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Abstract—In this paper, we review some potential applications
of random Vandermonde matrices in the field of signal processing
and wireless communications. Using asymptotic results based on
the theory of random Vandermonde matrices, we show through
several application examples, namely deconvolution, wireless
capacity analysis and sampling theory, the research potential
of this theory. Quite surprisingly, in nearly all the cases, the
asymptotic results turn out to be valid for dimensions which
are of interest for the community. The simulations confirm that
random matrix theory/free probability theory are once more a
unique tool to better understand the behavior of the eigenvalues
of matrices.

Index Terms—Vandermonde matrices, Random Matrices, de-
convolution, limiting eigenvalue distribution, MIMO.

I. I NTRODUCTION

Vandermonde matrices have had for a long time a central
position in signal processing due to their connections with
other important matrices in the field such as the FFT [1] or
Hadamard [2] transforms to name a few. The matrices have
various applications in different fields [3], [4], [5], [6].The
applied research has been somewhat tempered by the fact that
very few theoretical results were available. For example, until
the recent results in [7], only results on the determinants
and the moments of the determinant of Vandermonde matrices
were known [8]. For a given deterministic Vandermonde
matrix V of dimensionN × L defined by:

V =
1√
N











1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...
e−j(N−1)ω1 · · · e−j(N−1)ωL











(1)
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only the determinant of (1) whenN = L has a nice expression

1

NN/2

∏

1≤k<l≤N

(

e−jωl − e−jωk
)

.

The result however is of little use in signal processing
and wireless communications for example. One way of cir-
cumventing this problem was proposed by Ryan et al. [7]
where ω1,...,ωL are modeled as independent and identically
distributed (phases) taking values on[0, 2π). In this case,
the random phases enable to predict neat expressions of
the asymptotic (in the sense whereN → ∞, L → ∞
and L

N → c) moments of the Gram matrix associated to
the Vandermonde matrix as well as more advanced models
where products of the Vandermonde matrix with deterministic
matrices are concerned. Remarkably, the results show that the
moments depend only on the ratioc and the distribution of
the entries of the phases and have explicit expressions. The
self-averaging properties of these matrices provide therefore a
neat tool to determine the parameters of interest in a problem
where Vandermonde matrices are put forward. These results
are reminiscent of similar results concerning i.i.d random
matrices [9] which have shed light in the design of many
important wireless communication problems such as CDMA
[10], MIMO [11] or OFDM [12]. Building on the results
of [7], this paper provides some useful applications showing
the implications of these results in various applied fields.In
section II, we show how Vandermonde matrices can be used
to perform deconvolution and extend therefore the results of
[13] restricted to the Gaussian case. The main examples are
geared towards wireless systems, and include estimation of
the number of paths, detection of the transmissions powers of
the users, detection of the number of sources, and wavelength
estimation. In section III, the asymptotic results are usedto
perform wireless capacity analysis. Capacity of line of sight

http://aps.arXiv.org/abs/0802.3572v1
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of multi-user MIMO systems and multifold scattering are the
main examples which have not been dealt with in the literature
before or up to some very coarse approximations [14]. Finally,
section IV provides an important feature of the application
of Vandermonde matrices to the very active field of sparse
signal reconstruction. Interestingly, one can provide a gen-
eral framework where only the sampling distribution matters
asymptotically. The first example concerns the computationof
the MMSE (Minimum Mean Square Error) whereas the second
example focuses on the estimation of the sampling distribution.
All the sections are illustrated by extensive simulations which
discuss the validity of the asymptotic claims in the finite
regime.

In the following, upper (lower boldface) symbols will be
used for matrices (column vectors) whereas lower symbols will
represent scalar values,(.)T will denote transpose operator,
(.)⋆ conjugation and(.)H =

(

(.)T
)⋆

hermitian transpose.In

will represent then × n identity matrix. We lettrn be the
normalized trace for matrices of ordern×n, andTr the non-
normalized trace.V will be used only to denote Vandermonde
matrices with a given phase distribution. The dimensions ofthe
Vandermonde matrices will always beN ×L unless otherwise
stated, and the phase distribution of the Vandermonde matrices
will always be denoted byω.

II. D ECONVOLUTION

A. Detection of the number of sources

Let us consider a receiver withN antennas andL mobiles
(each with a single antenna) in the cell. The received signal
at the base station is given by

ri = VP
1
2 si + ni. (2)

Here,ri, si,ni are respectively theN × 1 received vector, the
L × 1 transmit vector by theL users and theN × 1 additive
noise. In the case of a line of sight between the users and the
base station (and considering a Uniform Linear Array), matrix
V has the following form:

V =
1√
N











1 · · · 1

e−j2π d
λ

sin(θ1) · · · e−j2π d
λ

sin(θL)

...
. . .

...
e−j2π(N−1) d

λ
sin(θ1) · · · e−j2π d

λ
sin(θL)











(3)
Here,θi is the angle of the user in the cell and is supposed to
be uniformly distributed over[−α, α]. P

1
2 is anL× 1 power

matrix due to the different distances from which the users emit.
In other words, we assume that the phase distribution has the
form 2π d

λ sin(θ) with θ uniformly distributed on[−α, α]. It
is easily seen, by taking inverse functions, that the density is,
when 2d sin α

λ < 1,

pω(x) =
1

2α

√

4π2d2

λ2 − x2

on [− 2πd sin α
λ , 2πd sin α

λ ], and 0 elsewhere. This density is
shown in figure 1. The effect of a high concentration for this
density near the origin is that the Vandermonde matrix has a

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

Fig. 1. The densitypω(x) used in this paper.α = π

4
andλ = 10d.
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Fig. 2. Histogram of the mean eigenvalue distribution of640 samples of
V

