For color images it has the form

w : [Z2 → I3
8] → [Z2 → I3

8]

where I8 represents an integer represented on 8 bits. To define precisely the warping, we need
to specify how the pixel values are displaced. For example, if the input image is iI(x, y) and the
output image is iO(x, y), we can define:

iO(x, y) = iI(x
′, y′)

with
x′ = x(1 + ρ(x2 + y2))

y′ = y(1 + ρ(x2 + y2))

where ρ is a parameter. A warping of this type for ρ > 0 produces an image similar to one
acquired using a “fisheye” lens, i.e. a lens with very small focal length (see Figure 1.13).

Simulcam

Systems can be defined on every type of signal. We can see an example on videos. It is called
simulcam and it is commercialized by the company Dartfish in Fribourg (http://www.dartfish.com).
The idea is to take two videos of a certain scene. On the scene there are different persons or
objects that are moving. We choose one of the two sequences as a reference and we want to add

20

0 v

q

V0

010

001

011

100

101

110

111

000

∆

∆

V0

(a)

(b)

v

e

Figure 1.12: Quantization of a real value between 0 and V0 using 3 bits (8 levels). (a) The input-
output relation of the quantizer. Note how the result is obtained by truncation of the input
value. In correspondence of each output value a possible representation on 3 bits is shown. (b)
The quantization error is positive and smaller than the quantization step ∆. Note that input
values outside of the design range 0 − V0 would lead to quantization errors bigger than ∆.

21

Figure 1.13: Image warping can be considered a system that transforms two-dimensional signals.
On the left the original image (288×720 pixels). On the right the output image obtained setting
ρ = 2e − 6.

Figure 1.14: Superposition of two video sequences can be considered a three-dimensional signal
transformation

22

Result

0.5
Rotation parameters

Video reference

Video superposed

+

+

warping
Image

rotation
Compute

Figure 1.15: Simplified block diagram of a system for video superposition.

the objects of the other sequence on the reference sequence. Note that the objects have to be
placed in the correct position with respect to the scene and the camera is moving differently for
the two sequences.

This system is a bit complex, but it can be also described mathematically. To simplify the
notation, we define the set of color video sequences:

V = {v|v : Z3 → I3
8}.

Each video sequence is represented as a function of three indexes, for position and time, to three
color components represented on 8 bits. Now, we can define Simulcam as a function

s : V × V → V

that is, a system that takes two videos and produces one video sequence.

To define completely the system we need to specify what the function does. We can separate
the systems in subsystems. The first subsystem takes each image of the two videos and finds
the rotation of the camera on one sequence with respect to the other. It would be a bit complex
to explain the details. We can simply suppose that this system tries different rotations in order
to minimize the differences on the majority of the pixels of the images. The second subsystem
takes the parameters computed by the first block and the video that we are going to add to
the reference video. The output of the block is a video sequence where camera rotation has
been compensated. This is the warping system that we have seen, applied to every image of the
sequence. In this case, the equations used for the warping reproduce the rotation of the camera.
The third block takes the reference sequence and the compensated sequence and combine them
to keep the moving objects of both and the common background. One can use very sophisticate
techniques to perform such an operation. However, an average of the two sequences gives already
an interesting result, even if the moving objects can be a bit transparent.

Linear functions and systems

Let us see the definition of linear function. Suppose that A and B are sets on which addition
of two elements and multiplication by a real number are defined. For example, R or C are good

23

sets.

Definition 4. A function f
f : A → B

is a linear function if ∀u ∈ R and a ∈ A

f(ua) = uf(a)

and ∀a1, a2 ∈ A,
f(a1 + a2) = f(a1) + f(a2)

The first property is called homogeneity and the second additivity. When the domain and
the codomain are R, a linear function can be represented as

∀x ∈ R, f(x) = kx

for some constant k. In fact, it is easy to verify the properties of homogeneity and additivity.
The term “linear” comes from the fact that the graph of this function is a straight line through
the origin, with slope k. The two properties of homogeneity and additivity can be combined
into the superposition property:

Definition 5. f is linear if ∀a1, a2 ∈ A and u1, u2 ∈ R,

f(u1a1 + u2a2) = u1f(a1) + u2f(a2).

A system is also a function, so we can ask if a certain system is linear. First of all, we have to
understand which are the domain and the codomain of the system. We said that this sets could
contain signals or sequences of symbols. However, we note that we cannot define addition and
multiplication on symbols. For example, you cannot add two text files. So we consider only
systems that process signals and produce signals.

For example, take a system that transform a continuous-time signal to another continuous-time
signal. In this case,

A = B = {s|s : R → R}.
We can define the addition of two elements of A as

(a1 + a2)(t) = a1(t) + a2(t) ∀t ∈ R

and the multiplication by a real quantity u ∈ R as

(ua)(t) = ua(t) ∀t ∈ R.

With these definitions, all the operations in the definition of linearity are defined and we are
allowed discussing the linearity of a system. Let us consider for example the system

d : A → A
s(t) 7→ s(t − 1)

24

that is, the system d delays the input signal by one second. Is this system linear? We check this
by verifying the superposition property for two generic signals and constants:

d(u1s1(t) + u2s2(t)) = d((u1s1)(t) + (u2s2)(t)) = d((u1s1 + u2s2)(t))
= (u1s1 + u2s2)(t − 1) = u1s1(t − 1) + u2s2(t − 1)
= u1d(s1(t)) + u2d(s2(t)).

Note that the third equality is a consequence of the particular system that we consider, and the
others equalities of the operations defined on signals.

We show now that quantization is not a linear system. Let us take for example a quantizer that
converts real numbers to integers represented on 8 bits:

q : [Z → R] → [Z → I8]

Suppose that q converts the value of the input signal to the closest integer on 8 bits. For
example, 12.3 is converted to 12, but 12.7 is converted to 13. At this point, it is easy to see that
the quantizer is not linear. In fact, for example

q(4.3 + 5.4) = q(9.7) = 10

but
q(4.3) + q(5.4) = 4 + 5 = 9

Since there are at least two input signals for which the property of additivity is not verified, the
system is not linear.

We have seen that we need quantization if we want to process signals with a computer. This
implies that most of the systems that we can build are not linear. However, in practice, quanti-
zation is designed to introduce only small errors to the input signal. Hence, engineers continue to
talk about linearity of a certain system neglecting the non-linearities introduced by quantizers.

We can verify that even complex systems as image warping and simulcam are linear, when pixel
values are assumed to be in R. We need just to define the addition of two images (and two
videos) and the multiplication by a constant. The result follows very easily from the definition
of linearity.

25

1.1.4 Exercises

1. Give examples of physical phenomenons that we come across in everyday life and for
which you can find a representation in the form of signals. Specify the domains and the
codomains of the signals? What are their dimensions?

2. Give examples of signals in the following spaces

(a) Z → R

(b) R → R2

(c) {0, 1, . . . , 600} × {0, 1, . . . , 600} → {0, 1, . . . , 255}
(d) Give a practical application for the last space. What does a signal on this space

represent?

3. Sketch the following signals :

Triangle(t) =

{

0 if |t| > 1
1 − |t| if |t| ≤ 1

δ−1(t) =

{

0 if t < 0
1 if t ≥ 0

δ−2(t) =

∫ t

−∞

δ−1(τ) dτ

Sum(t) = Triangle(t) + δ−1(t)

Diff(t) = Triangle(t) − δ−1(t)

Sinc(t) =

{

1 if t = 0
sin(πt)

πt
if t 6= 0

4. Specify the amplitude, frequency and phase of the signal:

x(t) = 5 cos
(

10t +
π

2

)

?

What is the period of x(t)?

5. We know that a continuous-time sinusoid is a periodic signal. Is the sum of two sinusoids
also periodic? Under which conditions? What is the period?

6. Sketch x(t) = 5 cos(10t+ π
2)+2.5 sin(5t). Show that x(t) is periodic. Which is the period?

7. We want to backup some images on a hard disk using as small a space as possible. The
images are originally on memory. The size of all images is 768 × 1024 pixels. For each
pixel, the color is represented in the memory using 24 bits. We know that on each image
only 16 colors are used but we don’t know which ones in advance. The 16 colors might be
different for each image. How should we represent the information in order to minimize
the space used on the disk? How many bits are needed to backup each image?

26

8. Give examples of systems in which the information is organized hierarchically. What are
the signals used to represent information in the physical layer? What are the symbols used
in the other layers? Are you acquainted with systems that elaborate the information on
each layer?

9. There is a big difference between the sets A, B and S = {s|s : A → B} (The set of signals
from A to B). The following exercise explains this topic.

(a) Suppose A = {x, y, z} and B = {0, 1}. Make a list of all the functions from A to B
(in other words the elements of S). Propose a procedure to list all such functions.

(b) If A has m elements and B n, how many elements does S have?

(c) Suppose that A = {0, . . . , 287} × {0, . . . , 719} and B is the set of color representable
by 24 bits. Give an estimate of the number of elements of S in the form of 10n,
n ∈ Z?

10. Suppose that the systems S1 and S2 are linear and that they are constructed for treating
time continuous signals. Connecting the two systems as in the following picture, allows
for constructing more complex systems. In the three pictures, the signal at the input of
the complete system is called x(t), the signal at th output is called y(t) and α is a real
constant. Is the complete system linear?

S2 y(t)x(t) S1 x(t) S1 a

(a)

(c)

x(t) y(t)

S2

S1 S1

S2

x(t) y(t)

y(t)

(b)

(d)

+

+

+

−

27

1.2 Filtering

1.2.1 Introduction

In this lecture we will see some special type of systems that we call filters. I am sure that you
have an intuition of what a filter is. It is a device that allows eliminating something that we
“don’t like” while keeping something that we “like.” Of course, what we like and what we don’t
like is relative to the application. You probably use a browser to access the internet. When you
want to find the pages on a certain topic you use a search engine, choosing a list of keywords. We
can think about the keywords as a description of the filter and the search engine as a procedure
to apply it to the input data, i.e. the pages available on the internet.

Often, you don’t want (or more likely you can’t) eliminate the “disturbing” signal but you desire
simply to reduce its level. For example, if you have a HiFi chain, you probably have some tone
controls. When you set the controls to “off” all the frequencies are set at the same level by the
system. That is, if you imagine that the input of the system is a pure sinusoid, you obtain the
same level independently of the frequency of the sinusoid. If you change the tone controls, the
sound will be different for certain frequencies. This is also a type of filter. There are many other
examples of filters in nature. Actually, all the system that we can find in nature, i.e. all the
phenomena for which you can define an input and an output, show a “filter” behavior. Most of
them are “low-pass,” that is, when you send a sinusoid at the input, you see that the amplitude
decreases for high values of the frequency. You don’t notice that with the HiFi system, but if
you measure it in a laboratory, you would find the low-pass behavior. However, our ears are
also low-pass so this is not a problem.

A numeric example: the moving average

Let us have a look at another example which concerns discrete-time signals. It is called the
moving average. We consider a discrete-time signal that is affected by errors. Take for
example the grades that you get at each exam or the number of goals you made at the last
hockey match. In both cases you can think that the result is related to your actual effort and
to a random perturbation that you cannot control (for example, the day of the exam you were
sick or the teacher was not good, etc.). We can write

g(n) = s(n) + e(n),

i.e. the grade g(n) you get at exam n is the result of your skills s(n) plus an error term e(n).
Suppose that you would like to know your actual skills, for example to check if you are improving
and at which rate. How would you do that? An idea is to compute the average at the end of
each year. This is a solution, but you need to wait a whole year to have a new value and
maybe take countermeasures (e.g. work harder). Also, your skills are changing over time, so an
average on one year would hide such a change giving just a single Figure. A better solution is
to recompute the average every exam, taking into account the L last exams. Here L is a certain
value, for example L = 8. Why do we not take into account all the exams since the beginning
of the studies? Because we want to be able to see the trend of our skills, i.e. the signal s(n).

28

0 10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

g(n)
s(n)
y(n)

Figure 1.16: Example of moving average of the noisy signal g(n). s(n) is the original signal not
affected by error. y(n) is the filtered signal obtained with a moving average of length L = 8.

If we average too many values the result is less and less influenced by the last result. On the
other hand, if L is too small the average is too much perturbed by the error terms that are
only mildly attenuated. In conclusion, the length of the average L is a tradeoff between the
attenuation of the errors and the speed of reaction of the system to the variations of the signal
s(n). In Figure 1.16 an example of filtering using the moving average is shown. You note that
the measures g(n) are very irregular because of the errors. The filtered signal y(n) is obtained
using a moving average of length L = 8. We see that y(n) is quite close to the error-free signal
s(n) showing that the method is effective.

Some general properties of filters

We have seen three examples of filters. The first operated on symbols (the web pages) the second
on continuous-time signals (the audio signals) and the third on discrete-time signals (a sequence
of numeric values). Can we find some common properties to these filters? The first thing that
we note is that the “scheme” that we apply to compute the result remains the same over time.
For example, the search engine will propose the same web pages if the available pages remain
the same. In other words, the filters do not age or learn from the past. We call these property
time-invariance. Note that we can imagine more complex systems that are not time-invariant.

29

For example, the search engine can remember which pages we accessed in the past to propose
better matches for the next searches.

The second property that these filters satisfy is so apparent that you probably do not notice
it. It is called causality and it means basically that you cannot obtain an output of the filter
before you apply an input. For example, you cannot know the moving average of your grades
in the fourth year now that you are in the first year! It seems trivial, we simply say that we
cannot predict the future.

In the next sections, we will consider only system working on signals and in particular discrete-
time linear systems. We will also see more formally the properties of time-invariance and causal-
ity for these systems.

