PROBLEM 1. • If \(a \equiv a' \pmod{m} \), show that for any integer \(t \), \(a^t \equiv a'^t \pmod{m} \).

• Is the converse true? (i.e. if \(a^t \equiv a'^t \pmod{m} \) for some \(t \geq 2 \), can we always conclude that \(a \equiv a' \pmod{m} \))

PROBLEM 2. For which positive integer numbers \(a \), is \(a^3 + 3 \) divisible by \(a + 3 \)? (Hint: \(3 = 27 - 24 \))

PROBLEM 3. Prove that if \(n \) is an odd integer number then:

• \(n^2 - 1 \) is divisible by 8

• \(n^8 - 1 \) is divisible by 32

PROBLEM 4. Find all the integer numbers \(n \) such that \(7n + 5 \equiv 0 \pmod{2009} \).