H
V, with V a 1600 × 1600 Vandermonde matrix with phase distribution

pω.

high concentration of the eigenvalues near the origin, and also
a higher proportion of larger eigenvalues, when compared to
the uniform phase distribution. This can be seen from figure 2,
where the mean eigenvalue distribution of640 samples of a
1600× 1600 Vandermonde matrix with phase distributionpω

with α = π
4 , d = 1, andλ = 10d is shown. A corresponding

eigenvalue histogram for uniform phase distribution can be
found in [7]. Throughout the paper we will assume, as in
figure 2, thatα = π

4 , d = 1, andλ = 10d when model (3) is
used. With this assumption,2d sin α

λ < 1 is always fulfilled.
The goal is to detect the number of sourcesL and their

respective power based on the sample covariance matrix
supposing that we haveK observations, of the same order
asN . When the number of observation is quite higher thanN

(and the noise variance is known), classical subspace methods
[15] provide tools to detect the number of sources. Indeed, let
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R be the true covariance matrix i.e

R = VPV
H + σ2

I

The matrixR hasN−L eigenvalues equal toσ2 andL eigen-
values strictly superior toσ2. One can therefore determine
the number of source by counting the number of eigenvalues
different fromσ2. However, in practice, one has only access
to the sample covariance matrix given by

R̂ =
1

K
YY

H ,

with

Y = [r1, ...rK ] = VP
1
2 [s1, ..., sK ] + [n1, ...,nK ]

If one simply has the sample covariance matrixR̂, (2) has
three independent parts which must be dealt with in order to
get an estimate ofP: the Gaussian matricesS = [s1, ..., sK ]
andN = [n1, ...,nK ], and the Vandermonde partV. It should
thus be possible to combine Gaussian deconvolution [16] and
Vandermonde deconvolution [7] by performing the following
steps:

1) Estimate the moments of1K VP
1
2 SS

H
P

1
2 V

H using
multiplicative free convolution as described in [13]. This
is the denoising part.

2) Estimate the moments ofPV
H
V, again using multi-

plicative free deconvolution.
3) Estimate the moments ofP using Vandermonde decon-

volution as described in [7].

Putting these steps together, we will prove the following:
Proposition 1: Define

In = (2π)n−1

∫ 2π

0

pω(x)ndx, (4)

and let mi
P = trL(Pi) be the moments ofP, and mi

R̂
=

trN (R̂i) the moments of the sample covariance matrix. Then
the equations

m1
R̂

= c2m
1
P + σ2

m2
R̂

= c2m
2
P + (c2

2I2 + c2c3)(m
1
P )2

+2σ2(c2 + c3)m
1
P + σ4(1 + c1)

m3
R̂

= c2m
3
P + (3c2

2I2 + 3c2c3)m
1
P m2

P

+
(

c3
2I3 + 3c2

2c3I2 + c2c
2
3

)

(m1
P )3

+3σ2(1 + c1)c2m
2
P

+3σ2((1 + c1)c
2
2I2 + c3(c3 + 2c2))(m

1
P )2

+3σ4(c2
1 + 3c1 + 1)c2m

1
P

+σ6(c2
1 + 3c1 + 1)

provide an asymptotically unbiased estimator for the mo-
ments mi

P from the moments ofmi
R̂

(or vice versa)
when limN→∞

N
K = c1, limN→∞

L
N = c2, and where

limN→∞
L
K = c3.

The proof of this can be found in appendix A. Note that
the statement applies to anyω with continous density [7],
not only the densities we restrict to here. In the simulations,
proposition 1 is put to the test whenP has three sets of powers,
0.5, 1, and 1.5 (with equal probability), with phase distribution

given by (3). Both the number of sources and the powers are
estimated. For the phase distribution (3), the integralsI2 and
I3 can be computed exactly (for general phase distributions
they are computed numerically), and are [17]

I2 =
λ

4dα2
ln

(

1 + sin α

1 − sin α

)

I3 =
λ2 tan α

4d2α3
.

Under the assumptionsα = π
4 andλ = 10d used throughout

this paper, the integrals above take the values

I2 =
40

π2
ln

(

2 +
√

2

2 −
√

2

)

I3 =
1600

π3
.

For estimation of the powers, knowing that we have only
three sets of powers with equal probability, it suffices to
estimate the three lowest moments in order to get an estimate
of the powers (which are the three distinct eigenvalues ofP).
Therefore, in the following simulations, proposition 1 is first
used to get an estimate of the moments ofP. Then these are
used to obtain an estimate of the three distinct eigenvaluesof
P using the Newton-Girard formulas [18]. These should then
lie close to the three powers ofP.

For the model (3), it turns out that power estimation does
not work particularly well. The result is shown in the first
plot of figure 5. In the plot,K = L = N = 576,
and σ =

√
0.1. Even though the matrices are quite large,

the estimated powers are quite far from the actual powers.
Actually, the estimation process is so far off that it computes
eigenvalues which are complex conjugate pairs instead of the
true, real ones (0.5, 1, 1.5) (this is an explanation for that
the two lowest eigenvalues in the plot seem to coincide,
since it is only the absolute values of the eigenvalues which
are plotted). Increasing the matrix sizes further results in
estimates which are closer to the true powers, but one would
need matrices of size larger than2000 × 2000 to get much
closer to the true powers. As will be seen, power estimation
works much better for the phase distribution model in the
next section. A tentative explanation for this is the difference
between the corresponding eigenvalue histograms of those two
Vandermonde matrices, which are shown in figure 2 for model
(3), and in figure 4 of [7] for the model of the next section.

For estimation of the number of usersL, we assume that
the power distribution ofP is known, but notL itself. Since
L is unknown, in the simulations we enter different candidate
values of it into the following procedure:

1) Computing the momentsmi
P = trL(Pi) of P.