1.2.2 Impulse function. Impulse response

Let’s define a signal that will be useful in the following. It is called impulse or Kronecker
delta function. We define it in discrete-time but the concept can be defined in continuous-time
as well.

δ(n) =

{

1 if n = 0
0 if n 6= 0

∀n ∈ Z.

As you can see, the impulse is a very simple signal. Now, we want to use it to analyze the
behavior of a discrete-time linear system. Suppose we send the impulse to the input of the
system and that we measure the output of the system. The output, h(n) is a discrete-time
signal that we call impulse response.

At this point, I have to precise that what we have done is correct mathematically but it is
unfeasible in practice. In fact, suppose that someone gives us a “black box” with an input and
an output and we want to measure the impulse response. We would like to send an impulse to
the input. However, the impulse is defined on the whole Z axis and it is zero for negative values.
That means that, wherever we set the origin of the time coordinate, we have to guarantee that
the black box received only zeros at its input before we apply the impulse! This is a common
problem that engineers encounter in their work. We make some assumptions about the reality
and that allows us to describe the problem mathematically. At the end, there may be some
differences between what is predicted on the model and what we measure on a real system.

1.2.3 Time invariance

What happens if we shift the impulse along the time axis? A delayed impulse is represented by
δ(n−m), where m is the delay and corresponds to the position of the “1” of the impulse. Suppose
that we send this delayed impulse to a linear system, what do we measure at the output? We
can call the signal at the output h̄(n,m), i.e. a generic function of two integer variables. Of
course, when m = 0 the impulse is positioned in 0 and we obtain the impulse response defined
in the previous section, i.e. h̄(n, 0) = h(n). What happens for other values of the delay? One
could think that the output is delayed by the same amount as the input. In other words, if

30

you shift the input signal, the output signal is shifted in the same way. This is the property of
time-invariance that we mentioned earlier. We can now give the following definition:

Definition 6. A discrete-time linear system is time-invariant if the impulse response h̄(n,m)
satisfies:

h̄(n,m) = h(n − m) ∀n,m ∈ Z.

Can we verify time-invariance for a certain physical system? As discussed in the previous
paragraph, we cannot generate and measure signals on the complete real axis. We can only
verify it for signals of finite duration and under appropriate hypotheses. Moreover, a system
that is time-invariant in the short term could show time-variance in the longer term. For
example, electronic components can age after some time. The same happens basically with all
physical systems. However, many systems are time-invariant on a “reasonable” time scale. In
particular, digital systems are extremely stable over time, at least until they break (a failure can
also be considered as a form of time-variance). This is one of the main qualities that motivate
the use of digital systems.

1.2.4 Definition of filter

We give the following definition of a filter.

Definition 7. A filter is system which has the following properties:

1. It is linear.

2. It is time-invariant.

3. The domain of the input signal coincides with the domain of the output signal.

Since the domains of the input and output signals are the same, we have only two types of one-
dimensional filters: discrete-time and continuous-time. We can consider more complex signals
and define filters on multidimensional signals, like images and video or vector signals like color
images and color videos.

In this lecture we will discuss only discrete-time filters. In the following, we show that they are
completely described by their impulse response h(n).

1.2.5 Causality

Let’s go back to the definition of the impulse response. We applied an impulse to the input of
a linear system and we measured the output. We call the output h(n) the impulse response. If
we think of the negative part of the time axis n < 0, we see that the impulse is constantly zero.
That means that we imagine to apply a series of zeros to the system starting infinitely far in
the past. If the system that we are analyzing corresponds to a physical system, we can suppose
that during this infinite amount of time it reaches an “equilibrium” state, i.e. the output is also

31

zero2. Suppose we fix the output of the system to zero in correspondence of the equilibrium state
(we just set the scale of the measurement device appropriately). At this point, is it possible to
have something different from zero (the equilibrium value) in the region n < 0 of the impulse
response? For example, if I measured h(−10) = 1 that would mean that something happens at
the output, for n = −10, before I do something at the input! I know that the system was at an
equilibrium condition, so I cannot explain the output with something that happened internally
to the system and that is not related to the input. Therefore, I would conclude that the system
is able to “predict” the future: it knows when I am going to send an impulse at the input
and produces an output 10 samples in advance. It seems that, if we neglect time travels and
clairvoyants, we have to exclude this possibility, at least for physical systems.

Definition 8. A linear system is causal if the impulse response h(n) satisfies:

h(n) = 0 ∀n < 0.

Is causality a universal principle? When the domain of the signals is time, the answer is yes.
However, at least formally you may have non-causality for systems that process non-temporal
signals. For example, an image is a signal defined on two spatial coordinates. A system that
treats images can access the whole domain of the input image, hence the impulse response can
be non-causal. For example, suppose you have a camera and you take a picture of a small black
spot on a white surface. You take the picture setting the focus to the wrong value, so the image
appears to be unfocused. You can see the image as a system that takes the input image of
the black spot and produces as a result the unfocused image. If the black spot is very small,
we can consider it as an impulse function, so the output image is the corresponding impulse
response. We observe that on the output image the effect of the impulse is propagated along all
the directions and the result is a wide spot. Therefore, in the mathematical description of the
system, we could use an impulse response which is non-causal.

1.2.6 Stability

In this section, we want to talk about “stability” and the relations between stability and the
impulse response. What is stability? For sure, you have an intuition of what a stable system
is. Basically, you say that a system is stable if the output does not grow too much when the
input is limited. Certainly, when you compute the moving average of your grades, it would very
strange to see that the result grows indefinitely if your grades are mediocre!

This type of stability is called Bounded Input Bounded Output (BIBO). Formally, the
definition is:

Definition 9. A filter with input x(n) and output y(n) is stable if

∀x ∈ {s|s : Z → R}, |x(n)| ≤ N,∀n ∈ Z ⇒ |y(n)| ≤ M,∀n ∈ Z

for appropriate positive real constants N and M .

2it may not be the case for some particular system, as a pendulum with no friction

32

In other words, if the input signal remains in the range (−N,N), i.e. is limited, the output
signal is in the range (−M,M). Note that we are free to choose the two constants N and M .
For example, the system y(n) = 106x(n) is stable. You simply choose for example, N = 1 and
M = 106. The fact that the system amplifies the input signal so much does not matter, since
the output remains limited. Conversely, if you take the linear system with impulse response,

h(n) = en

you have a system that is unstable. In fact, if you send to the input an impulse, which is a
bounded input, you obtain h(n). You remember that the exponential grows indefinitely, when
n increases, so you cannot find a bound for the output signal.

The definition of stability holds for any type of system, even non-linear systems. Here, we
consider linear systems and we give a condition for stability based on the impulse response.
From the last example, it is clear that the impulse response of a stable system cannot diverge.
It can be proven that the stability implies a more restrictive condition on the impulse response.
In fact, we have the following theorem.

Theorem 1. A linear time-invariant system is stable if and only if the impulse response h(n)
is absolutely summable, i.e.

∞
∑

m=−∞

|h(m)| < ∞.

For example, the impulse response

h(n) =

{

ρn if n ≥ 0
0 if n < 0

,

is stable if |ρ| < 1.

1.2.7 Convolution of signals

In this section, we see that a linear time-invariant system is completely specified by its impulse
response, i.e. we can fully describe the relation between input and output signals.

The relation can be determined easily, decomposing the input signal x(n) in a sum of shifted
impulses. In fact, we have

x(n) =
∞
∑

m=−∞

x(m)δ(n − m). (1.6)

We can verify this relation taking a particular value of n = n0. All the impulses of the sum have
the “1” at different positions. For n = n0, only the impulse at position m = n0 has value 1 and
the term that multiplies the impulse is x(n0). This holds for any value of n0, so the identity is
verified.

Suppose that we send the signal x(n) to the filter H with impulse response h(n). How can we
compute the output y = H(x)? We know that the filter is a linear system, i.e. the output to a

33

finite sum of signals is the sum of the outputs to each signal. If we add the condition that the
filter is stable, the filter H is a continuous function on the space of the input signals3. In other
words, we can apply the superposition principle even for infinite convergent sums of the type
of (1.6).

We know that at each shifted impulse δ(n − m) the output is h(n−m) for the time-invariance.
Therefore, the output is simply the sum of the outputs to every impulse (see Figure 1.17)

y(n) =

∞
∑

m=−∞

x(m)h(n − m).

We call this sum the convolution between the input signal and the impulse response of the
filter. We write it using the notation y(n) = (x ∗ h)(n).

Let us verify some properties of the convolution. First of all commutativity, i.e.

(x ∗ h)(n) = (h ∗ x)(n).

In fact, if one defines m0 = n − m and we eliminate m in the sum we have

(x ∗ h)(n) =

∞
∑

m=−∞

x(m)h(n − m) =

∞
∑

m0=−∞

x(n − m0)h(m0) = (h ∗ x)(n).

This means that the result is the same if we swap the input signal with the impulse response,
i.e. a filter with impulse response x and input h would give the same result.

Convolution is linear, since it is the input-output relation of a linear system. That means that

(u1x1 + u2x2) ∗ h = u1(x1 ∗ h) + u2(x2 ∗ h).

The property of associativity allows grouping arbitrarily a chain of convolutions:

(x ∗ h1) ∗ h2 = x ∗ (h1 ∗ h2)

That means that we can replace a cascade of two filters h1, h2 with a single filter h1 ∗h2. Taking
into account commutativity, we notice also that in a chain of filters the result does not depend
on the order of the filters.

Example of convolution

Normally, we use computers to compute the convolution of signals. However, it is helpful to
learn how to compute manually a convolution to fully understand how it works. We consider
the simple example, depicted in Figure 1.18. The result is obtained taking h(n) and mirroring
it with respect to the origin, i.e. we obtain h(−n). At this point, we have to shift h(−n) along
the time axis. For each position m, the shift gives us h(m − n) which are the weights of the
values x(m). We compute all the products h(m−n)x(m) and we sum to obtain the result y(n).

3The proof is simple but it would need some concepts about metric spaces that you will study in second year

34

x(2)δ(n − 2)

x(1)δ(n − 1)

x(0)δ(n)

x(−1)δ(n + 1)

x(−2)δ(n + 2)

x(−3)δ(n + 3)

x(2)h(n − 2)

x(1)h(n − 1)

x(0)h(n)

x(−1)h(n + 1)

x(−2)h(n + 2)

x(−3)h(n + 3)

y(n)x(n)

Figure 1.17: Input-output relation of a filter. On the left column, the input signal x(n) is
decomposed in a sum of weighted impulses. The output y(n) is obtained by summing the
impulse response after shift and weighting corresponding to each impulse at the input.

35

h(−1−n)

h(1−n)

h(2−n)

h(3−n)

h(3−n)

h(−n)

x(n)

y(n)

h(n)

h(−2−n)

Figure 1.18: Convolution of the signal x with the filter impulse response h. The result is
computed considering all the shifts of the signal h(−n). For every position n the corresponding
output is computed by summing the products h(n − m)x(m).

36

Convolution of a sinusoid with a signal

Now that we know convolution, we can compute the output of a certain filter for different types
of input signals. According to the filter impulse response and the input signal, we may note
that in some cases the output is relatively similar to the input. It is the case for the example of
Figure 1.18. The amplitude of the signal has changed and there is a translation along the time
axis, but the shape of the output signal is similar to that of the input signal. Are there signals
that keep exactly the same shape when they pass through a filter? The answer is yes, and the
signals are the sinusoids! Let us take x(n) = sin(ωdn) and compute the convolution with the
impulse response h(n). A good method to do that is to use a complex exponential. Remember
that

ejα = cos(α) + j sin(α).

Therefore the input signal can be written as

x(n) = Im(ejωdn),

where “Im” means imaginary component. The advantage of using a complex exponential is
that we avoid to use difficult trigonometric formulas. We just have to remember to take the
imaginary part to compute the result. In fact,

y(n) =

∞
∑

m=−∞

sin(ωd(n − m))h(m) = Im

(

∞
∑

m=−∞

ejωd(n−m)h(m)

)

.

Now we can decompose the exponential in two factors:

y(n) = Im

(

ejωdn
∞
∑

m=−∞

e−jωdmh(m)

)

.

The term ejωdn does not depend on m, therefore it has been moved outside of the sum. We
remark that the sum is not a function of the time n, i.e. it is a complex value which depends
only on the sinusoid frequency ωd:

P (ωd)e
jφ(ωd) =

∞
∑

m=−∞

e−jωdmh(m).

You see that we represented the complex value in polar representation: P (ωd) is the magnitude
and φ(ωd) the argument. We can write the output of the filter as,

y(n) = Im(P (ωd)e
jωdn+φ(ωd)) = P (ωd) sin(ωdn + φ(ωd)).

Therefore, the output is a sinusoid with amplitude P (ωd) and phase φ(ωd). Note that the
amplitude and the phase are function of the frequency ωd, i.e. if you change the frequency of
the sinusoid, the amplitude may also change.

37

Why are complex exponentials (or sinusoids) so special? See how we compute a convolution:

(x ∗ h)(n) =
∞
∑

m=−∞

x(n − m)h(m)

i.e. the output signal is obtained combining shifted versions of the input signal. For the complex
exponentials, when you take different shifts and you sum, you still obtain a complex exponential.
In fact, if

x(n) = ejωdn,

the shifted signal x(n − m) can be written as

x(n − m) = ejωd(n−m) = ejωdne−jωdm = x(n)e−jωdm,

i.e. the result is the input signal multiplied by a number that is function of the shift and of the
frequency. This is not a general property of functions.

