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School of Computer and Communication Sciences

Handout 16 Introduction to Communication Systems
Solutions to Homework 9 November 13, 2008

Problem 1. 1. We see that

52 = 25 ≡ 1 (mod 8)

Thus by exponentiating the above congruence we get

(52)10 ≡ 1 (mod 8)

Therefore

521 = 5 × 520 ≡ 5 × 1 ≡ 5 (mod 8).

2. We have that 201 = 5 × 40 + 1. First notice that

31 ≡ −2 (mod 33)

Thus

(31)5 ≡ (−2)5 ≡ −32 ≡ 1 (mod 33)

Now rasing both sides to the 40-th power we get

((31)5)40 ≡ (1)40 ≡ 1 (mod 33)

3. The last two digits of any number belongs to the set {00, 01, 02, 03, 04 . . . , 97, 98, 99}.
This set can be easily identified as the set of numbers modulo 100. Thus to find the
last two digits 930 we must find its modulo w.r.t 100. We have

95 = 59049 ≡ 49 (mod 100)

Therefore

910 = (95)2 ≡ 492 = 2401 ≡ 1(mod 100)

Thus

930 = (910)3 ≡ 13 ≡ 1 (mod 100)

So the last two digits of 930 are 0, 1.

Problem 2. We know from the Bezout’s theorem that for any integers a, b

gcd(a, b) = αa + βb

for some integers α, β. Note that if the gcd(a, b) = 1, then we have that

αa = −βb + 1

Thus
αa ≡ 1 (mod b)

As a result we have that α = (a)−1 (mod b).



1. Using the extended Euclid’s algorithm we have

gcd(5, 26) = 1 = (−5)5 + (1)26

Thus −5 ≡ 21 ≡ (5)−1 (mod 26).

2. Using the extended Euclid’s algorithm we have

gcd(11, 36) = 1 = (−13)11 + (4)36

Thus −13 ≡ 23 ≡ (11)−1 (mod 36).

3. Using Euclid’s algorithm we have

gcd(14, 35) = 7 6= 1

So, 14−1mod 35 does not exist.

Problem 3. 1. Since m is a prime number the only integers among 1, 2, . . . , m4 which
have a factor common with m are the multiples of m. The multiples of m less than
m4 are {1 ·m, 2 ·m, 3 ·m, . . . , m3 ·m}. Thus there are m3 multiples of m. As a result

φ(m4) = m4 − m3 = m3(m − 1).

2. Since p and q are prime numbers, the only positive integer factors of pq are 1, p, q and
pq. So to fing φ(pq) we must count the multiples of p, q, p.q and subtract it from pq.
Among the numbers 1, 2, · · · , pq there are pq

p
= q multiples of p and there are pq

q
= p

multiples of q. Since p and q are distinct prime numbers, if for an integer number n,
both p and q are factors of n then n is divisible by product of them (i.e n is divisible
by pq). This means that the only number among 1, 2, 3, · · ·p.q which is divisible by
both numbers p and q is pq. Therefore,

φ(pq) = pq − p − q + 1 = (p − 1)(q − 1)

Problem 4. 1. 42 = ×3 × 7. We know that if m, n are relatively prime then φ(mn) =
φ(m)φ(n). Thus φ(42) = φ(2)φ(3)φ(7). And for any prime number m, φ(m) = m−1.
Thus φ(42) = (2 − 1)(3 − 1)(7 − 1) = 12.

2. We know from the Euler’s theorem that if a, m are relatively prime then

aφ(m) ≡ 1 (mod m).

This implies that
aφ(m)−1a ≡ 1 (mod m).

Thus aφ(m)−1 ≡ a−1 (mod m). In this problem since 11, 42 are relatively prime, we
have

11φ(42)−1 = 1111 ≡ 11−1 (mod 42)

using the fact that φ(42) = 12. But

112 = 121 ≡ −5 (mod 42)

114 ≡ (−5)2 ≡ 25 (mod 42)

116 = (114) × (112) ≡ 25 × (−5) ≡ −125 ≡ 1 (mod 42)

1111 = (116) × (114) × 11 ≡ (1)(25)(11) ≡ 275 ≡ 23 (mod 42)

Thus 23 ≡ 11−1 (mod 42).
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Problem 5. 1. We enumerate x starting from 0 to see that x = 5 satisfes the congru-
ence equation.

2. By Euler’s theorem we know that 3φ(17) ≡ 1 (mod 17) since gcd(3, 17) = 1. Therefore
316 ≡ 1 (mod 17) Thus

35+16 = 35 × 316 ≡ 5 × 1 ≡ 5 (mod 17).

This means x = 5 + 16 = 21 is another solution. In fact, the same method gives us
infinitely many solutions for this congruence equation.

3. This congruence equation does not have a solution for x. To prove this let us assume
that there exists a number x ≥ 0 such that 3x ≡ 5 (mod 15). This implies that 15
divides 3x − 5. Therefore 3 also devides 3x − 5 but this is not possible since 3x is
divisible by 3 but 5 is not.
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