2) The momentstrL(Pi) are fed into the formulas of
proposition 1, and we thus obtain candidate moments
mi of the sample covariance matrix̂R.

3) Compute the sum of the square errors between the
candidate moments of the sample covariance matrix,
and the moments of the observed sample covariance



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, JANUARY 2008 4

matrices, i.e. compute
∑3

i=1 |mi − m̂i|2, where

m̂i =
1

n

n
∑

j=1

trN

(

R̂
i
j

)

,

whereR̂j are the observed sample covariance matrices.
A more natural thing to do would perhaps be to compute
a weighted sum of the square errors instead, i.e. compute
∑3

i=1 wi|mi−m̂i|2 for some choice of weightswi. This
strategy was used in [13] for Gaussian deconvolution,
where it was argued that theCatalan numbers[19] are
a good choice of weights. The argument was based
on the fact that the limit oftrN

(

(

1
N XX

H
)k
)

as
N → ∞ is the k’th Catalan number [20], whereX
is an N × N standard Gaussian matrix. We will not
perform weighting of the sum of square errors in this
paper, since the sum of square errors is computed up to
three moments only. For higher moments, the weighting
would be much more crucial (the Catalan numbers grow
very fast in size).

The estimateL for the number of users is chosen as the one
which gives the minimum value for the sum of square errors
after these steps.

In figure 3, we have setσ =
√

0.1, N = 100, and
L = 36. P has three sets of powers, 0.5, 1, and 1.5 (with
equal probability). We tried the procedure described abovefor
1 all the way up to100 observations. It is seen that only a
small number of observations are needed in order to get an
accurarate estimate ofL. WhenK = 1, it is seen that more
observations are needed to get an accurate estimate ofL, when
compared toK = 10.

B. Estimation of the number of paths

In many channel modeling applications, one needs to deter-
mine the number of paths of the channel [21]. For this purpose,
consider a multi-path channel of the form:

h(τ) =

L
∑

i=1

αig(τ − τi)

Here, αi are i.d Gaussian random variables with powerPi

and τi are uniformly distributed delays over[0, T ]. g is the
low pass transmit filter. In the frequency domain, the channel
is given by:

c(f) =

L
∑

i=1

αiG(f)e−j2πfτi

For simplicity, we suppose the transmit filter to be ideal and
thereforeG(f) = 1. Sampling the continuous frequency signal
at fi = iW

N whereW is the bandwidth, the model becomes

V =
1√
N













1 · · · 1

e−j2π
W τ1

N · · · e−j2π
WτL

N

...
. . .

...

e−j2π(N−1)
Wτ1

N · · · e−j2π(N−1)
WτL

N













,

(5)
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(a) K = 1
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L

 

 
Estimate of L
Actual value of L

(b) K = 10

Fig. 3. Estimate for the number of users. Actual value ofL is 36. Also,
σ =

√
0.1, N = 100.

We will here setW = T = 1, which means that theωi of (1)
are uniformly distributed over[0, 2π]. Our model becomes

r = VP
1
2







α1

...
αL






+







n1

...
nN






, (6)

whereL is the number of paths,N is the number of frequency
samples,P is the unknownL×L diagonal power matrix, and
ni is independent, additive, white, zero mean Gaussian noise
of variance σ√

N
. We takeK observations of (6) and form the
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observation matrix

Y = [r1 · · · rK ]

= VP
1
2









α
(1)
1 · · · α

(K)
1

...
. . .

...

α
(1)
L · · · α

(K)
L









+









n
(1)
1 · · · n

(K)
1

...
. . .

...

n
(1)
N · · · n

(K)
N









,

(7)

which is the same model as (2), the only difference being
that the phase distribution of the Vandermonde matrix now is
uniform. In this case, we can do even better than proposition1,
in that one can write down estimators for the moments which
are unbiased for any number of observations and frequency
samples:

Proposition 2: Assume thatV has uniformly distributed
phases, and letmi

P be the moments ofP, andmi
R̂

= trN (R̂i)
the moments of the sample covariance matrix. Define also
c1 = N

K , c2 = L
N , andc3 = L

K . Then

E
[

mR̂

]

= c2m
1
P + σ2

E
[

m2
R̂

]

= c2

(

1 − 1

N

)

m2
P + c2(c2 + c3)(m

1
P )2

+2σ2(c2 + c3)m
1
P + σ4(1 + c1)

E
[

m3
R̂

]

= c2

(

1 +
1

K2

)(

1 − 3

N
+

2

N2

)

m3
P

+

(

1 − 1

N

)(

3c2
2

(

1 +
1

K2

)

+ 3c2c3

)

m1
P m2

P

+

(

c3
2

(

1 +
1

K2

)

+ 3c2
2c3 + c2c

2
3

)

(m1
P )3

+3σ2

(

(1 + c1)c2 +
c1c

2
2

KL

)(

1 − 1

N

)

m2
P

+3σ2

(

c1c
3
2

KL
+ c2

2 + c2
3 + 3c2c3

)

(m1
P )2

+3σ4

(

c2
1 + 3c1 + 1 +

1

K2

)

c2m
1
P

+σ6

(

c2
1 + 3c1 + 1 +

1

K2

)

Just as proposition 1, this is proved in appendix A. In the
following, this result is used in order to determine the number
of paths as well as the power of each path. The different
convergence rates of the approximations are clearly seen in
the plots.

In figure 4, the number of paths is estimated based on the
procedure sketched above. We have setσ =

√
0.1, N = 100,

and L = 36. The procedure is tried for1 all the way up to
100 observations. The plot is very similar to figure 3, in that
only a small number of observations are needed in order to
get an accurate estimate ofL. WhenK = 1, it is seen that
more observations are needed to get an accurate estimate of
L, when compared toK = 10.