1.2.8 Finite impulse response (FIR) filters

In this section we consider some particular linear time invariant filters, for which the impulse
response has a finite duration. That is,

h(n) = 0 if n < 0 or n ≥ L,

where L is some positive integer. Such a system is called a finite impulse response (FIR)
filter because the “interesting part” of the impulse response has finite duration. Because of that
property, the convolution sum becomes a finite sum:

y(n) =

∞
∑

m=−∞

x(n − m)h(m) =

L−1
∑

m=0

x(n − m)h(m).

This equation suggests a way to easily implement the filter on a computer. We note that to
produce the output at time n, we need the input signal at time n, n − 1, ..., n − L + 1. These
values will be stored in the computer memory. The impulse response is a series of coefficients
that we can also store in the memory. A program to compute the output simply takes the values
of the input memory and multiplies them by the impulse response coefficient. The result is
obtained by summing all the products. When a new value is available at the input, we discard
the oldest value that we saved in memory and we shift the others to insert the new one. The
output is computed applying the same scheme.

An important remark concerning FIR filters is that they are always stable, independently of
the coefficients of the impulse response. This is a direct consequence of theorem 1.

38

Example: the moving average

Let us consider again the moving average that we saw at the beginning of the lecture. We said
that the moving average of the grades is obtained by computing the average of the most recent
L grades. In formulas, we can write

y(n) =
1

L

L−1
∑

m=0

x(n − m) ∀n ∈ Z.

This is exactly a FIR filter with impulse response:

h(n) =

{

1
L

if 0 ≤ n ≤ L − 1
0 otherwise

We mention that the choice of L is the result of a compromise between the need of filtering the
errors e(n) while keeping the variations of the skills s(n). Let us see how this happen. Suppose
that the two signals s(n) and e(n) are available. Of course, we can do that only with simulated
data. We know that the filter is linear, so filtering g(n) = s(n)+e(n) is the same as filtering s(n)
and e(n) separately and then summing the results. Therefore, we can understand the behavior
of the filter, considering the two signals separately. What happens when we filter these signals
with filters of different length? The results are depicted in Figure 1.19. We notice how both
e(n) and s(n) become more and more flat as L increases. If you imagine that L goes to infinity
(we suppose here that you have enough grades to compute such long averages) the result of the
moving average of the error signal will go to zero. In fact, we supposed that the errors are “fair”,
i.e. they increase or decrease your grade with the same probability. For the signal s(n), when
L goes to infinity, we smooth the variations of the skills and the result converges to the average
of the whole set of measurements. What changes between the filtering of the two signals, is the
rate at which the results are smoothed with respect to L. For example, take L = 8. You see
how the error signal is already much attenuated, while the signal s(n) is still very similar to
the original. We can explain this by noting that the error signal is very irregular, while s(n) is
smooth. In other words, the parameter L controls the speed of variation of the signals that pass
through the filter. In practice, one would take some hypothesis on the signals s(n) and e(n)
and would choose the optimal compromise for the parameter L. You can imagine that the best
results are obtained when the useful signal and the error have a very different behavior.

We can reconsider the analysis of the moving average by considering a very simple signal, i.e.
the sinusoid. The frequency of the sinusoid represents the speed of variation that we mentioned
before (the higher the frequency, the steeper the signal). We know that the output of the filter
to a sinusoid is also a sinusoid. Therefore we can study the attenuation of the filter by analyzing
the amplitude of the output sinusoid as a function of the frequency. As we saw in the previous
section, if the input signal x(n) = sin(ωdn), the output is

y(n) = Im(P (ωd)e
jωdn+φ(ωd)) = P (ωd) sin(ωdn + φ(ωd)),

where the amplitude and the phase are computed by

P (ωd)e
jφ(ωd) =

∞
∑

m=−∞

e−jωdmh(m).

39

10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

L= 1

10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

L= 2

10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

L= 4

10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

L= 8

10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

L= 16

10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

L= 32

10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

L= 64

(a)

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

L= 1

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

L= 2

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

L= 4

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

L= 8

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

L= 16

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

L= 32

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

L= 64

(b)

Figure 1.19: Moving average of the error signal and the error-free signal. (a) Output of the
moving average to the error signal using different values of the filter size L. (b) Output of the
error-free signal for the same values of L. Note how both the error and the error-free signal are
smoothed when L increases. The optimal L is the value that gives the best trade off between
error attenuation and non distortion of the useful signal.

40

We substitute h(m) with the impulse response of the moving average and we obtain,

P (ωd)e
jφ(ωd) =

1

L

L−1
∑

m=0

e−jωdm.

Remember that the sum of a geometric sequence is given by

L−1
∑

m=0

qm =
1 − qL

1 − q
.

Therefore,

P (ωd)e
jφ(ωd) =

1

L

1 − e−jωdL

1 − e−jωd

.

If we take into account that

sin α =
ejα − e−jα

2j

we can continue the derivation, obtaining

P (ωd)e
jφ(ωd) =

1

L

e−jωd
L

2

e−jωd
1

2

sin(ωdL
2)

sin(ωd

2)
= e−jωd

L−1

2

sin(ωdL
2)

L sin(ωd

2)
.

In conclusion,

P (ωd) =

∣

∣

∣

∣

∣

sin(ωdL
2)

L sin(ωd

2)

∣

∣

∣

∣

∣

.

We add the absolute value, because we can take into account the sign in computing the phase
φ (we add π to the phase when P (ωd) < 0).

In Figure 1.20, P (ωd) is shown for different values of L. As expected, we notice how amplitude
decreases for higher frequencies, so the filter is actually a “low-pass”. We also see that the
parameter L controls the attenuation of high frequencies.

Design of FIR filters

We have seen that a filter is completely described by its impulse response. When you change
the length and the coefficients of a FIR filter you obtain different performances. We saw that
in the previous paragraph considering the parameter L of the moving average. The parameter
was chosen according to the type of evolution of the useful signal and the error signal. In the
same way, we can consider to change every parameter of the impulse response. An analogy in
continuous-time is the equalizer of a HiFi chain. When you turn the knobs, you change the
behavior of the filter. In the same way, there are tools to design FIR filters. The user imposes
some constraints to the filter. Normally these consist of the level of attenuation of sinusoids at
different frequencies (what is called the frequency response). The software finds the impulse
response that best matches the constraints.

41

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
(ω

d)

ω
d

L=2
L=4
L=8
L=16

Figure 1.20: Amplitude of a sinusoid at the output of a moving average filter as a function of
the frequency. The filter shows a “low-pass” behavior, i.e. sinusoids with high frequency are
strongly attenuated. The filter size L controls the attenuation and the range of frequencies that
can reach the output.

1.2.9 Infinite impulse response (IIR) filters

Let us consider again the convolution sum,

y(n) =

∞
∑

m=−∞

x(m)h(n − m).

We have seen that when the impulse response is FIR, we can compute easily the output of the
filter. When the impulse response is not finite, i.e. there is no finite number of coefficients
different from zero, we say that the filter is an infinite impulse response filter (IIR). One could
think that for IIR filters, it is not possible to compute the sum since it involves an addition of
an infinite number of terms. Actually, it is true that in general for an arbitrary IIR, it is not
possible to compute the sum. However, we see that there are some very special responses for
which we can. We show that with an example.

Let us consider the equation

y(n) = ρy(n − 1) + (1 − ρ)x(n).

42

We note that the output y(n) is computed combining two terms: the first is related to the output
itself at the previous step, i.e y(n − 1), the second to the current input, x(n). The factors ρ
and 1 − ρ allow us to set the proportion of the two contributions. We choose 0 < ρ < 1. For
example, we can take ρ = 0.5. Let us see how it works when you apply it to average your grades.
After the first exam, you have the first grade x(0) (we number the exams starting with zero).
Since we just started, y(−1) is not defined. We impose y(−1) = x(0). Applying the equation,
we obtain

y(0) = 0.5x(0) + (1 − 0.5)x(0) = x(0),

which is correct: the first average is the first grade. After the second exam, you have x(1).
When we reapply the rule, we get

y(1) = 0.5y(0) + 0.5x(1) = 0.5x(0) + 0.5x(1),

which is the average of the first two grades. At the third grade, we have

y(2) = 0.5y(1) + 0.5x(2) = 0.25x(0) + 0.25x(1) + 0.5x(2).

That is the first unusual average: the first two grades are multiplied by the factor 0.25 while the
last one by the factor 0.5. If we continue the iterations we have

y(3) = 0.125x(0) + 0.125x(1) + 0.25x(2) + 0.5x(3)
y(4) = 0.0625x(0) + 0.0625x(1) + 0.125x(2) + 0.25x(3) + 0.5x(4)
y(5) = 0.03125x(0) + 0.03125x(1) + 0.0625x(2) + 0.125x(3) + 0.25x(4) + 0.5x(5)
...

.

See how the oldest grades are multiplied by factors which are smaller and smaller but never zero.
Grades that are more recent are multiplied by increasing factors. As a comparison, the moving
average was not taking into account the oldest grades and multiplying by the same factor 1/L
the most recent ones. In other words, we compute an average where we take into account all
the grades, but with different weights. Therefore, we can consider this as an alternative to the
moving average.

We show that what we obtain is an IIR filter. In fact, if x(n) = δ(n) you obtain the impulse
response 1, 0.5, 0.25, 0.125, If we consider the generic parameter ρ, we have

h(n) =

{

ρn if n ≥ 0
0 if n < 0

which is actually IIR. Note that we must choose |ρ| < 1 in order to have a stable impulse
response, that is an IIR filter may be unstable.

This is just an example of an IIR filter. You can find many others. The common principle is to
express the output as a function of input and output at previous times.

43

1.2.10 Exercises

1. Answer the following questions:

(a) Can a finite impulse response filter (FIR) be unstable?

(b) Consider a system that makes predictions, as an example consider the temperature
of a city given by the weather forecast. Is this system causal?

(c) In this chapter we saw that, when we send a sinusoid as an input of a filter, we
will also have a sinusoid with the same frequency at the output. this property is a
consequence of the fact that a complex exponential is the solution of

x(n − m) = A(m)x(n) ∀n ∈ Z,

for a given A(m) ∈ C. Can you find other functions that satisfy this equation?

2. The signal x(n) is shown in the following figure:
x[n]

2

−2

n

Sketch exactly the following signals:

(a) x(n − 2)

(b) x(3 − n)

(c) x(n − 1)δ(n)

(d) x(1 − n)δ(n − 2)

3. Consider a filter that has an impulse response given by h

h(n) = δ(n) + 2δ(n − 1).

(a) Sketch the impulse response.

(b) Calculate and sketch the output signal when the input signal is

u(n) =

{

1 if n ≥ 0
0 if n < 0

.

(c) Calculate and sketch the output signal when the input signal is

r(n) =

{

n if n ≥ 0
0 if n < 0

.

44

(d) Calculate the output signal when the input signal is

x(n) = cos(πn/2 + π/6) + sin(πn + π/3).

4. Calculate the output of a filter with impulse response:

h(0) = 2, h(1) = 1, h(2) = −1,
h(n) = 0 n < 0 or n > 2,

when the input signal is,

x(0) = 1, x(1) = 2, x(2) = 3,
x(n) = 0 n < 0 or n > 2.

5. Consider a filter with impulse response

h(0) = 1, h(1) = −1,
h(n) = 0 n < 0 or n > 1.

With the help of graphical interpretation of the convolution, calculate the output signal
of the filter y(n) when the input signal x(n) is

x(n) =

{

1 1 ≤ n ≤ 4
0 otherwise.

.

6. Consider a filter with impulse response

h(n) =

{

0.8n n ≥ 0
0 n < 0.

.

Sketch h(n). Is the filter causal? Is it stable and time invariant? Is it an FIR filter?

7. Two filters H1, H2 have the following impulse response:

h1(n) =

{

1
n

0 < n < 4
0 otherwise

, h2(n) =

{

n 0 < n < 4
0 otherwise

.

Calculate the impulse response obtained by cascading H1 and H2. Is this system also a
filter? Is the impulse response finite (FIR)? What happens if we swap H1 and H2?

8. Consider a filter with the impulse response

h(n) =
1

L

L−1
∑

m=0

δ(n − m).

What operation does this filter perform? Is the filter time invariant?Is it causal? Suppose
that the signal at the input of the filter is x(n) = sin(2πn/5), sketch a few samples of the
signal at the output when L = 3. Can you say what happens when L increases?

45

9. Suppose that x(n) and y(n) are the input and the output of a numerical system. Determine
if the following systems are linear, stable, time-invariant, or causal:

(a) y(n) = 3x(n) − 4x(n − 1)

(b) y(n) = 2y(n − 1) + x(n + 2)

(c) y(n) = nx(n)

(d) y(n) = cos(x(n))

10. Imagine you are in a band of amateur musicians and you are responsible for recording
using your computer. Because of the limited budget, you cannot afford high quality
equipment and noise is constantly present in your recordings. You find out that this noise
η(t) is actually a sinusoid at 100 Hz that comes from the power supply network. The
recorded signal, s(t) is s(t) = m(t)+ η(t), where m(t) is the desired signal, taken from the
microphone. Your computer samples the signal s(t) at fs = 8000 Hz (In other words the
sampling period is Ts = 0.125 s). You decide to use the techniques that you have learned
during the course to filter s(t). First, you apply the moving average of length L. How do
you choose the parameter L in order to completely eliminate the component η(t)? You
notice that there are several values of L that make it possible to eliminate η(t). What are
the effect on the component m(t) if you use a relatively large value for L? A friend of you
from the third year proposes you to use a simpler filter which is as follows

y(n) = s(n) + a1s(n − 1) + a2s(n − 2).

