This is your third graded homework. Please consider the following rules:

- You have two weeks to hand in your solution.
- Each problem should be answered in one piece of paper, otherwise your answers will not be graded.
- Your name and number should be written on each piece of paper.

PROBLEM 1. For the following statements, decide whether or not it is correct. Justify your answer with a short proof for true statements and with a counterexample for false ones.

a) If \(a \) and \(b \) are two integer numbers and each of them is divisible by the other, then \(a = b \).

b) If \(a^2 \equiv 1 \pmod{12} \) then \(a \equiv 1 \) or \((-1)(\pmod{12})\)

c) If \(a \equiv b(\pmod{m}) \) and \(c \equiv d(\pmod{m}) \) then \(a.c \equiv b.d(\pmod{m}) \)

d) If \(a^n - 1 \) is a prime number then \(a = 2 \) and \(n \) is also a prime number.

e) For every positive integer \(m \), \(m^2 + m + 41 \) is always a prime number.

PROBLEM 2. Show that the summation of all the positive integer numbers smaller than 2009 which are co-prime with respect to 2009, is divisible by 2009.

PROBLEM 3. Consider an RSA cryptosystem in which every letter of the plaintext is encoded by its alphabetic position + 9. For example a is encoded as 10, b is encoded as 11 and z is encoded as 35. (We only consider lower-case letters) Suppose that \(m = 71 \) and \(K = 3 \).

a) Encrypt the plaintext "epfl"

b) Using the public key \(K \), find the private key \(k \).

c) Decrypt the ciphertext 16-13-6

PROBLEM 4. Find three consecutive integer numbers \(n, n+1, n+2 \) so that \(n \) is divisible by 11, \(n + 1 \) is divisible by 10 and \(n + 2 \) is divisible by 9.

PROBLEM 5. Suppose that \(a, b \) and \(n \) are positive integer numbers.

a) Show that if \(n \) is an odd number then \(a^n + b^n \) is divisible by \(a + b \).

b) Show that if \(n = 4k + 2 \) then \(a^n + b^n \) is divisible by \(a^2 + b^2 \)

c) Suppose that \(p = 4k + 3 \) is an odd prime number. Use the previous parts to show that if \(a^2 + b^2 \) is divisible by \(p \) then both \(a \) and \(b \) must be divisible by \(p \). (Hint: Use the fact that if \(a \) is not divisible by \(p \) then \(a^{p-1} \equiv 1(\pmod{p}) \))