For the estimation of powers simulation, we have setK =
N = L = 144, andσ =

√
0.1, following the procedure also

described above, up to1000 observations. The second plot in

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Number of observations

L

 

 
Estimate of L
Actual value of L

(a) K = 1
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Actual value of L

(b) K = 10

Fig. 4. Estimate for the number of paths. Actual value ofL is 36. Also,
σ =

√
0.1, N = 100.

figure 5 shows the results which confirms the usefulness of the
approach. We see that even for smaller matrix sizes than the
model of the previous section, the estimates are much closer
to the true powers.

C. Estimation of wavelength

In the field of MIMO cognitive sensing [22], [23], terminals
must decide on the band on which to transmit and in particular
sense which band is occupied. One way of doing is to find
the wavelengthλ in (3), based on some realizations of the
sample covariance matrix. In our simulation, we have set
d = 1 and λ = 10, K = 10, L = 36, N = 100, and
σ =

√
0.1. We have tried the values1, 2, ..., 100 as candidate

wavelengths, and chosen the one which gives the smallest
deviation (in the same sense as above, i.e. the sum of the
squared errors of the first three moments are taken) from a
different number of realizations of sample covariance matrices.
The resulting plot is shown in figure 6, and shows that the
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(a) Estimation of powers for various number of observationsfor the model
(3) of section II-B.K = N = L = 576, andσ =

√
0.1.
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(b) Estimation of powers for various number of observationsfor the model
(5) of section II-A.K = N = L = 144, andσ =

√
0.1.

Fig. 5. Estimation of powers for the two models (3) and (5) of this section,
for various number of observations.

Vandermonde deconvolution method can also be used for
wavelength estimation. It is seen that the estimation gets better
when the number of observations is increased.

III. W IRELESSCAPACITY ANALYSIS

A. General Results on Capacity and moments

For a general matrixW, consider the mean capacity defined
as

CN = 1
N E

(

log2 det
(

IN + 1
σ2 WW

H
))

= 1
N

∑N
k=1 E

(

log2

(

1 + 1
σ2 λk

(

WW
H
)))

=
∫

log2

(

1 + 1
σ2 t
)

µ(dt),

(8)

where µ is the mean empirical eigenvalue distribution of
WW

H i.e E

(

1
N

∑N
i=1 δ(λ − λi)

)

whereλi are the eigenval-

ues ofWW
H . In practice, we do not need the expectation in

0 10 20 30 40 50 60 70 80 90 100
0
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70
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Fig. 6. Estimation of wavelength. Deconvolution was performed for varying
number of observations, assuming different wavelengths, In the true model
(3), d = 1, λ = 10, K = 10, L = 36, N = 100, andσ =

√
0.1.

0 100 200 300 400 500 600 700 800 900 1000
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C
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Fig. 7. Estimation of the true capacity1
N

log2 det
`

I + ρVVH
´

when the
Vandermonde matrixV has uniform phase distribution.V has size36× 36,
and σ = 3 was used. The estimate is obtained from different number of
samples approximating the true capacity.

(8), but rather asymptotic formulas (i.e. formulas which apply
whenN → ∞ without the expectation operator). Asymptotic
formulas for the capacity whenW is a Vandermonde matrix
are not known, contrary to the case for Gaussian matrices:
Since no exact formulas for the asymptotic capacity of Van-
dermonde matrices are known, we will instead obtain good
estimates for it by taking an average of (8) (as defined) over
many samples. In figure 7, capacity estimates forσ = 3
obtained this way up to 1000 samples are shown for36 × 36
Vandermonde matrices with uniform phase distribution. It is
seen that also for much small number of samples, all capacity
estimates are between0.145 and 0.146. 200 samples will be
used in the simulations, since this gives a value close to the
value the capacities seem to converge to.
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Substituting the Taylor series

log2(1 + t) =
1

ln 2

∞
∑

k=1

(−1)k+1 tk

k
(9)

in (8), we obtain that

CN = 1
ln 2

∑∞
k=1

(−1)k+1

kσ2k

∫

tkµ(dt)

= 1
ln 2

∑∞
k=1

(−1)k+1mk(µ)
kσ2k

= 1
ln 2

∑∞
k=1

(−1)k+1mk(µ)ρk

k ,

(10)

whereρ is SNR, and where

mk(µ) =

∫

tkdµ(t) for k ∈ Z
+

are the moments ofµ. WhenW is a Vandermonde matrix, it is
unknown whether this series converges. However, one can still
assess if a finite partial sum of (10) is a good approximation
to the actual capacity. In the following, this will be done for
applications to capacity of line of sight of multi-user MIMO
systems, and multifold scattering. Up to7 terms in (10) are
used in the assessments, since [7] has computed the seven first
moments of the Vandermonde matrices. In the examples, low
SNR values (i.e. highσ-values) will be used, since the series
(10) will only converge then. This follows from the fact that
the radius of convergence of (9) around0 is 1, so that (10) can
converge only whenρ ≤ 1

γ2 , where the support of the mean
eigenvalue distribution of the Vandermonde matrix is denoted
by [γ1, γ2].

One can ask the question whether one can circumvent the
problem with the convergence radius of (9) by using a different
Taylor expansion, so that this expansion can be used to obtain
the capacity at all SNR when one has the first order moments
only. We will indeed show that this is possible, but that it
in practice will require computation of many moments (the
first seven moments as computed in [7] are not enough to
obtain good approximations). Therefore, current methods do
not suffice in capacity estimation for Vandermonde matrices
at all SNR, so that an extension of the methods from [7], or
new methods are needed.