What are the values of a1 and a2 if we want to completely eliminate the component η(t)
at the output of the filter?

11. Consider the averaging example of the grades of an exam that we studied in the course.
Suppose that at the end of the year your grades are:

g(0) g(1) g(2) g(3) g(4) g(5)

3 4.5 4.2 5.1 5 5.7
Suppose y(n) is the signal obtained applying the moving average with length L = 4.

(a) What are the values of y(3), y(4) and y(5)?

(b) Suppose that we decompose g(n) in the following way:

g(n) = s(n) + e(n)

where s(n) is the note that you deserve and e(n) is an error term, for example due
to unfair exams. Can you find an example of a signal e(n) (except for e(n) = 0)) so
that y(n) is exactly equal to the moving avarage of s(n)? In general, what properties
should e(n) satisfy?

12. Consider a linear system with the impulse response h(n) = 2δ(n) − δ(n − 1) − δ(n − 2).

(a) Is the system causal? Why?

(b) Is the system stable? Why?

46

(c) What is the output signal of the system when the received signal at the input is:
x(n) = δ(n) + δ(n − 1) − δ(n − 2) + δ(n − 3)?

13. The signal x(n) is given in the following figure:

Xn

Sketch the following signals

(a) x(n − 3)

(b) x(2 − n)

(c) x(n − 1)δ(n)

(d) x(n + 1)δ(n − 2)

14. Consider un filter having the impulse response

h(n) = δ(n) − 2δ(n − 1) + δ(n − 2)

(a) Is this filter causal?

(b) Is this filter stable?

(c) Compute the output if the signal at the input is

x(n) = δ(n − 1) − 3δ(n − 2)

15. For verifying the linearity of a system, we use four signals x1(n), x2(n), x3(n), et x4(n).
The corresponding signals at the output are y1(n), y2(n), y3(n) et y4(n). The signals at
the input and at the output are given by the following pictures:

47

X1 y 1

y 2

y 3

y 4X4

X3

X2

(a) Are you able to decide wether this system is linear? Explain you answer.

(b) In general, is an finite number of signals is enough to decide if a system is linear or
not?

16. Consider a system S and imagine to use three test signals for detecting his components.
x1(n), x2(n) and x4n are the three signals at the input and y1(n), y2(n), et y3(n) are the
corresponding output signals. The signals at the input and at the output are given by the
following graphics:

y 1

y 2

y 3X3

X2

X1

Lets call h̄(n,m) the response to the impulse δ(n − m).

(a) Suppose that S is linear and compute h̄(n, 0), which equivalent to the response to
δ(n).

(b) Are you able to decide wether the system is time invariant? Explain your answer!

48

(c) Are you able to decide wether the system is stable? Explain your answer.

17. We have seen in the cours that the mobile average is an efficient method for reducing errors
in a sequence as grades of exams. Lets call g(n) the grade obtained in the nieme exam
and y(n) the corresponding mobile. All mobile averages considered in this exercise are of
length L = 4.

(a) Suppose that the grades of one student in the end of his first year are given by

g(0) g(1) g(2) g(3) g(4) g(5)

3 4.5 4.3 5.2 5 5.5

What are the values of y(3), y(4), y(5)?

(b) Suppose that the grades g(n) can be decomposed in the following way:

g(n) = s(n) + e(n)

with s(n) corresponding to the true value and e(n) to an error component. Show that
if

e(n) = e1(n) = sin
(π

2
n
)

ou
e(n) = e2(n) = cos(πn),

the error component e(n) is completely eliminated by the mobile average. (hint:
Equivilantly, you can use the fact that sin(α − β) = sin α cos β − cosα sin β)

(c) Use the signals e1(n) and e2(n) for computing other signals which can be elliminated
by the mobile average (at least one!). Which is the property of the system, you use
for constructing such a signal?

(d) Suppose that the error signal is exactly one of those we are able to eliminate using
the mobile average. Are you able to reconstruct exactly s(n), for ngeq3, based on
the signal g(n) using the mobile average? Justify your answer.

18. Suppose that a linear and time invariant system has the impulse reposponse

h(n) =

{

(−1)nn if n ≥ 0
0 if n < 0

(a) Sketch the impulse response h(n). Is the system causal?

(b) Is the system stable?

(c) Compute the output signal if the input signal is
x(n) = δ(n) + δ(n − 1)

49

1.3 The discrete Fourier transform

1.3.1 Introduction

In section 1.2.7, we have found that sinusoids have a special property with respect to filters. If
a sinusoid is sent to a filter, the output (i.e. the convolution with the impulse response) is also a
sinusoid with the same frequency of the input and only amplitude and phase are changed. This
is an interesting property of a filter that we want to explore better in this chapter. The main
idea is to introduce a decomposition of the input signal as a sum of sinusoids. Since filters are
linear, we can superpose the effects of each sinusoid at the output; hence, we can write directly
the output signal without the need of a convolution. This fact was noticed for the first time
by the French mathematician Joseph Fourier (1768-1830). Today, we call Fourier transform the
decomposition of a signal in a sum of sinusoids.

We have seen that there are different types of signals. First of all, we have seen that signals
can be continuous or discrete time. This induces two types of Fourier transform. In fact, we
decompose our signal either by using a set of continuous time sinusoids or a set of discrete
time sinusoids. Moreover, there is a second subdivision of signals according to periodic and
aperiodic signals (either discrete or continuous time). This subdivision implies a difference
structure of the Fourier transform for the two cases. In conclusion, there are four types of
Fourier transforms, corresponding to the domain of the signal, continuous or discrete, and the
periodicity/aperiodicity.

It may be surprising that aperiodic signals could be decomposed as a sum of of periodic signals.
However, we recall that even the sum of only two sinusoids give an aperiodic signal when their
frequencies do not have a rational ratio. It results that even aperiodic signals can be decomposed
by extending the sum to an infinite number of sinusoids. This represent a powerful tool for the
analysis of linear systems.

In this chapter, we want to examine the simplest case of Fourier transform. For that, we restrict
our analysis to the case of discrete time periodic signals. For this case, the Fourier transform
takes the name of Discrete Fourier Transform (DFT).

1.3.2 A simple example

We start our study with a simple example. Let’s consider the signal x(n) periodic with period
N = 4, depicted in figure 1.21(a). The signal takes the values

x(0) = 4, x(1) = 3, x(2) = 2, x(3) = 1.

Can we write it as a sum of sinusoids? Since the period is 4, we consider only the sinusoids with
period 4 or a divisor of 4, that is 4, 2, 1. Therefore, we look for a decomposition of the form

x(n) = P0 + P1 sin
(

2π
n

4
+ φ1

)

+ P2 sin
(

2π
n

2
+ φ2

)

, (1.7)

where the parameters P0, P1, P2, φ1, and φ2 are the unknowns. There are only 4 constraints,
given by the values at the points n = 0, 1, 2, 3; hence, we should be able to compute the un-
knowns.

50

−4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

−4 −2 0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

(b)

−4 −2 0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)

−4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

(d)

Figure 1.21: Example of Fourier decomposition for a discrete time periodic signal. The decom-
posed signal has period N = 4 (a) and is decomposed as a sum of 3 discrete sinusoids. The
first component is a constant, which corresponds to a sinusoid of period 1 (b), the second is a
sinusoid of period 4 (c), and the third is a sinusoid of period 2 (d)

51

To determine the unknowns, we first rewrite the equation (1.7) by recalling the trigonometric
formula for the sine of a sum. We obtain,

x(n) = A0 + A1 cos
(

2π
n

4

)

+ B1 sin
(

2π
n

4

)

+ A2 cos
(

2π
n

2

)

+ B2 sin
(

2π
n

2

)

,

where
Ai = Pi sin(φi), Bi = Pi cos(φi), i = 0, 1, 2, (1.8)

(to keep a uniform notation, we represent also the constant X0 as a sinusoid of period 1). In this
way, each sample is written as a linear combination of the unknowns A0, A1, A2, B1, B2 and we
can write an equation for each sample x(n). We remark that the factor sin(2π n

2), that multiplies
B2, is zero for each value of the time index n. Hence, we can discard this term and assume that
B2 = 0 (actually, any value of B2 is compatible with the constraints). In conclusion, we can
write a linear systems of equations, that is

A0 + A1 + A2 = 4
A0 − A2 + B1 = 3
A0 − A1 + A2 = 2
A0 − A2 − B1 = 1

.

We can solve this system by using the usual tricks. For example, by summing the 4 equations
we cancel all variables except A0; therefore,

A0 =
4 + 3 + 2 + 1

4
=

5

2
.

Similarly, we can compute the oher unknowns. We obtain,

A0 =
5

2
, A1 = 1, A2 =

1

2
, B1 = 1.

In conclusion, we can write the decomposition of the input signal as,

x(n) =
5

2
+ cos

(

2π
n

4

)

+ sin
(

2π
n

4

)

+
1

2
cos
(

2π
n

2

)

.

To find the representation with the structure given by (1.7), we have to combine sinusoids and
cosinusoids with the same frequency. In this case, the second and third terms are combined, by
computing P1 and φ1 that satisfy equations (1.8). In our example, we have

P1 =
√

A2
1 + B2

1 =
√

2, φ1 =
π

4
,

and the result is

x(n) =
5

2
+

√
2 sin

(

2π
n

4
+

π

4

)

+
1

2
sin
(

2π
n

2
+

π

2

)

. (1.9)

The terms of the decomposition are depicted in figure 1.21(b-d).

It should be clear, at this point, that for any arbitrary discrete periodic signal, we can repeat
the derivation of the example and we can always determine the decomposition. However, it
would be tedious to solve a system of equations every time we want to determine a Fourier
decomposition. Luckily, we can write directly the solution, for any period N. This is the topic
of the next section.

52

1.3.3 Definition

In order to simplify the representation of the Fourier decomposition it is convenient to replace
the sinusoid with a complex exponential. In fact, recall that

Pej(2πft+φ) = P cos(2πft + φ) + jP sin(2πft + φ),

where j =
√
−1 is the imaginary unit. Therefore, the complex exponential is a way of repre-

senting two sinusoids of equal frequency and a phase difference of π/2. The two components are
found on the real and the imaginary part of the complex exponential. In our case, we consider
discrete time sinusoids with frequencies k/N , k = 0, 1, . . . , N − 1; hence, we consider terms of

the form ej2π k

N
n and we look for a decomposition with the following structure,

x(n) =
1

N

N−1
∑

k=0

Xke
j2π k

N
n. (1.10)

For example, let’s rewrite the result of the previous section by using complex exponentials. We
recall that,

sin α =
ejα − e−jα

2j
,

and, from equation (1.9), we derive

x(n) =
5

2
+

√
2
ej(2π n

4
+ π

4
) − e−j(2π n

4
+ π

4
)

2j
+

1

2

ej(2π n

2
+ π

2
) − e−j(2π n

2
+ π

2
)

2j
.

As you notice, there are only complex exponentials, but some correspond to negative frequencies.
This is not a problem, since a multiplication by the term ej2πn = 1 allows us to map these
negative frequencies back into the range [0, 1]. We obtain, after some computations,

x(n) =
1

4

(

X0 + X1e
j2π n

4 + X2e
j2π n

2 + X3e
j2π 3n

N

)

,

with
X0 = 10, X1 = 2 − 2j, X2 = 2, X3 = 2 + 2j.

The next step is to determine the coefficients Xi directly from the samples x(n), n = 0, . . . , 3.
The formula that allows such a computation is

Xk =
N−1
∑

n=0

x(n)e−j2π k

N
n, k = 0, 1, . . . , N − 1, (1.11)

which gives the Discrete Fourier Transform (DFT) of the periodic signal x(n). The equa-
tion (1.10) corresponds to the Inverse Discrete Fourier Transform (IDFT) and allows to recon-
struct x(n) from the coefficients Xk. Let’s verify that the DFT computed with equation (1.11)

53

gives actually the good coefficients for equation (1.10). We do this by replacing (1.11) in (1.10)
and we check that we actually reconstruct x(n):

x(n)
?
=

1

N

N−1
∑

k=0

N−1
∑

m=0

x(m)e−j2π k

N
mej2π k

N
n =

1

N

N−1
∑

m=0

x(m)
N−1
∑

k=0

ej2π k

N
(n−m).

In the last expression, we consider the term

N−1
∑

k=0

ej2π k

N
(n−m)

and we remark that this takes the value N when n = m, and is zero when n 6= m. In conclu-
sion, we actually reconstruct x(n), which proves that the expression (1.11) gives the right DFT
coefficients.

Example 1. Let’s apply the expression (1.11) to determine directly the DFT coefficients. We
have that

X0 = 4 + 3 + 2 + 1 = 10,

X1 = 4 + 3e−j π

2 + 2e−jπ + e−j 3π

2 = 2 − 2j,

X2 = 4 + 3e−jπ + 2 + e−j3π = 2,

X3 = 4 + 3e−j 3π

2 + 2e−j3π + ej 9π

2 = 2 + 2j.

We remark that these coefficients correspond exactly to those computed earlier (with a much
longer computation).

1.3.4 Properties

The Discrete Fourier Transform satisfies some properties that are very useful in order to make
computations. Here we give a list of the main ones

Hermitian symmetry

Even if the complex exponential simplifies computations, the signal x(n) is usually real. This
implies that the DFT coefficients have a certain structure. This structure is called Hermitian
symmetry and is given by the equation:

Xk = X∗

N−k, k = 0, 1, . . . , N − 1.

where the ∗ is the complex conjugate of a complex number (i.e it leaves the real part unchanged
and changes the sign of the imaginary part).

