arXiv:0802.3570v1 [cs.IT] 25 Feb 2008

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, JANARY 2008 1

Random Vandermonde Matrices-Part I:
Fundamental results

@yvind Ryan,Member, IEEE
Centre of Mathematics for Applications,
University of Oslo, P.O. Box 1053 Blindern, 0316 Oslo, Noywa
Phone: +47 93 24 83 21
Fax: +47 22 85 43 49
Email: oyvindry@ifi.uio.no
Mérouane Debbahylember, IEEE
SUPELEC,
Alcatel-Lucent Chair on Flexible Radio, Plateau de Moulon,
3 rue Joliot-Curie,
91192 GIF SUR YVETTE CEDEX, France
Phone: +33 1 69 85 20 07
Fax: +33 1 69 85 12 59
Email: merouane.debbah@supelec.fr

Abstract—In this first part, analytical methods for finding and biology[[11] and have been much studied. The main results
moments of random Vandermonde matrices are developed. Van- are related to the distribution of the determinant[df (1)]{12
dermonde Matrices play an important role in signal procesang The large majority of known results on the eigenvalues of
and communication applications such as direction of arriva esti- the associated Gram matrix concern Gaussian matricés [13]
mation, precoding or sparse sampling theory for example. Whin . T - = L
this framework, we extend classical freeness results on raiom O matrices with independent entries. None have dealt with
matrices with i.i.d entries and show that Vandermonde strutured  the Vandermonde case. For the Vandermonde case, the results
matrices can be treated in the same vein with different tools depend heavily on the distribution of the entries, and do not
We focus on various types of Vandermonde matrices, namely give any hint on the asymptotic behaviour as the matrices

Vandermonde matrices with or without uniformly distribute d b | In th | f wirel h | dellindi. 11
phases, as well as generalized Vandermonde matrices (witton- ecome large. In the realm of wireless channel modelling, [

uniform distribution of powers). In each case, we provide eplicit has provided some insight on the behaviour of the eigensalue
expressions of the moments of the associated Gram matrix, of random Vandermonde matrices for a specific case, without

as well as more advanced models involving the Vandermonde any formal proof. We prove here that the case is in fact more
matrix. Comparisons with classical i.i.d. random matrix theory involved than what was claimed

are provided and free deconvolution results are also disceed.

Index Terms—Vandermonde matrices, Random Matrices, de-  In many applicationsN and L are quite large, and we may
convolution, limiting eigenvalue distribution, MIMO. be interested in studying the case where both goctat a

given ratio, with % — ¢. Results in the literature say very

I. INTRODUCTION little on the asymptotic behaviour ofl(1) under this growth

condition. The results, however, are well known for other
models. The factor\/—lﬁ, as well as the assumption that the
Vandermonde entries~«: lie on the unit circle, are included
I e 1 in (@) to ensure that our analysis will give limiting asymiito
1 e I e IvE behaviour. Without this assumption, the problem at hand is
V=71 : U @ more involved, since the rows of the Vandermonde matrix with
—j(N—Dwr . 'e_j(N_l)wL the highest powers would dominate in the calculations of the
moments when the matrices grow large, and also grow faster to
where wy,...w, are independent and identically distributeghfinity than theﬁ factor in [@), making asymptotic analysis
(phases) taking values 0j0,27). Such matrices occur fre- difficult. In general, often the moments, not the moments
quently in many applications, such as finance [1], signaf the determinants, are the quantities we seek. Results in
array processing_[2]/ [3]/[4]/[5],16], ARMA processes [7] the literature also say very little on the moments of Vander-
cognitive radiol[8], security [9], wireless communicatifd0] monde matrices. The literature says very little on the mixed
_ o _ , moments of Vandermonde matrices and matrices independent
This project is partially sponsored by the project BIONEWRIA). L . .
This work was supported by Alcatel-Lucent within the Alddtacent Chair from them. This is in contrast to Gaussian matrices, where
on flexible radio at SUPELEC exact expressions [15] and their asymptotic behaviouf [16]

We will consider Vandermonde matric&s of dimension
N x L of the form

e
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are known using the concept of freenesg [16] which is centisthted, and the phase distribution of the Vandermonde eceatri
for describing the mixed moments. will always be denoted by.