To the end of coming up with a different Taylor expansion
than (9), consider the following, wheret0 is any positive
constant:

log(1 + ρt) = log(1 + t0ρ + ρ(t − t0))

=
∑∞

k=1
(−1)k+1ρk

k(1+t0ρ)k (t − t0)
k.

(11)

In order for this series to be accurate for few terms, we need
to ensure that

∣

∣

∣

ρ(t−t0)
1+t0ρ

∣

∣

∣ < 1 when t is in the support[γ1, γ2]

of µ.
Assume first that0 ≤ t0 ≤ γ2

2 . Then
∣

∣

∣

∣

ρ(t − t0)

1 + t0ρ

∣

∣

∣

∣

≤ ρ(γ2 − t0)

1 + t0ρ

for all t ∈ [γ1, γ2]. It is easily checked that the latter is≤ 1

when ρ ≤ 1
γ2−2t0

. One easily checks also thatρ(γ2−t0)
1+t0ρ is a

decreasing function oft0. We conclude from this thatt0 = γ2

2
is the value in[0, γ2

2 ] wich makes our power series converge
fastest.

Assume now thatγ2

2 ≤ t0. Then
∣

∣

∣

∣

ρ(t − t0)

1 + t0ρ

∣

∣

∣

∣

≤ ρt0

1 + t0ρ
≤ 1

for all t ∈ [γ1, γ2], so that our Taylor series converges for allρ

for sucht0. Also, thet0 ≥ γ2

2 which makes ρt0
1+t0ρ smallest is

t0 = γ2

2 . This ”proves” that expansion aroundt0 = γ2

2 is the
optimal choice for our Taylor expansion, and that it converges
for all choices ofρ in this case.

Let us attempt to compute how many terms are needed in
the Taylor expansion (11) in order to estimate the capacity
at ρ = 10 with accuracy better than0.5, for Vandermonde
phase distributions given by (3) and (5). Due to the above
considerations, we uset0 = γ2

2 . If N terms in (11) are used
to approximate the capacity, and fort ≤ γ2

2 , consider the
remainder term

∣

∣

∣

∣

∣

∞
∑

k=N+1

(−1)k+1ρk

k
(

1 + γ2

2 ρ
)k

(

t − γ2

2

)k
∣

∣

∣

∣

∣

≤
∞
∑

k=N+1

1

k

(

ργ2

2

1 + γ2

2 ρ

)k

≤ 1

N + 1

(

ργ2

2

1 + γ2

2 ρ

)N+1
1

1 − ρ
γ2
2

1+
γ2
2

ρ

=
ργ2

2(N + 1)

(

ργ2

2

1 + γ2

2 ρ

)N

,

which is a good bound if much of a large proportion of the
eigenvalues of the Vandermonde matrix is close to the origin
(this can be inspected from the histograms of the eigenvalue
of Vandermonde matrices in this paper and in [7]).

From figures 4,5, and 6 in [7], we see thatγ2 ≈ 5 is a
good guess for the upper bound of the support when the phase
distribution has the form (5) (although we haven’t proved that
γ2 even exists). For uniform phase distribution (5), the number
of termsN thus needs to be chosen so that

25

N + 1

(

25

26

)N

≤ 0.5

for the given precision andρ. It is easily checked thatN = 21
is the lowest number of terms which makes this possible, so
that 21 terms in the Taylor expansion (11), and thus the21
first moments, are needed to obtain the required precision.

From figure 2 we see thatγ2 ≈ 15 is a good guess for the
upper bound of the support when the phase distribution has
the form (3). For this case, the number of termsN thus needs
to be chosen so that

75

N + 1

(

75

76

)N

≤ 0.5

for the given precision andρ. It is easily checked thatN = 64
is the lowest number of terms which makes this possible, so
that 64 terms in the Taylor expansion (11), and thus the64
first moments, are needed to obtain the required precision.
This clearly indicates that the moments computed in [7] do
not suffice.
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B. Capacity of line of sight of multi-user MIMO systems

We consider a base station equipped withN antennas andL
mobiles (each with a single antenna) in the cell. The received
signal at the base station is given by

ri = CP
1
2 si + ni

Here,ri, si,ni are respectively theN × 1 received vector, the
L × 1 transmit vector by theL users and theN × 1 additive
noise. In the case of line of sight between the users and the
base station, the model

V =
1√
N











1 · · · 1

e−j2π d
λ

sin(θ1) · · · e−j2π d
λ

sin(θL)

...
. . .

...
e−j2π(N−1) d

λ
sin(θ1) · · · e−j2π d

λ
sin(θL)











(12)
applies. Here,θi is the angle of the user in the cell and is
supposed to be uniformly distributed over[−α, α] . P

1
2 is a

L× 1 power matrix due to the different distances from which
the users emit.

In this case, we would like to derive the mean channel
capacity (8) per dimension for random positions of the users
of the system, which is given by

C =
1

N
E

(

log2 det(I +
1

σ2
VPV

H)

)

. (13)

Note that the moments ofPV
H

V were computed in [7].
When the phases ofV are uniformly distributed, theorem 3 in
that paper expresses the first7 such mixed moments in terms
of so-calledVandermonde expansion coefficients, which also
are computed. Also, theorem 5 of the same paper tells us how
to get the expansion coefficients when the phase distribution
has a continous density: To compute the expansion coefficients
for this case, we have to compute the density moments (4)
numerically. We will therefore do the following:

1) Compute the first seven density moments (4), and from
this get the the expansion coefficient up to order7.

2) Estimate the first seven moments ofPV
H

V using the
result in [7] (note that the moments ofPV

H
V are

obtained from those ofPV
H

V by multiplication byc).
3) Substitute these in (10) to get a capacity estimate.