Example 2. This property simplifies the computation of the DFT of real sequences. In fact,
consider again the example of section 1.3.2 and take into account the Hermitian symmetry. We
have that

X0 = X∗

N = X∗

0 , X1 = X∗

3 , X2 = X∗

2 ;

54

therefore, only X0, X1, and X2 need to be computed with the expression (1.11, while X3 can be
easily computed from X1. Moreover, we have that X0 and X2 are real quantities.

Linearity

The DFT is a linear operation. In fact, if we take two signals x(n) and y(n) with equal period
N, then we can construct the new periodic signal z(n) = ax(n) + by(n), with a and b arbitrary
numbers. The linearity of the DFT means that the DFT coefficients of z(n) are given by

Zk = aXk + bYk, k = 0, 1, . . . , N − 1.

Time delay

Suppose that the DFT of the signal x(n) is Xk, then the DFT of the signal y(n) = x(n − M),
where M is an arbitrary integer, is

Yk = e−j2π k

N
MXk, k = 0, 1, . . . , N − 1

Example 3. For example, take the periodic signal

y(0) = 2, y(1) = 1, y(2) = 4, y(3) = 3, . . .

with period N = 4. This is simply the signal x(n) of section 1.3.2 delayed by M = 2 samples.
Therefore, we can easily write the DFT of y(n) as

Y0 = X0 = 10, Y1 = e−j2π 2

4 X1 = −2+2j, Y2 = e−j2π 4

4 X2 = 2, Y3 = e−j2π 6

4 X3 = −2−2j.

1.3.5 Convolution

The main interest for the Fourier transform comes from the special behavior of sinusoids when
they are filtered by a linear time-invariant filter. In fact, remember that, in general, a filter
changes the shape of a signal. One of the few exceptions is represented by the sinusoid, which is
modified only in amplitude and phase. Since the Fourier transform represents a signal a sum of
sinusoid, it is not surprising that the filtering operation has a simpler description if we consider
the Fourier domain. In order to see that, let’s take a periodic signal x(n) with period N and
suppose that we filter it with the filter h(n). As we know from the previous chapter, the output
of the filter, y(n) is given by the convolution product between x(n) and h(n). For simplicity, we
suppose that h(n) is an FIR filter of length smaller or equal than N . In this case, we can write
the output signal as

y(n) =

N−1
∑

m=0

h(m)x(n − m).

Then, we apply the Discrete Fourier Transform and we write x(n) as in equation (1.10), which
gives

y(n) =
1

N

N−1
∑

m=0

h(m)
N−1
∑

k=0

Xke
j2π k

N
(n−m).

55

If we change the order of the sums and we take into account the properties of the exponential,
we obtain

y(n) =

N−1
∑

k=0

Xk

N−1
∑

m=0

h(m)e−j2π k

N
mej2π k

N
n. (1.12)

The inner sum is a quantity that depends only on h(n) and k, we can write it as

Hk =
N−1
∑

m=0

h(m)e−j2π k

N
m, k = 0, 1, . . . , N − 1,

but this quantity is simply the DFT of the sequence h(n), n = 0, . . . , N − 1. In other words, we
treat h(n) as if it were a periodic sequence of period N and we compute the Discrete Fourier
Transform. If we replace it in the expression (1.12), we obtain

y(n) =
1

N

N−1
∑

k=0

XkHke
j2π k

N
n,

and we realize that this is the Inverse Discrete Fourier Transform, i.e. equation (1.10), applied
to the sequence XkHk. This means that, if we take the DFT of y(n), call it Yk, we have that

Yk = XkHk, k = 0, 1, . . . , N − 1.

We can interpret this result by saying that in the Fourier domain, the convolution product
becomes a normal product. This result is called the convolution theorem and simplifies greatly
the computation of the convolution product. Remark that in the version of the theorem that
we derived here, the input signal is periodic and the impulse response of the filter is not longer
than the period of the input signal. Extension of the theorem to other cases exist, but they are
beyond the scope of these notes.

Example 4. Suppose that we take again the signal x(n) of section 1.3.2 and we send it to the
filter

h(n) =

3 n = 0,
−1 n = 1, 2, 3,
0 elsewhere,

how do we apply the convolution theorem? We already have the DFT of the input signal, we
need to compute the DFT of the sequence h(n), n = 0, . . . , 3. As we did previously, we obtain

H0 = 0, H1 = H2 = H3 = 4.

Therefore, the DFT of the output signal is

Y0 = X0H0 = 0, Y1 = X1H1 = 8 − 8j, Y2 = X2H2 = 8 Y3 = X3H8 = 8 + 8j.

To compute the output signal in the time domain, we apply the Inverse Discrete Fourier Trans-
form and we find,

y(0) = 6, y(1) = 2, y(2) = −2, y(2) = −6, . . .

Of course, the output signal is also periodic with period 4.

56

1.3.6 Exercises

1. Consider the signal x(n) = rem(n, 3), where rem(a, b) is the reminder of the division of a
by b. Find the period of x(n) and compute the DFT. Write x(n) as the sum of discrete
time sinusoids.

2. Suppose that a filter has the impulse response

h(n) =

2 n = 0

−1 n = 1

1 n = 2

0 elsewhere

and that the signal x(n) = rem(n, 3) is sent at the input of the filter. Compute the signal
at the output by applying the convolution theorem. Verify that the result is correct by
computing the convolution in the regular way.

3. Suppose that the DFT of the signal x(n) is Xk, k = 0, . . . , N − 1 and you build the signals
y(n) = sin(2π

N
Mn)x(n), z(n) = cos(2π

N
Mn)x(n), with M an arbitrary integer number.

Compute the DFT of y(n) and z(n) by using the DFT of x(n).

4. Consider the signal x(n), periodic with period N = 4, that takes the values x(0) = 3, x(1) =
1, x(2) = −3, x(3) = 1, Determine a sinusoidal signal that approximates x(n). (hint:
determine the sinusoidal component with the maximum amplitude)

1.4 Sampling and interpolation

1.4.1 Introduction

In this lecture we are going to show the motivations for digital systems. In the first lecture, we
saw that physical signals are often continuous-time signals. Digital systems can only perform
operations of finite complexity on a finite interval of time. Therefore it seems that digital systems
are appropriate only to treat discrete-time signals. Why are digital systems so widely used? We
will see that we can use a digital system to process a class of continuous-time signals. The
scheme is shown in Figure 1.22. The input signal x(t) is a continuous-time signal, for example
it could be an audio signal. The sampler transforms it into the discrete-time signal x̄(n) which
is processed. Processing includes filtering, as seen in the previous lecture, but also transmission
through a digital connection or recording on disks and tapes. The result is the discrete-time
signal ȳ(n) which is converted to the continuous-time signal y(t) by the interpolator.

Why do we want to process a continuous-time signal using such a scheme? As you see this
system includes two conversions which potentially introduce errors (we will see that later) and
cost money. In electronics, you will study continuous-time systems (also called analog systems)
that perform operations similar to what you can do with a digital system. For example, you can
design analog filters similar to the discrete-time filters that we saw in the previous lecture. Why

57

x(t) ȳ(n)x̄(n) y(t)

RZZR

I

Interpolator

Digital Processing

Sampler

Figure 1.22: Example of a digital system that processes a continuous-time signal. The input
signal is transformed to a discrete-time signal and then processed (the domain of the signals is
indicated under the arrows that join the blocks). Processing includes filters and also transmission
devices such as internet or disk and tape recording. The interpolator transform the result to a
continuous-time signal.

do we prefer digital systems? There are several reasons. One is that it is very difficult to obtain
good performances for certain media when analog signals are used. An example is the compact
disk. Bits are represented on the surface of a disk by means of cavities. The presence or absence
of a cavity at a certain position is associated to a binary digit. In principle, one could use a
groove with depth proportional to an analog signal, but it would be difficult to measure such
a depth. It seems much easier to make the difference between the conditions of presence and
absence of the cavity rather than a measure of depth. Another advantage of digital system is
their robustness in terms of reliability and stability. In the previous lecture, we saw how we can
realize a digital filter. Depending on the parameters of the filter we could see a certain behavior.
Such a parameters correspond to numerical values used in computer programs, therefore they
do not change over time. On the other hand, an analog system is the result of the connection of
some electronic components. The parameters of the components correspond to the parameters
of the digital filter, but in this case they may change over time and with temperature. As
a result, an analog filter is more sensitive to temperature and ages over time (while a digital
system breaks abruptly). Digital systems are also very flexible. Since processing is realized
with programs, it is very easy to modify them when there is a new need. Moreover, you can
have different programs for different applications. This is exactly what you do with a personal
computer. These considerations motivated the replacement of analog systems by their digital
counterparts in the last decades. Nowadays, analog systems are limited to few applications, such
as the interfaces with digital systems, high power systems and low cost devices.

In the next sections we will examine each block of the chain of Figure 1.22. In particular, we
are interested in the problem of recording an audio signal, that is, the processing block is a
device that records and then reads from a disk. We will see that for this scheme, under some
appropriate conditions, the whole chain is “transparent” to the input signal. This means that
the signal at the output of the chain is not simply a good approximation of the input signal,
but it is exactly equal to the input signal. This result is not intuitive, since one has the intuition
that discrete-time signals are “less powerful” than continuous-time signals. We will see that this
is only partially true.

58

t = 0 t = TS t = 2TS

α

Figure 1.23: Experiment of the rotating bar illuminated by a stroboscope. The light flashes
with frequency fS = 1/T . Using the illuminated positions, an observer tries to determine the
frequency of rotation f of the bar.

1.4.2 Sampling

A sampler is a system that takes a continuous-time signal and maps it to a discrete-time signal.
Mathematically, we can write

x̄(n) = x(nT) ∀n ∈ Z,

where x(t) is the continuous-time signal and x̄(n) is the discrete-time signal. The parameter
T is the sampling interval. The sampling frequency, or sampling rate, is fS = 1/T , in
units of samples per second (or sometimes Hertz).

Sampling a sinusoid

Let x(t) be the sinusoidal signal
x(t) = sin(2πft),

where f is the frequency in Hertz. Then, the output of the sampler is the discrete-time sinusoid

x̄(n) = sin(2πfnT). (1.13)

The sampled sinusoid looks similar to the continuous-time sinusoid. However, there is a funda-
mental difference. Since n is discrete, the frequency f is undistinguishable from the frequency
f + fS when the discrete-time signal is observed. This phenomenon is called aliasing.

Aliasing

Let us consider the following experiment. Suppose that we fix a bar to an electric motor. The
bar is fixed on one of the two extremities so that the motor can rotate it (see Figure 1.23).
We observe the bar in a dark room, using a stroboscopic light. The light flashes at a regular
frequency fS so you see the position of the bar only when the light flashes. We can change the
frequency of rotation of the bar f . An observer tries to measure the frequency of rotation by
using only the position of the bar when the light flashes. Is it possible to deduce the correct
frequency? Let the frequency f begin at 0 Hz and sweep upwards to at least fS. Let us fix the
convention that a positive frequency corresponds to counterclockwise rotation and a negative
frequency to clockwise rotation. When the frequency is very low, the movement of the bar
between two consecutive flashes is small and you can follow the movement of the bar. Now, we
increase the speed of rotation up to the frequency fs/2 (Figure 1.24). The bar is illuminated

59

t = 2TSt = 0 t = TS

α = 2πfS/2TS = π

α = −2πfS/2TS = −π ?

Figure 1.24: Ambiguity of the frequency f of rotation when it corresponds to half the sampling
frequency fS.

only when the angle of rotation α is 0 or 180 degrees. At this point we realize that there
is an ambiguity: what would change if the bar rotated clockwise at the same frequency, i.e.
f = −fS/2? In both cases the bar appears at the two positions 0◦, 180◦, therefore we do not
notice any difference between the cases f = fS/2 and f = −fS/2. If we continue to increase
the frequency of rotation, we will probably perceive a clockwise rotation (negative frequency)
rather then a counterclockwise rotation. This occurs because our eyes tend to interpolate the
movement of the bar in the direction where the angle of rotation between consecutive positions
is minimum. Let us call α = 2πfnT the angular position of the bar. If f is bigger then fS/2,
the angle of rotation between two flashes is ∆α = 2πfT > π and there is an ambiguity with the
opposite rotation ∆α′ = ∆α−2π. In other words the frequency f > fS/2 is perceived as f −fS.
If we continue to increase the frequency of rotation, we reach f = fS and the light flashes only
when α = 2πfST = 0. Hence, we do not see the bar rotating anymore. If we summarize this
experiment with a formula, we can write

αP = α + N2π,

that is, the perceived angular position of the bar αP has two types of ambiguities. The first one
is the unknown number of complete turns during two consecutive flashes. The second one is the
direction of rotation of the bar. If we see the bar at the position αP , we do not know if it is
actually αP − 2π. In other words, we do not know the correct sign of α. These ambiguities on
the angle correspond to ambiguities on the perceived frequency of rotation fP ,

fP = f + NfS.

This relation is depicted in Figure 1.25. The dotted lines correspond to the frequencies that are
indistinguishable from the real one. The frequency fS/2 is called the Nyquist frequency, after
Harry Nyquist. This frequency represents a threshold in the relationship between discrete-time
and continuous-time signals. The intuitive reason is that if the input frequency is below the
Nyquist frequency (below half the sampling frequency), then we take more than two samples
per turn. In this case, the samples capture the rotation of the bar. Two or fewer samples would
not do this. The rotation of the bar appears as one of another frequency.

