
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 21 Science de l’information
Homework 12 December 10th, 2009

This is your last graded homework. Yippeee! Write down your answers as

clearly as possible, such that at least one of the assistants can decipher them.

As usual, please write each problem on a separate piece of paper and don’t

forget to put your name on it as well. The due date for this homework is

December 22nd 2009, at noon, INR-036.

Problem 1. Assume that we use a code that maps the five numbers {1, 2, 3, 4, 5} to the
codewords C = {000000, 101100, 010011, 111111, 101010}.

a) What is the rate of this code?

b) Is this a linear code or not and why?

c) What is the minimum distance of this code?

d) How many erasures can it correct? How many errors can it correct? How many errors
can it detect?

For parts (e-f) assume that we want to use this code to transmit over a noisy channel.

e) In which of the following cases can the receiver correctly decode, and what does it
decode?

1. The receiver receives the sequence (?, 1, ?, ?, 1, 1) (3 erasures)

2. The receiver receives the sequence (0, ?, ?, ?, ?, 1) (4 erasures)

f) If the receiver receives the sequence (1, 1, 1, 1, 0, 0), what is the minimum and what
is the maximum number of errors that the channel has introduced?

Problem 2. Let C be an (n, k) linear code over a finite field F . Let H be a parity-check
matrix of C and v1, v2, . . . , vn be the columns of H . Suppose that any set of d columns
of H are linearly independent, where d is some positive integer number. Show that the
minimum distance of C is at least d + 1.

Problem 3. Suppose that n, k, d are three positive integer numbers. Prove the following
statements:

a) If there exists an (n, k) binary linear code with minimum distance 2d + 2, then there
exists an (n − 1, k) binary linear code with minimum distance 2d + 1.

b) If there exists an (n, k) binary linear code with minimum distance 2d + 1, then there
exists an (n + 1, k) binary linear code with minimum distance 2d + 2.

Problem 4. In this problem you will use almost everything you learned in this class, signal
processing, number theory, and last but not least channel coding.

In the first module of this course we have introduced the convolution of two signals as
the fundamental operation which computes the effect of passing a signal through a filter.



Recall that if we have a signal x[n] and the filter is given by h[n], then the output of the
filter is given by the convolution,

y[n] =
∑

m

x[m]h[n − m].

Since convolutions are such basic operations, they are used very frequently. It is therefore
important to find an efficient method to compute them. In this exercise we will learn the
Fourier transform which is one of the most fundamental techniques in signal processing. It
allows for an efficient implementation of convolutions and much more. The reason we have
not introduced Fourier transforms in the signal processing module is that we need to be
well familiar with complex numbers. But over finite fields it is much easier. We will also
see that Reed-Solomon are most easily defined in terms of the Fourier transform. We will
consider a very specific case but the same principle applies to any finite field.

(a) Consider the field F7. Compute explicitly the set {5i (mod 7)}, i = 0, 1, . . . , 5. What
is 56 (mod 7)? A field element a such that its power ai, i = 0, 1, . . . , |F | − 2 covers all
the non-zero elements of the field is called a generator.

(b) Using your mastery of number theory (and the result in (a)), show that

5k ≡ 1 mod 7, k = 0,

5k 6≡ 1 mod 7, 0 < k < 6,

56k = (5k)6 ≡ 1 mod 7, k ∈ Z.

(c) Show that for any integer k

(5k − 1)

5
∑

i=0

5ki = (5k − 1)(1 + 5k + 52k + 53k + 54k + 55k) = 56k − 1 = 0.

Argue that this implies that
∑5

i=0 5ki ≡ 0 mod 7 for 0 < k < 6 and that
∑5

i=0 5ki ≡
6 mod 7 for k = 0.

(d) Consider a vector u of length 6 whose components are elements of F7. Define the
following Fourier transform pair between the vectors u, û of length 6 with components
in F7. For i, j = 0, . . . 5, let

ûi =
∑

l=0,1,...,5

ul3
il, Fourier Transform

uj = 6
∑

i=0,1,...,5

ûi5
ij, Inverse Fourier Transform

where all computations are done in F7. Note that 5 is the multiplicative inverse of 3.

(e) Start with u = (123456). Compute û. Then verify that you get back u by computing
the inverse transform.

(f) Show that in general if you start with u and compute first û by applying the Fourier
transform and then compute the inverse Fourier transform of û, you get back u.
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To accomplish this, verify the following steps by using the results of (b) and (c):

uj = 6
∑

i=0,1,...,5

ûi5
ij

= 6
∑

i=0,1,...,5

∑

l=0,1,...,5

ul3
il5ij

=
∑

l=0,1,...,5

ul 6
∑

i=0,1,...,5

5i(j−l)

=
∑

l=0,1,...,5

ul 6
∑

i=0,1,...,5

(5(j−l))i

= uj.

(g) Here is how you can use the Fourier transform to compute the convolution. Assume
you have a signal x[n] and a filter with impulse response h[n]. Assume you want
to compute the cyclic convolution. This cyclic convolution differs slightly from the
regular convolution in that we consider the signals to be periodic with period 6. In
more detail, we have

y[n] =
∑

m=0,...,5

x[m]h[n − m mod 6)].

(i) Compute the cyclic convolution of the two vectors u = (123456) and v =
(121212).

(ii) Compute the Fourier transform of u and v. Multiply the two resulting signals û

and v̂ componentwise, call the result ŵ. Take the inverse Fourier transform of
ŵ. Hopefully, you get the same result as in (i). Indeed, this is the standard way
a computer would compute the convolution.

In this example we considered a very simple example of a field with 6 non-zero
elements. In practice you would use a much larger field, lets say with N non-zero
elements. In this case the Fourier transform can be used to compute the cyclic
convolution of periodic signals of period N . With a proper implementation of the
Fourier transform (called the Fast Fourier transform) it is possible to compute the
convolution in roughly N log N operations. A brute force implementation of the
convolution on the other hand would require N2 operations. This is a significant
saving.

(h) Now we will see how to define Reed-Solomon codes in terms of this Fourier transform.
Define a RS code of length n = 6 with k = 2 and dmin = 5 as follows. Consider the
set of vectors ĉ of length 6 of the form ĉ = (c1, c2, 0, 0, 0, 0), where c1, c2 ∈ F7. The
RS code is then the set of Fourier transforms of this set.

(a) Show that this definition is equal to the definition we gave in class for the
canonical Reed-Solomon code.

(b) Check that the following is a generator matrix for this code:

G =

(

1 1 1 1 1 1
1 3 2 6 4 5

)

.
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(c) Assume that you want to transmit the information vector u = (14). What is
the corresponding codeword?

(d) Assume you received the word (?4?60?). You want to determine the received
codeword. Write down the corresponding system of equations. Now use the
Gaussian elimination algorithm to recover the transmitted information. What
was the transmitted codeword?
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