In the simulations, these steps are followed to obtained a
capacity estimate. Different number of terms in the approx-
imation (10) are used to see how fast the series converges
to the true capacity. Note that there is no known formula for
the true capacity in this case. The true capacity is instead
also approximated, by taking 1000 samples of the random
matrices involved in the expression for the capacity. In figure 8,
the SNR-values where the Vandermonde convolution capacity
estimates begin to converge to the actual value are clearly
seen. It is perhaps surprising that the approximation with fewer
terms is more accurate for higher SNR values. This is the case
since the power series approximation is better only close to
the origin when more terms are added: Far away from the
origin, the approximation can be worse when more terms are
added (but will eventually improve when even more terms are
added).
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0

0.1
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0.6

0.7

ρ

 

 
True capacitiy
Estimated capacity, 3 terms
Estimated capacity, 7 terms

Fig. 8. Estimation of channel capacity for the three and seven terms
approximations (10). The actual capacity is also shown. SNRup to 0.16 have
been tested.L = N = 36, d = 1, λ = 10.
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Fig. 9. Deviation from the true capacity for the three and seven terms
approximations (10). VariousL have been tested.ρ = 0.04, N = L, d = 1,
λ = 10.

In figure 9,ρ has been fixed at0.04, and different values
of L have been tried in the capacity estimation. It is seen that
the capacity estimated is better for higherL. The explanation
is that the Vandermonde convolution formulas are asymptotic,
so that they give better approximations for higherL and N .
Also here it is seen that the7-term approximation is worse.
We can’t expect that the deviation goes to zero for higherL,
since the error not only lies in the (asymptotic) Vandermonde
convolution formulas, but also in the approximation (10) (and
the error from this part does not go away when we increase
L).
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C. Multifold scattering

We consider a MIMO system (between two users equipped
with N Uniform Linear Array antennas andL scatterers in
between). The received signal in one end of the MIMO system
is given by

ri = V
H
1 P

1
2 V2si + ni (14)

where

V1 =
1√
N











1 · · · 1

e−j2π d
λ

sin(θ1) · · · e−j2π d
λ

sin(θL)

...
. . .

...
e−j2π(N−1) d

λ
sin(θ1) · · · e−j2π d

λ
sin(θL)











and

V2 =
1√
N











1 · · · 1

e−j2π d
λ

sin(φ1) · · · e−j2π d
λ

sin(φL)

...
. . .

...
e−j2π(N−1) d

λ
sin(φ1) · · · e−j2π d

λ
sin(φL)











,

where allθi andφi are independent.
The scatterers distort the signal with attenuationPi. This

model has already been studied in [14] using an approximation
of the Vandermonde matrix by an i.i.d zero mean random
matrix. As shown in [7], this is not the case as the limiting
eigenvalues of the Gram matrix associated to the Vandermonde
matrix are quite different from the Marc̆henko Pastur law [9].
The mean capacity (8) per received dimension is given by

C =
1

N
E

(

log2 det(I +
1

σ2
V

H
1 P

1
2 V2V

H
2 P

1
2 V1)

)

. (15)

We will assume thatP = I (other case are more involved).
In other words, we need the moments ofV

H
1 V2V

H
2 V1. To

get these, we can use theorem 9 of [7]. Also here we are
restricted to getting capacity estimates away from0, since we
only have the lower order moments available. In this case, it
is also expected that we would need more observations to get
good capacity estimates: Figure 10 shows the approximationof
the true capacity (15) by taking many samples of model (14),
similarly to figure 7 for Vandermonde matrices with uniform
phase distribution.36 × 36 matrices were used, andσ = 3.
The values are seen to be between0.35 and0.36. For figure 7,
one could infer yet another decimal.

D. Capacity of Gaussian versus Vandermonde models

If X is anN ×N standard, complex, Gaussian matrix, then
an explicit expression of the capacity exists [24]

limN→∞
1
N log2 det

(

I + ρ
(

1
N XX

H
))

=

2 log2

(

1 + ρ − 1
4

(√
4ρ + 1 − 1

)2
)

− log2 e
4ρ

(√
4ρ + 1 − 1

)2
.

(16)

In figure 11, several realizations of the capacity are computed
for Gaussian matrix samples of size36 × 36. The asymptotic
capacity (16) is also shown. In figure 12, several realizations
of the capacity are computed for Vandermonde samples of
the same size, with the phase distributions given by (5) and
(3). Realizations of (15) are also shown. It is seen that
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Fig. 10. Estimation of the true capacity obtained from different number of
samples approximating the expectation in (15).36 × 36 matrices were used,
andσ = 3.
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Fig. 11. Several realizations of the capacity1
N

log2 det
`

I + ρ 1

N
XXH

´

whenX is standard, complex, Gaussian. Matrices of size36×36 were used.
The asymptotic capacity (16) is also shown.

the uniform phase distribution gives highest values for the
capacity. The effect of using two independent Vandermonde
matrices is seen to increase the capacity somewhat. It is seen
that the variance of the Vandermonde capacities is higher
than for the Gaussian counterparts. This should come as no
surprise, due to the slower convergence to the asymptotic
limits for Vandermonde matrices [7]. Although the capacities
of Vandermonde matrices with uniform phase distribution and
Gaussian matrices seem to be close, we have actually no
proof that the capacities of Vandermonde matrices are finite,
since it is unknown whether the Vandermonde matrix (1) has
a compactly supported limiting eigenvalue distribution [7],
although extensive simulations seem to confirm this fact. In
any case, the results show that a structured ULA form of the
antenna geometry provides a decrease of capacity with respect
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when ω has uniform phase
distribution (5).
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whenω has the phase distri-
bution (3).
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(c) Realizations of (15).