This experiment with a bar translates directly to the problem of sampling of a sinusoid. The
angle of the bar corresponds to the argument of the sine, and the signal x(t) = sin(2πft) is the
vertical position of the extremity of the bar. The flash of the light corresponds to the sampling

60

fS

2

fS
fS

2

fP

f

fS

Figure 1.25: Ambiguity of the perceived frequency of rotation fP as the real frequency f in-
creases. The dotted lines correspond to frequencies indistinguishable from f on the basis of the
observations. The red line correspond to the perceived frequency in the rotating bar experiment.
Our eyes perceive the movement of the bar in the direction that corresponds to the minimum
rotation angle. Therefore, when f ≥ fS/2 an observer perceives the frequency fP = f − fS

instead of f .

61

0 1 2 3 4 5 6

x 10
−4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sinusoid at 47.1 KHz
Samples at f

S
=44.1 KHz

Figure 1.26: A sinusoid at 47.1 KHz and samples taken at 44.1 KHz (sampling frequency used
for compact disk recording). The samples are indistinguishable from those taken from a sinusoid
at 3 KHz.

of the signal. Therefore, consider the signal

xP (t) = sin(2πfP t) = sin(2π(f + NfS)t),

where N is some integer and fS is the sampling frequency. If N 6= 0, then this signal is clearly
different from x(t). However, when we sample xP (t) we obtain,

x̄P (n)
= sin(2π(f + NfS)nT) = sin(2πfnT + 2πNn)
= sin(2πfnT) = x̄(n) ∀n ∈ Z

because Nn is an integer. Thus, even if xP 6= x, x̄P = x̄, and after being sampled, the signals
x and xP are indistinguishable. This phenomenon is called aliasing, because any discrete-time
sinusoid has many continuous-time identities.

For example, compact disks are created by sampling audio signals at fS = 44.1 KHz, and so the
sampling interval is about T = 22.7 µs/sample. A continuous-time sinusoid with a frequency of
47.1 KHz, when sampled at this rate, is indistinguishable from a continuous-time sinusoid with
frequency 3 KHz, when sampled at the same rate. The result is shown in Figure 1.26.

62

−fS

2

f−fS

2
fS

2 fS

fS

2

fS

fP

Figure 1.27: The ambiguity on the input frequency is solved by limiting its range. The dashed
square shows the region where there is a one-to-one correspondence between the input frequency
and the perceived frequency.

Avoiding aliasing ambiguities

Figure 1.25 suggests that even if samples of a sinusoid correspond to an ambiguous frequency, it
is possible to construct a uniquely defined continuous-time sinusoid from the samples by choosing
the one unique frequency that is closest to 0. This always results in a reconstructed signal that
contains only frequencies below the Nyquist frequency in magnitude. In other words, we restrict
the frequency range of the input sinusoid to (−fS/2, fS/2) in order to avoid the ambiguity (note
that the extremes of the interval are excluded). This solution is depicted in Figure 1.27.

How do we limit the frequency range of the input sinusoid? In the previous lecture, we saw
that filters are able to attenuate a sinusoid according to its frequency, so we can add a filter
to the system before the sampler. Such a filter is called antialiasing filter, because it permits
to avoid the ambiguity due to aliasing. When a sinusoid with frequency outside of the range
(−fS/2, fS/2) is sent to the input of the system, it is simply discarded. This limitation on the
frequency range is the price to pay to replace the continuous-time sinusoid with its discrete-time
version. However, you see that, if you increase the sampling frequency, you extend the frequency
range.

How do we build an antialiasing filter? We note that this filter is continuous-time, since we
want to add it before the sampler. In fact, after the sampler the ambiguity on the frequency
is already present. Continuous-time filters are very similar to discrete-time filters. Similarly to
what was shown in the previous lecture, we can define the impulse response and the properties of
time-invariance, stability and causality. The ideal antialiasing filter is a special one. We would
like it to be perfectly transparent to sinusoids of frequencies below the Nyquist frequency and

63

stop perfectly sinusoids of other frequencies. It can be proved that such a filter has impulse
response:

h(t) =
sin(πfSt)

πt
= fSsinc(fSt),

where sinc(x) = sin(πx)/(πx) is called the sinc function. It is difficult to show that this filter
corresponds to the ideal antialiasing filter. However, you see that the filter is not causal, since the
impulse response is not zero for t < 0. In practice, this ideal response can only be approximated.

After this discussion on sinusoids, one may think that the problem of aliasing has to be com-
pletely reformulated for a generic signal. If we send an arbitrary continuous-time signal to the
sampler, under which condition do the samples represent unambiguously the signal? It turns
out that what we have seen for sinusoids can be extended to other signals. In fact, it can be
proved that any signal can be decomposed into a sum of sinusoids of different frequencies. This
is called the Fourier decomposition. The sampler is a linear system, so we can imagine that
we send each sinusoid at a time and we check if aliasing appears. We call bandwidth of the
input signal the maximum frequency of its sinusoidal components. Clearly, if the bandwidth
is lower than the Nyquist frequency, all the sinusoids can be reconstructed unambiguously and
so can the input signal. Conversely, if the bandwidth is higher then the Nyquist frequency, at
least one of the sinusoids is reconstructed with a wrong frequency and the reconstructed signal
is different from the input signal. The antialiasing filter considered for sinusoids can be used
for an arbitrary signal. Again, we take into account the linearity of the filter and we see that
signals with bandwidth lower than the Nyquist frequency are not affected by the filter. For the
other signals, the filter suppresses the components outside of the range (−fS/2, fS/2).

Consider again the example of the compact disk. The antialiasing filter will suppress all compo-
nents of frequency |f | ≥ fS/2 = 22.05 KHz. That solves the ambiguity between the sinusoids at
3 KHz and 41.1 KHz, since the second is discarded by the filter. The limit of 22.05 KHz seems
reasonable to record audio, in fact the hearing system is also a low-pass filter and the frequency
limit is at about 15 KHz.

1.4.3 Interpolation

Suppose that we design the sampler and the antialising filter according to the concepts described
in the previous section. We know that if we apply a sinusoid at the input with frequency smaller
then the Nyquist frequency, there is no ambiguity on the frequency but we still do not know
how to reconstruct the sinusoid. Moreover, we want to treat signals more complex than a
sinusoid. These signals should also be reconstructed from the samples. As anticipated, we call
interpolator the device that transforms a discrete-time signal into a continuous-time signal.
Consider again the diagram of Figure 1.22 and the case of audio recording. Except for a delay
and neglecting quantization, the signal ȳ(n) is equal to x̄(n). We assume this delay to be zero,
to simplify the notation, i.e. we read the CD while we record it. In this case, the problem of
interpolation is the reconstruction of the signal y(t) from the samples x̄(n) in order to have y(t)
as close as possible to x(t). Due to the definition of the signal x̄(n), it is natural to impose that

y(nT) = x̄(n) = x(nT)

64

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

x(t)
x(nT

S
)

y(t)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)

Figure 1.28: Interpolation with zero-order hold. (a) Interpolation of the samples of a sinusoid.
Note the discontinuities introduced by this simple scheme. (b) The rect function can be used to
describe mathematically the zero-order hold.

i.e. the interpolated signal has to pass through the available points. It remains to decide an
interpolation scheme for the other points. Let us show two possibilities.

Zero-order hold

This interpolator approximates the signal x(t) with a piecewise constant function. An example
is shown in Figure 1.28(a). As you see, the interpolated signal is held constant on pieces of
duration T (the sampling period) centered at the sampling positions. Formally, we can write

y(t) = x̄(n) nT − T

2
≤ t < nT +

T

2
.

We want to rewrite this definition in a way that can be extended to other types of interpolations.
Let us define the function

rect(t) =

{

1 if −1/2 ≤ t < 1/2
0 otherwise

,

depicted in Figure 1.28(b). The idea is to describe the constant pieces of y(t) with a sum
of rect functions. First note that rect((t − nT)/T) takes the value 1, when t is in the set
[nT − T/2, nT + T/2), which corresponds to the generic piece of y(t). Therefore, we can write

y(t) =

∞
∑

n=−∞

x̄(n)rect

(

t − nT

T

)

.

Note that this expression can be generalized to

y(t) =
∞
∑

n=−∞

x̄(n)h

(

t − nT

T

)

. (1.14)

65

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

x(t)
x(nT

S
)

y(t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 1.29: Linear interpolation (also called first-order hold). (a) Interpolation of the samples
of a sinusoid using linear interpolation. (b) The triangular function is the interpolating function
corresponding to the linear interpolation.

In fact, we obtain the zero-order hold by setting h(t) = rect(t). This is the general expres-
sion of the interpolator. By changing the interpolating function h, we can change the type of
interpolation and the error with respect to the input signal x(t).

Linear interpolation

A linear interpolator (sometimes called a first-order hold) simply connects the points corre-
sponding to the samples with straight lines. An example is shown in Figure 1.29(a). We see
immediately that this interpolator is already a good improvement with respect to the zero-order
hold.

Can we put the linear interpolator in the form of equation (1.14)? Let us define the triangular
function

triang(t) =

{

1 − |t| if −1 < t < 1
0 otherwise

which is shown in Figure 1.29(b). It is easy to show that the triangular function corresponds
to the linear interpolation in expression (1.14). In fact, note that the different translations of
the triangular function triang((t − nT)/T) overlap on the straight parts, so that the result is
actually made of straight lines.

Can we do something better than linear interpolation? As you have seen, for the zero-order
hold, the interpolation at a certain time t was computed on the basis of a unique sample. For
the linear interpolation, the result was obtained using two consecutive samples. You can imagine
that we can obtain a better interpolator considering more and more samples. This is the main
idea in the computation of an ideal interpolator. Before we can find the expression of such an
interpolator, we consider a similar problem of interpolation of a finite set of points. We will find
the ideal interpolator by taking the limit to infinity of the number of points.

66

Lagrange interpolation of a finite set of points

In this section we consider a problem slightly different from the interpolation of a discrete-
time signal. We see the interpolation of a finite set of points. Let us consider the points
(t1, x̄1), (t2, x̄2), . . . , (tN , x̄N). We look for a polynomial y(t) that passes for through all the
points. This is called the Lagrange interpolation of the points.

We note that the minimum degree of the polynomial is given by N − 1. In fact, two points
define a line, i.e. a polynomial of degree 1, three points a parabola which is a polynomial of
degree 2 and so on. Therefore, y(t) is the unique polynomial of degree N −1 that passes through
all the N points. One could compute the coefficients of the polynomial by writing a system of
equations: each equation corresponds to the passage through one of the points. However, there
is a simpler way to write directly the solution. In fact, consider the polynomials

Li(t) =
(t − t1)(t − t2) · · · (t − ti−1)(t − ti+1) · · · (t − tN)

(ti − t1)(ti − t2) · · · (ti − ti−1)(ti − ti+1) · · · (ti − tN)
i = 1, 2, . . . , N.

We see that each polynomial Li(t) has degree N − 1 and

Li(tj) =

{

0 if i 6= j
1 if i = j

.

In fact, the numerator has factors corresponding to every point except ti and the denominator
simplifies with the numerator when t = ti. At this point, it is simple to write the expression of
y(t) by summing the polynomials Li(t) after scaling:

y(t) =

i=N
∑

i=1

x̄iLi(t).

In fact, the sum is a polynomial of degree N − 1 as requested, and passes through all the
points. An example is shown in Figure 1.30(a) for 5 points. The polynomials Li(t) are shown
in Figure 1.30(b).

Ideal interpolator

In order to find the ideal interpolator we choose a finite number of points of x̄(n) and we find
the Lagrange interpolator. The ideal interpolator is found by taking the limit for the number of
points going to infinity. Let us choose the set of points I(K) where we compute the interpolation
as:

I(K) = {(−KT, x̄(−KT)), . . . , (−T, x̄(−T)), (0, x̄(0)), (T, x̄(T)), . . . , (KT, x̄(KT))}.

As you see, the set of points is centered in 0 and K controls the number of points (which is
2K + 1). As in the previous paragraph, we can write the interpolation as

y(K)(t) =
K
∑

n=−K

x̄(n)L(K)
n (t), (1.15)

67

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

(a)

Interpolated points
Lagrange interpolation

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(b)

L
1
(t)

L
2
(t)

L
3
(t)

L
4
(t)

L
5
(t)

Figure 1.30: Lagrange interpolation. (a) Interpolation using 5 points. (b) The polynomials Li(t)
used to compute the interpolation. Note that each of the Li(t) is zero for all the abscissas of
the points except the point i, where it takes the value 1.

68

where the “(K)” is used to mark the functions that depend on the number of points K. As in

the previous paragraph, we can write directly the polynomials L
(K)
n . For example, L

(K)
0 (t) is

given by

L
(K)
0 (t) =

(t + KT)(t + (K − 1)T) . . . (t + T)(t − T) . . . (t − KT)

KT (K − 1)T . . . T (−T) . . . (−KT)
. (1.16)

If we take the limit of equation (1.15) for K that goes to infinity, we obtain the ideal interpolator

y(t) = lim
K→∞

y(K)(t) =

∞
∑

n=−∞

x̄(n)L(∞)
n (t),

where we defined
L(∞)

n (t) = lim
K→∞

L(K)
n (t).

Since we consider an infinite number of points, all the functions L
(∞)
n (t) are obtained by trans-

lation of the same function. For example, we can write

L(∞)
n (t) = L

(∞)
0 (t − nT).

Therefore, the ideal interpolator takes the form of equation (1.14). Note also that the sampling
interval T is simply the scale along the time axis, hence

L(∞)
n (t) = g

(

t − nT

T

)

,

for an appropriate function g(t). We can compute numerically the function g(t) by considering

L
(K)
0 (t) for T = 1 and increasing values of K. The result is shown in Figure 1.31. Surprisingly

enough, the limit function is g(t) = sinc(t). This is confirmed by Figure 1.32 and can be
proved formally on equation (1.16) taking into account some formulas on infinite products. It
seems very strange that the ideal antialiasing filter corresponds exactly to the ideal interpolator.
Actually, this is not simply a coincidence but to understand this phenomenon you would need
some advanced analysis.

There is another fact that concerns the ideal interpolator. Suppose that we interpolate the
samples of a sinusoid of frequency below the Nyquist frequency. We know that the samples
represent the sinusoid with no ambiguity. What is the result given by the ideal interpolator?
The ideal interpolator is able to reconstruct the sinusoid exactly. This means that the ideal
interpolator is not only a good interpolator but the optimal one. We can have an intuition of
why this happens if we think about the Taylor expansion of sin(2πfnT). We see that we can
write the samples as a sum of samples of polynomials. We know that the Lagrange interpolator
approximates a function with polynomials of a certain degree. Therefore, when we the take limit
on the number of points, the interpolator is able to approximate any polynomial. In conclusion,
the ideal interpolator is able to reconstruct exactly any function for which the Taylor expansion
converges on the whole axis, such as the sinusoid. Moreover, the ideal interpolator is, as the
sampler, a linear system. Therefore, if the input signal is composed of several sinusoids (such as
any signal of practical interest) it is also reconstructed exactly by the system. This important
result gives the following sampling theorem:

69

−5 0 5
−2

0

2

K=0

−5 0 5
−2

0

2

K=1

−5 0 5
−2

0

2

K=2

−5 0 5
−2

0

2

K=3

−5 0 5
−2

0

2

K=4

−5 0 5
−2

0

2

K=5

−5 0 5
−2

0

2

K=6

−5 0 5
−2

0

2

K=7

−5 0 5
−2

0

2

K=8

−5 0 5
−2

0

2

K=9

−5 0 5
−2

0

2

K=10

−5 0 5
−2

0

2

K=11

−5 0 5
−2

0

2

K=12

−5 0 5
−2

0

2

K=13

Figure 1.31: Polynomial L
(K)
0 (t) for different values of K and T = 1. As K increases the

polynomial converges to the sinc function.

70

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
K=100
sinc

Figure 1.32: Polynomial L
(K)
0 (t) for K = 300 and T = 1, superposed to the sinc function.

71

Theorem 2. Let x(t) be a continuous-time signal with bandwidth B (i.e. it is composed of
sinusoids with maximum frequency B) and x̄(n) = x(nT) be the samples of x(t). If the sampling
frequency fS = 1/T is such that

B <
fS

2

then x(t) can be reconstructed from the samples x̄(n) using the interpolation formula

x(t) =

∞
∑

n=−∞

x̄(n)sinc

(

t − nT

T

)

.

The sampling theorem is an important achievement of the beginning of the previous century.
In fact, it shows that a digital system realized with an ideal antialiasing filter and interpolator
is exactly equivalent to a continuous-time system with bandwidth equal to half of the sampling
frequency. This equivalence motivated the replacement of many analog systems with digital
systems, with the advantages that we mentioned at the beginning of the lecture.

72

1.4.4 Exercises

1. The signal x(t) is a continuous time sinusoid, given by x(t) = sin(200πt).

(a) Which are the values of the sampling frequency which allow the perfect reconstruction
of the signal?

(b) Can one use a sampling frequency of 200 Hz and have perfect reconstruction? Which
would the discrete-time signal x̄(n) be in this case?

2. The signal x̄(n) = cos(πn/4) has been obtained by sampling a continuous-time signal
x(t) = cos(2πft) using a sampling frequency of 1000 Hz.

(a) Find two values of f that could have given the signal x̄(n).

(b) Which is the signal y(t) that one would reconstruct by applying the ideal interpolator
to the signal x̄(n)?

3. Consider the signal x(t) = sin(20πt) + cos(40πt). Which are the sampling frequencies
which allow the application of the Shannon-Nyquist theorem?

4. Consider the points P0 = (0, 1), P1 = (1, 0.8), P2 = (2, 2), P3 = (3, 4).

(a) Draw the points and the result of piecewise-constant (zero-order hold) and linear
interpolation.

(b) Write the result of the piecewise-constant interpolation as a sum of rect functions.

(c) Write the expression of the linear interpolation as a sum of triangular functions.

(d) Write the expression of the Lagrange interpolation.

5. Consider the sinusoidal signal x(t) = sin(2πft) where the frequency f is unknown. Suppose
that x(t) is sampled once using a sampling frequency fS1 = 10 Hz and once using the
sampling frequency fS2 = 12 Hz. In both cases, the same discrete-time signal x̄(n) =
0,∀n ∈ Z is obtained.

(a) Which are the possible values of the frequency f? Explain.

(b) If you had sampled x(t) only once, which sampling frequency would have been given
the same ambiguity on the measure of f?

6. The signal x(t) is a continuous-time sinusoid given by x(t) = sin(120πt).

(a) Which are the sampling frequencies that allows the reconstruction of the signal?

(b) Is it possible to use a sampling frequency of 120 Hz? Which would the discrete-time
signal x̄(n) be in this case? If one uses an ideal interpolator to interpolate x̄(n), which
would the reconstructed signal be?

7. The signal x̄(n) = cos(πn/4) is obtained by sampling the continuous-time signal x(t) =
cos(2πft) at the sampling frequency of 1000 Hz.

73

(a) Determine two values of the frequency f that could have given the signal x̄(n)

(b) If one applies the ideal interpolator to the signal x̄(n), which would the reconstructed
signal y(t) be?

8. Consider the signal x(t) = sin(25πt)+ cos(50πt). Which are the sampling frequencies that
allows to avoid the problem of aliasing? If one sampled at the sampling frequency of 40
Hz and used an ideal interpolator to reconstruct the signal, which would the reconstructed
signal y(t) be?

9. Consider the points P0 = (0,−1), P1 = (1, 1.8), P2 = (2, 3), P3 = (3, 5).

(a) Draw the points, the result of the piecewise-constant interpolator (zero-order hold)
and the result of linear interpolator.

(b) Write the result of the piecewise-constant interpolator as a sum of “rect” functions.

(c) Write the result of the linear interpolator as a sum of “triang” functions.

(d) Write the expression of the Lagrange interpolator.

74

1.5 Solutions to the exercises of the signal processing module

1.5.1 Solutions to the exercises of section 1.1

1. Certainly there are many physical quantities that can be written as one dimensional con-
tinuous signals R → R. For example, temperature, pressure, speed, acceleration, tension
and current.

In the case of two dimensional signals (R2 → R) we can consider the temperature on a
surface as a function of position (also the relief of the earth as a function of longitude and
latitude).

For three dimensional signals (R3 → R) we have the physical parameters in the space(again
temperature, pressure, etc.).

For discrete signals we can consider all the preceding examples after sampling.

2. (a) Z → R: a series of measurements of temperature, pressure, etc.

(b) R → R2: an audio stereo signal, the position of a boat(longitude, latitude) as a
function of time.

(c) {0, 1, . . . , 600}×{0, 1, . . . , 600} → {0, 1, . . . , 255}: a function that represents an image
of 600 × 600 pixels as 256 gray levels (or 256 predefined colors).

(d) In practice, in a computer all of the images are represented in this form (as an array
of integers).

3. The sketches are as follows:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Triangle(t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

δ
−1

(t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

δ
−2

(t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Somme(t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Diff(t)

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

Sinc(t)

4. We know that cos(x) = sin(x + π/2), therefore

x(t) = 5 cos
(

10t +
π

2

)

= 5 sin(10t + π) = P sin(ωt + φ).

75

and we have P = 5, ω = 10, φ = π. The period is TP = 1/f = 2π/ω = 1/5πs.

5. We use the definition of a periodic signal:

P1 sin(ω1t + φ1) + P2 sin(ω2t + φ2) = P1 sin(ω1t + ω1TP l + φ1) + P2 sin(ω2t + ω2TP l + φ2),

l ∈ Z, TP ∈ R. The equation holds when ω1TP = 2πk1 and ω2TP = 2πk2 for appropriate
k1, k2 ∈ Z. Therefore, ω1/ω2 = k1/k2 ∈ Q, meaning that the ratio of frequencies should be
rational. We calculate the period TP by simplifying ω1/ω2 = k1/k2 so that k1 and k2 are
coprime. We have TP = 2πk1/ω1 = 2πk2/ω2.

6. As seen in the previous exercise, ω1/ω2 = 2 and the sum is periodic. The period is
TP = 2π2/ω1 = 2/5π. The sketch of the function is as follows:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−8

−6

−4

−2

0

2

4

6

7. We know that there are no more than 16 colors per image, and each color is coded using
24 bits. Therefore, instead of backing up the colors of each pixel, we can only back up the
number of the colors used among the 16 possibilities. This information can be coded by
4 bits. Since the 16 colors are different for each image, it is necessary to send the list of
colors as well. In total, we have:

• 768 × 1024 × 4 bits for the numbers,

• 16 × 24 bits for the list of colors used,

this adds up to 393264 bytes. Notice that if we had saved the color of each pixel directly,
we would have used 768 × 1024 × 24 bits = 2359296 bytes.

8. An interesting example is a musical score. The signals are the sounds produced by the
instruments, the notes are the symbols that correspond to the sounds. The notes are
grouped in bars and bars in phrases.

9. (a) Each function a 7→ b(a) from A to B associates the values 0 or 1 to the values x, y, z.
We can list the functions in the following table

76

a =
x y z

0 0 0
0 0 1
0 1 0
0 1 1

b = 1 0 0
1 0 1
1 1 0
1 1 1

(b) This concept can be applied to list all the functions from one set to the other, when
the cardinality of the sets (the number of elements in a set) is finite. Let us suppose
that m and n are the number of elements in A and B. In this case, the table has
m columns and we have n possibilities to choose each element. Therefore, the table
should have nm lines that correspond to all the functions of S.

(c) In this case m = 288 × 720, n = 224. The number of elements of S is

nm = (224)288×720 = 224×288×720 = 1024×288×720×log10 2 ≃ 101498118.

1.5.2 Solutions to the exercises of section 1.2

1. Answers to the questions:

(a) No, a filter with finite impulse response (FIR) cannot be unstable. Actually, if h(n)
is the impulse response, we always have,

∞
∑

n=−∞

|h(n)| < ∞.

(b) yes, a predictive system, for example of temperature, is also causal. Making a pre-
diction is simply a form of calculation (even if it might be based on the experience of
a human being) that uses the available data at the time of prediction.

(c) The only solution is the exponential function:

x(n) = esn s ∈ C.

2. The graphs are as follows:

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)
−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

77

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)
−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d)

3. (a) The following graph is the impulse response:

−4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(b) You should pay attention that x ∗ δ(n) = x (in fact, if the impulse response of a filter
is an impulse, the input and the output of the filter are equal). Also, x ∗ δ(n − 1) =
x(n − 1) (the filter introduces a one sample delay). Therefore, using linearity

y(n) = (x ∗ h)(n) = x(n) + 2x(n − 1).

If x = u,

y(n) = u(n) + 2u(n − 1) =

3 if n ≥ 1
1 if n = 0
0 if n < 0

−4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(c) As in the previous case, we have:

y(n) = r(n) + 2r(n − 1) =

{

3n − 2 if n ≥ 1
0 if n < 1

78

−4 −3 −2 −1 0 1 2 3 4 5

0

5

10

15

(d) Again we have,

y(n) = x(n)+2x(n−1) = cos(πn/2+π/6)+sin(πn+π/3)+2 cos(πn/2−π/3)+2 sin(πn−2π/3).

After some simplifications, we get

y(n) = (1 +
√

3/2) cos(πn/2) + (
√

3 − 1/2) sin(πn/2) −
√

3/2 cos(πn).

4. By using the convolution formula, or the graphical method studied in the course, we get

−1 0 1 2 3 4 5
−4

−2

0

2

4

6

8

5. Like the previous exercise, we get

−1 0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

6. The graph of the impulse response is as follows:

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

79

The filter is causal, since h(n) = 0 for n < 0. It is stable as

∞
∑

n=−∞

|h(n)| =
1

1 − 0.8
< ∞.

Il is definitely time invariant, since the impulse response only depends on n. The filter
is not an FIR, since the impulse response is different from zero for an infinite number of
samples.

7. Let us suppose that we have an impulse function at the input of the cascade of the two
filters H1 and H2. Suppose that h1 is the output of the first filter that enters the second
system. Now suppose that h2 is the impulse response of the second filter, therefore the
output of the chain is h = h2 ∗ h1 that corresponds to the impulse response of the cascade
of two filters. Here is the result:

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

This system is also a filter, since we can see that:

• It is linear (we can easily prove that the cascade of two linear systems is also linear)

• It is time invariant (the composition of two invariant systems is also time invariant)

• The domain of the input and output signals is the same (in this case it is Z)

The resulting filter is an FIR filter (we can verify that by studying h, but in general the
cascade of FIR filters is always an FIR filter). If we swap H1 and H2 we get exactly the
same result since convolution is commutative.

8. We can easily verify that the impulse response is

h(n) =

{

1
L

if 0 ≤ n < L
0 otherwise

Therefore, it is a moving average. The filter is time invariant (the impulse response de-
pends only on n) and causal (the response is zero for n < 0). The signal x(n) is periodic
and the period is 5:

80

−2 0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Mobile averaging over 3 samples gives

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

We can prove that (see the notes) the output signal is also a sinusoid with period 5. If L
increases, the amplitude of the output signal decreases. If L is a multiple of 5, the output
is zero, since we add the samples of a multiple of the period.