Fig. 12. Several realizations of the capacity for Vandermonde matrices for
the two phase distributions used in this paper.
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Fig. 13. Estimation of the true capacity1
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when
X is complex standard, Gaussian.36 × 36 matrices were used, andσ = 3.
The estimate is obtained from different number of samples approximating the
true capacity.

to having a more random like geometry in the case of line of
sight environments.

Figure 13 shows the number of samples needed to get
accurate estimation of the capacity for Gaussian matrices,
similarly to how this was done for Vandermonde matrices with
uniform phase distribution in figure 7. The estimated values
are seen to lie between0.144 and0.146, which is very close
to the values we obtained for Vandermonde matrices. Same
matrix sizes (36 × 36) and value forσ (3) was used.

The fact that the capacity of line of sight Vandermonde
matrices is in simulation lower than the capacity of Gaussian
matrices is a very interesting issue and permits to under-
stand the differences between line of sight and non-line of
sight environments. Interestingly, the moments of structured
Vandermonde matrices with uniformly distributed phases are
always larger than the moments of Gaussian i.i.d. matrices,see
corollary 2 in [7]. When the phase distribution is given by (3),
a similar result holds due to theorem 5 in [7]. However, one
can not prove from these results any effective relation between
the capacities.

IV. SIGNAL RECONSTRUCTION

Several works have investigated how irregular sampling
affects the performance of signal reconstruction in the presence
of noise in different fields namely sensor networks [25], [26],
image processing [27], [28], geophysics [29], compressive
sampling [30]. The usual Nyquist theorem states that for a
signal with maximum frequencyfmax, one needs to sample the
signal at a rate which is at least twice this number. However,
in many cases, this can not be performed or one has an
observation of a signal at only a subset of the frequencies.
Moreover, one feels that if the signal has a sparse spectrum,
one can take fewer samples and still have the same information
on the original signal. One of the central motivations of sparse
sampling is exactly to understand under which condition one
can still have less samples and recover the original signal up
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to an error ofǫ [31]. Let us consider the signal of interest as
a superposition of its frequency components (this is also the
case for a unidimensional bandlimited physical signal) i.e

x(t) =
1√
N

N−1
∑

k=0

ake
−j2πkt

N

and suppose that the signal is sampled at various instants
[t1, ..., tL] with ti ∈ [0, 1]. This can be identically written as

x(ω) =
1√
N

N−1
∑

k=0

ake−jkω .

In the presence of noise, one can write it in the following
manner:

x = V
T
a + n

with x = [x(ω1), ...x(ωL)]T , a = [a1, ..., aN ]T ,n =
[n1, ..., nL] and

V =
1√
N











1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...
e−j(N−1)ω1 · · · e−j(N−1)ωL











. (17)

We definec as the ratio of observations to the number of
complex harmonics i.ec = L

N

A. Performance analysis of the reconstruction algorithm

The task of the reconstruction algorithm is to calculate an
estimatêa of the spectruma. The usual reconstruction metric
is the minimum mean square error which is defined as

MMSE =
1

N
E || â − a ||2 .

The linear filter which minimizes the MMSE or maximizes
the Signal to Interference plus noise ratio is known to be the
MMSE filter. Results on the interplay between information
theory and estimation theory [32], [33] show that the MMSE
is strongly related to the eigenvalues ofVV

T .
In particular, one has that:

MMSE =
dC

ρ
,

whereC = 1
N log det

(

I + ρVV
T
)

with ρ being the SNR.
Asymptotically, whenN → ∞ and L∞ → ∞ such as

L
N → c, the MMSE depends only on the SNRρ, the ratio
c and the probability distribution of the samplingpw. The
MMSE can be computed in the same vein as previously with
a Taylor approximation for a given distribution of the sampling
in the low SNR regime.

B. Estimation of the sampling distribution

In the following, we suppose that one hasK observations
of the received sampled vectorx:

Y = [x1, ...xK ] = V
T [a1, ...,aK ] + [n1, ...,nK ]

The vectorx is the discrete output of the sampled continuous
signalx(w) for which the distribution is unknown (however,
c is known). This case happens when one has an observation
without the knowledge of the sampling rate for example. As
recalled in section IV of [7], the problem falls in the realm of
deconvolution and one is able to infer on the density of the
density ofw in other words finding the moment of

∫ 2π

0

pw(x)kdx.

If we define

R̂ =
1

K
YY

H , (18)

andIn by (4), then by successive Gaussian deconvolution as
detailed in section II, we have

m1
R̂

= c2 + σ2

m2
R̂

= c2 + (c2
2I2 + c2c3)

+2σ2(c2 + c3) + σ4(1 + c1)
m3

R̂
= c2 + (3c2

2I2 + 3c2c3)

+
(

c3
2I3 + 3c2

2c3I2 + c2c
2
3

)

+3σ2(1 + c1)c2

+3σ2((1 + c1)c
2
2I2 + c3(c3 + 2c2))

+3σ4(c2
1 + 3c1 + 1)c2

+σ6(c2
1 + 3c1 + 1),

(19)

wheremi
R̂

= E
[

trN (R̂i)
]

, limN→∞
N
K = c1, limN→∞

L
N =

c2, and limN→∞
L
K = c3. The estimation ofIn is averaged

on the various set of K observations.
We have tested (19) the following way: We have taken

a phase distributionω which is uniform on [0, α], and 0
elsewhere. The density is thus2π

α on [0, α], and0 elsewehere.
In this case we can compute that

I2 =
2π

α

I3 =

(

2π

α

)2

.

The first of these equations, combined with (19), enables us
to estimateα from the observations (18). This is tested in
figure 15 for various number of observations. In figure 14
we have also tested estimation ofI2, I3 from the observations
using the same equations. When one has a distribution which
is not uniform, the integralsI3, I4, ... would also be needed in
finding the characteristics of the underlying phase distribution.
Figure 14 shows that the estimation ofI2 requires far fewer
observation than the estimation ofI3. In both figures, the
valuesK = 10, L = 36, N = 100, and σ =

√
0.1 were

used andα was π
4 .
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V. CONCLUSION

In this part, we have provided some useful applications of
random Vandermonde matrices. The applications concentrated
on wireless capacity analysis, source separation and signal
sampling analysis. As shown, many useful system models
use independent Vandermonde matrices and Gaussian matrices
combined in some way. The presented examples show how
random Vandermonde matrices applied for such systems can
be handled in practice to obtain estimates on quantities such
as the number of paths in channel modeling, the transmission
powers of the users in wireless transmission or the sampling
distribution for signal recovery. The paper has only touched
upon a limited number of applications but the results already

provide benchmark figures in the non-asymptotic regime.

APPENDIX A
THE PROOFS OF PROPOSITION1 AND 2

The moments and fluctuations of

Γ =
1

K
RR

H = VP
1
2

(

1

K
ααH

)

P
1
2 V

H .

are related to the moments ofW through the formulas [16]

E [trn (W)] = E [trN (Γ)] + σ2

E
[

trn

(

W
2
)]

= E
[

trN

(

Γ
2
)]

+2σ2(1 + c1)E [trN (Γ)] + σ4(1 + c1)
E
[

trn

(

W
3
)]

= E
[

trN

(

Γ
3
)]

+3σ2(1 + c1)E
[

trN

(

Γ
2
)]

+3σ2c1E
[

(trN (Γ))
2
]

+3σ4
(

c2
1 + 3c1 + 1 + 1

K2

)

E [trN (Γ)]
+σ6

(

c2
1 + 3c1 + 1 + 1

K2

)

,
(20)

wherec1 = N
K . Define the matrix

S =

(

1

K
ααH

)

P
1
2 V

H
VP

1
2 ,

and note that

E
[

trN

(

Γ
k
)]

= c2E
[

trL

(

S
k
)]

, and

E
[

(trN (Γ))
k
]

= ck
2E
[

(trL (S))
k
]

,
(21)

wherec2 = L
N . We can now use the formulas [7]

c3E [trL (S)] = c3E [trL (T)]
c3E

[

trL

(

S
2
)]

= c3E
[

trL

(

T
2
)]

+c2
3E
[

(trL (T))
2
]

c3E
[

trL

(

S
3
)]

=
(

1 + K−2
)

c3E
[

trL

(

T
3
)]

+3c2
3E
[

(trLT) trL

(

T
2
)]

+c3
3E
[

(trL (T))
3
]

E
[

(trL (S))2
]

= E
[

(trL (T))2
]

+ 1
KLE

[

trL

(

T
2
)]

(22)

wherec3 = L
K , andT = PV

H
V. (20), (21), and (22) can

be combined to the following form (mi
W andmi

T are theith
moments ofW andT respectively):

m1
W = c2m

1
T + σ2

m2
W = c2m

2
T + c2c3E

[

(trL (T))2
]

+2σ2(c2 + c3)E [trL (T)] + σ4(1 + c1)
m3

W = c2

(

1 + 1
K2

)

E
[

trL

(

T
3
)]

+3c2c3E
[

(trL (T))
(

trL

(

T
2
))]

+c2c
2
3E
[

(trL (T))3
]

+3σ2
(

(1 + c1)c2 +
c1c2

2

KL

)

E
[

trL

(

T
2
)]

+3σ2c3(c3 + 2c2)E
[

(trL (T))
2
]

+3σ4
(

c2
1 + 3c1 + 1 + 1

K2

)

c2E [trL (T)]
+σ6

(

c2
1 + 3c1 + 1 + 1

K2

)

.

(23)

Up to now, all formulas have provided exact expressions for
the expectations. For the next step, exact expressions for the
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expectations are only known when the phases are uniformly
distributed, in which case the formulas are [7]

c2E [trL (T)] = c2trL(P)
c2E

[

trL

(

T
2
)]

=
(

1 − N−1
)

c2trL(P2) + c2
2(trL(P))2

c2E
[

trL

(

T
3
)]

=
(

1 − 3N−1 + 2N−2
)

c2trL(P3)
+3
(

1 − N−1
)

c2
2trL(P)trL(P2) + c3

2(trL(P))3

E
[

(trL (T))2
]

= trL(P)2

E
[

(trL (T))
3
]

= trL(P)3

E
[

(trL (T))
(

trL

(

T
2
))]

=
(

1 − N−1
)

trL(P )trL(P2) + c2(trL(P))3.

(24)

If the phase distributionω is not uniformly distributed, we
have the following approximations [7]:

c2E [trL (T)] = c2trL(P)
c2E

[

trL

(

T
2
)]

≈ c2trL(P2) + c2
2I2(trL(P))2

c2E
[

trL

(

T
3
)]

≈ c2trL(P3) + 3c2
2I2trL(P)trL(P2) + c3

2I3(trL(P))3

E
[

(trL (T))
2
]

= (trLP)2

E
[

(trL (T))
3
]

= (trLP)3

E
[

(trL (T))
(

trL

(

T
2
))]

≈ trL(P)trL(P2) + c2I2(trL(P))3,
(25)

where the approximation isO(N−1), and whereIk is defined
by (4).

Proposition 2 is proved by combining (23) with (24), while
proposition 1 is proved by combining (23) with (25).

Matlab code for implementing the different steps here (like
(20), (22), and (24)) can be found in [34].
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