9. (a) The system is linear, because if y1 and y2 are the outputs corresponding to x1 and
x2, we have

y1(n) = 3x1(n) − 4x1(n − 1),

y2(n) = 3x2(n) − 4x2(n − 1).

If we multiply the two equations by u1, u2 ∈ R and sum them up, we obtain

(u1y1 + u2y2)(n) = 3(u1x1 + u2x2)(n) − 4(u1x1 + u2x2)(n − 1).

Therefore, y = u1y1 + u2y2 is the output when the input is x = u1x1 + u2x2, which
corresponds to the property of linearity. The system is stable. In fact, if |x(n)| < N ,
using the triangular inequality,

|y(n)| = |3x(n) − 4x(n − 1)| ≤ 3|x(n)| + 4|x(n − 1)| < 7N.

Therefore, one can choose M = 7N to satisfy the definition of stability. Let us set
x(n) = δ(n − m), in other words an impulse at m. We get

h̄(n,m) = y(n) = 3δ(n − m) − 4δ(n − m − 1)

Therefore, the system is time invariant, since we can write h̄(n,m) as a function that
depends only on n − m,

h̄(n,m) = h(n − m).

81

(b) The system is linear. For the proof, one can proceed as in the previous case. To check
if the system is stable, we compute first the impulse response. We replace x(n) with
an impulse function at position m, i.e. x(n) = δ(n − m). The output is,

y(n) = 2y(n − 1) + δ(n − m + 2).

The impulse acts only starting n = m−2, before the output is zero. When n = m−2
the output is 1, since y(n − 1) = 0. When n > m − 2 the input is zero and y(n) =
2y(n − 1). Therefore, the output doubles at each step. In conclusion,

h̄(n,m) = y(n) =

{

2n−m+2 if n − m ≥ −2
0 otherwise

.

The system is time invariant, since h̄(n,m) = h(n − m). The impulse response is

h(n) =

{

2n+2 if n ≥ −2
0 otherwise

.

We check if the system is stable by computing the sum

∞
∑

n=−∞

|h(n)| =

∞
∑

n=−2

2n+2 =

∞
∑

n=0

2n = ∞,

and the system is unstable. The system is non-causal, since h(−2) = 1 > 0.

(c) As in the previous case, the system is linear. Concerning stability, we see that the
condition |x(n)| < N is not sufficient to guarantee that y is bounded, i.e. that
|y(n)| < M for some M > 0. For example, if we take x(n) = δ(n − K), the input
is bounded for any value of K, i.e. |x(n)| ≤ 1. However, the output is y(n) =
nδ(n − K) = Kδ(n − K), which correspond to a pulse of amplitude K. Since K is
arbitrary, we conclude that the output is not bounded and that the system is unstable.
To check if the system is time-invariant, we apply the pulse δ(n−m) at the input to
obtain the impulse response,

h̄(n,m) = nδ(n − m).

The factor n makes that it is not possible to write the impulse response on the form
h̄(n,m) = h(n − m). Therefore, we conclude that the system is not time-invariant.
For causality, we have that h̄(n,m) = 0 when n < m which implies that the system
is causal.

(d) The system is not linear, since the cosine function is not linear. For example, the
cosine of the addition of two angles is not the the addition of the cosine of the angles.
The properties of stability, causality and time-invariance have been defined for linear
systems only and cannot be verified for this system.

10. We should first note that the moving average acts on s(t), so influences both the useful
signal m(t) and the noise η(t). Since the moving average is a linear system, we can consider

82

separately the two terms. The only request is that the noise has to be cancelled by the filter.
Therefore, there is no need to analyze the effect of the filter on m(t). We know that η(t)
is a sinusoid for which the frequency is known but amplitude and phase are unknown, i.e.
η(t) = P sin(2πft + φ). After sampling, the noise term is η̄(n) = Psin(2πfdn + φ), where
fd = fTs = 1/80. We see that the signal η̄(n) is periodic and the period is Nd = 1/fd = 80.
The moving average computes the average of η̄(n) on the set [n−L+1, n] for all the values
n ∈ Z. Therefore, to zero mean for all the positions n, L has to be a multiple of the period
80. All the multiples are possible to cancel the noise, but the effect on the signal m(t) is
different. As we saw in the lectures, large values of L will reduce the high frequencies of
m(t) (the same effect that you have by setting to zero the treble knob of a Hi-Fi chain).
For the second filter, we consider again only the term η(t) and we obtain:

y(n) = η̄(n) + a1η̄(n − 1) + a2η̄(n − 2)
= P sin(2πfdn + φ) + a1P sin(2πfd(n − 1) + φ) + a2P sin(2πfd(n − 2) + φ)
= P sin(2πfdn + φ)(1 + a1 cos(2πfd) + a2 cos(4πfd))

+P cos(2πfdn + φ)(−a1 sin(2πfd) − a2 sin(4πfd)).

The last equation has been obtained by applying trigonometric equalities. To have y(n) =
0, ∀n ∈ Z, we need that

{

cos(2πfd)a1 + cos(4πfd)a2 = −1
sin(2πfd)a1 + sin(4πfd)a2 = 0,

which correspond to a linear system of equations. The solution can be computed by
multiplying the two equations by sin(2πfd) and cos(2πfd) and taking the difference. This
gives, a2 = 1. By substitution of a2 in one of the two equations, we find a1 = −2 cos(2πfd).

11. (a) As we saw in the lectures, the moving average of length L = 4 is computed in the
following way:
y(3) = g(0)+g(1)+g(2)+g(3)

4 = 4.2 y(4) = g(1)+g(2)+g(3)+g(4)
4 = 4.7

y(5) = g(2)+g(3)+g(4)+g(5)
4 = 5

(b) Since the moving average is a linear system, we can treat separately the signals s(n)
and e(n). We want to have at the output only the moving average of s(n), hence the
moving average of e(n) has to be zero. The moving average compute the average on
4 samples, thus to have zero at the output, we have to choose e(n) periodic of period
4 and such the the average is zero on one period. For examples, we can choose

e(n) =

4 n = 0,±4,±8, . . .
1, n = 1, 1 ± 4, 1 ± 8, . . .
−3, n = 2, 2 ± 4, 2 ± 8, . . .
−2, n = 3, 3 ± 4, 3 ± 8,

12. (a) For the definition of pulse function δ(n), we have that

h(n) =

0 n < 0 et n > 2
2 n = 0,
−1 n = 1,
−1 n = 2,

83

which correspond to a causal impulse response, since h(n) = 0 when n < 0.

(b) The system is stable, since

∞
∑

n=−∞

|h(n)| = 2 + 1 + 1 < +∞.

One could have also remarked that the impulse response has finite duration (FIR)
and remember that the FIR responses are always stable.

(c) We have to compute the convolution between x(n) and h(n). We can use the graphic
method presented in the lectures, which gives

0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

2

3

1.5.3 Solutions to the exercises of section 1.3

TO BE DONE.

1.5.4 Solutions to the exercises of section 1.4

1. (a) The frequency of the sinusoid is f = 100 Hz, so to apply the sampling theorem, we
have to choose fS > 200 Hz.

(b) fS has to be strictly larger than 200 Hz. Otherwise, we would have x̄(n) = 0 which
corresponds to a sinusoid of frequency f = 0 Hz.

2. (a) We impose that cos(πn/4) = cos(2πfP nT), where fP is the perceived frequency,
which differs in general from the real frequency f . As we saw in the lectures, we have

πn/4 = 2πfP nT + N2π, n ∈ Z,

and the solution is
fP = 1/8fS + NfS.

Two possible values of fP are for example 125 Hz and 1125 Hz, or −875 Hz and 5125
Hz.

(b) We saw the ideal interpolator gives, among all the possible values of fP , the one that
in absolute value is smaller than fS/2. In this case, we have f = fS/8 = 125 Hz. The
reconstructed signal is

y(t) = cos(2πft) = cos(250πt).

84

3. The signal x(t) is composed by two sinusoids. We defined the bandwidth B as the max-
imum frequency of the sinusoids that compose the signal, i.e. B = 20 Hz. To apply the
theorem of Shannon-Nyquist we must choose fS > 2B, hence fS > 40 Hz.

4. (a) The points, the piecewise-constant interpolation and the linear interpolation are
shown on the following figure. suivante:

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Points
constante par morc.
lineaire

(b) We have

y(t) = rect(t) + 0.8rect(t − 1) + 2rect(t − 2) + 4rect(t − 3),

(c) and
y(t) = triang(t) + 0.8triang(t − 1) + 2triang(t − 2) + 4triang(t − 3).

(d) As we saw in the lectures, we write

L0(t) =
(t − 1)(t − 2)(t − 3)

(−1)(−2)(−3)
=

−t3 + 6t2 − 11t + 6

6
,

L1(t) =
t(t − 1)(t − 3)

1(1 − 2)(1 − 3)
=

t3 − 52 + 6t

2
,

L2(t) =
t(t − 1)(t − 3)

2(2 − 1)(2 − 3)
=

−t3 + 4t2 − 3t

2
,

L3(t) =
t(t − 1)(t − 2)

3(3 − 1)(3 − 2)
=

t3 − 3t2 + 2t

6
.

The expression of the Lagrange interpolator is

y(t) = L0(t) + 0.8L1(t) + 2L2(t) + 4L3(t).

5. (a) The two sampled signals are:

sin(2π f
fS1

n) = 0

sin(2π f
fS2

n) = 0
∀n ∈ Z.

85

We recall that the sine is zero on all the multiples of π, so

f
fS1

= k1

2
f

fS2
= k2

2

k1, k2 ∈ Z.

To satisfy both the equations at the same time, f has to be multiple of both fS1/2
and fS2/2, hence it has to be multiple of the Least Common Multiple (LCM)

f = k lcm

(

fS1

2
,
fS2

2

)

= k30 k ∈ Z.

(b) If we had sampled only once at the sampling frequency fS = 60 Hz, we would have
obtained in the same way that fS/2 = k30 Hz.

6. (a) The sinusoid frequency is f = 60 Hz, hence to apply the sampling theorem, we have
to choose fS > 120 Hz.

(b) fS has to be strictly larger than 120 Hz. Otherwise, we would have x̄(n) = 0. We
remind that the ideal interpolator reconstructs, among all the sinusoids compatible
with the sampled signal, the sinusoid with minimum frequency. In the case of this
exercise, the possible frequencies are f = k120 Hz, and the interpolator reconstruct
a sinusoid at the frequency of 0 Hz,

x(t) = sin(2π0t) = 0.

7. (a) We impose cos(πn/4) = cos(2πfP nT), where fP is the perceived frequency, which in
general differs from the actual frequency f . As seen in the lectures,

πn/4 = 2πfP nT + N2π, N, n ∈ Z,

and the solution is
fP = 1/8fS + MfS, M ∈ Z.

Two values of fP are for example, 125 Hz and 1125 Hz, or −875 Hz and 5125 Hz.

(b) The ideal interpolator gives, among all the possible values of the freqeucny fP , that
that is smaller than fS/2. In this case, we have fP = fS/8 = 125 Hz. The recon-
structed signal is

y(t) = cos(2πfP t) = cos(250πt).

8. The signal x(t) is composed by two sinusoids. In the lecture, the bandwidth B was defined
as the maximum frequency of the sinusoids that compose a signal, hence B = 25 Hz. To
avoid aliasing, we must choose fS > 2B, therefore fS > 50 Hz. If we sample at 40Hz and
we use the ideal interpolator, the component at 12.5 Hz is reconstructed exactly, since
its frequency is lower than the Nyquist frequency which is 20 Hz. On the other hand,
the second component has frequency higher than the Nyquist frequency and is affected by
aliasing. The possible frequencies that correspond to the samples of the second component
are

fP2 = 25 + k40 k ∈ Z.

86

The ideal interpolator reconstructs the sinusoid corresponding to the frequency that in
absolute value is smaller than the Nyquist frequency. In this case, we have that this case
corresponds to k = −1 and fP2 = −15 Hz. In conclusion, the reconstructed signal is

y(t) = sin(25πt) + cos(2πfP2t) = sin(25πt) + cos(−30πt) = sin(25πt) + cos(30πt).

9. (a) The points, the piecewise-constant and the linear interpolation are shown in the fol-
lowing figure:

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

−1

0

1

2

3

4

5

Points
constante par morc.
lineaire

(b) We have

y(t) = −rect(t) + 1.8rect(t − 1) + 3rect(t − 2) + 5rect(t − 3),

(c) and

y(t) = −triang(t) + 1.8triang(t − 1) + 3triang(t − 2) + 5triang(t − 3).

(d) As shown in the lecture notes, we write

L0(t) =
(t − 1)(t − 2)(t − 3)

(−1)(−2)(−3)
=

−t3 + 6t2 − 11t + 6

6
,

L1(t) =
t(t − 1)(t − 3)

1(1 − 2)(1 − 3)
=

t3 − 52 + 6t

2
,

L2(t) =
t(t − 1)(t − 3)

2(2 − 1)(2 − 3)
=

−t3 + 4t2 − 3t

2
,

L3(t) =
t(t − 1)(t − 2)

3(3 − 1)(3 − 2)
=

t3 − 3t2 + 2t

6
.

The Lagrange interpolation is

y(t) = −L0(t) + 1.8L1(t) + 3L2(t) + 5L3(t).

87