The derivation of the moments are a useful basis for per-
forming deconvolution. For Gaussian matrices, deconiatut
has been handled in the literaturel[171,/[18],/[15].| [19m&ar
flavored results will here be proved for Vandermonde matdrice ] ]
Concerning the moments, it will be the asymptotic moments We first state a general theorem applicable to Vandermonde
of random matrices of the fori 'V which will be studied, Matrices with any phase distribution. The proof for this-the
where(.)¥ denotes hermitian transpose. We will also consid@f€m., as well as for theorems succeeding it, are based on
mixed moments of the formDV¥V, whereD is a square calculations where partitions are highly involved. We deno
diagonal matrix independent froii. by P(n) th_e set of all pgrtitiqns of1,...,n}, and we .wiII use

We will also extend our results to what are called genergl-2S notation for a partition it?(n). The set of partitions will
ized Vandermonde matrices, i.e. matrices where the colunfif €quipped with the refinement order i.e. p1 < p» if and
do not consist of uniformly distributed powers. These aY if any block ofp, is contained within a block gf,. Also,
important for applications to financé1[1]. The tools useW® Will write p = {pi, ..., p}, wherep; are the blocks op,
for standard Vandermonde matrices in this paper will allo@nd let|p| denote the number of blocks jn We denote by
us to find the asymptotic behaviour of many generalizéb: the partition withn blocks, and byl,, the partition with1l
Vandermonde matrices. block. _ _

While we provide the full computation of lower order [N the following D,.(N),1 < r < n are diagonall, x L
moments, we also describe how the higher order momefidtrices, andv is of the form [1). We will attempt to find
can be comp_uted. Tediou§ evaluation of many integrals. is M, =limy—o Eltrp( D1(N)VAVDy(N)VAV
needed for this, but numerical methods can also be applied. - x Dp(N)VEV)] 2
Surprisingly, it turns out that the first three limit momengn
be expressed in terms of the Mar&henko Pastur [law [L6], [269r many types of Vandermonde matrices, under the assump-
For higher order moments this is not the case, although Wen that & — ¢, and under the assumption that the (V)
state an interesting inequality involving the Vandermolimi@ have a joint limit distribution asV — oo in the following
moments and the moments of the classical Poisson distiibutPense:
and the Marthenko Pastur law, also known as the free Poissoefinition 1: We will say that the{D,.(N)}:<,<, have a
distribution [16]. joint limit distribution asN — oo if the limit

This paper is organized as follows: Sectibh Il contains
a general result for the mixed moments of Vandermonde
matrices and matrices independent from them. We will diff
between the case where the phasen (@) are uniformly
distributed on[0.27), and the more general cases. The case X
uniformly distributed phases is handled in secfioh IIl. st Dy =1Ii=1 D,
case it turns out that one can have very nice expressions, foiad we replaced Vandermonde matrices with Gaussian ma-
both the asymptotic moments, as well as for the lower ordéices, free deconvolution resuls [19] could help us cotapu
moments. SectioR IV considers the more general case wHBf quantitiesD;, .. ;. from M,. For this, the cumulants of
w has a continous density, and shows how the asymptotff§ Gaussian matrices are needed, which asymptotically hav
can be described in terms of the case wheis uniformly @ Very nice form. For Vandermonde matrices, the role of
distributed. The case where the density.ohas singularities cumulants is taken by the following quantites
displays different asymptotic behaviour, and is handleseicc ~ Definition 2: Define

Il. A GENERAL RESULT FOR THE MIXED MOMENTS OF
VANDERMONDE MATRICES

Diy,.ip = Jm trp (Dg, (N) -+ D (N)) )
@xists for all choices ofy,...,is. FOr p = {p1, ..., pr.}, with
= {pi1; s Pij | }» we also defind,, = D ¥ and

ROEERLIPY

tion[Vl Sectior{ V] states results on generalized Vanderreond N = Ly

matrices. The case when the powers also have some random = Nt 1IN @h(e_1) ~wb(i))
distributions is also handled here. Section] VIl handleseauix f(o,%)\n\ [Tk 1—e? @b(k—1) ~“b(k)) (4)
moments of independent Vandermonde matrices. Selctioh VIII dwy -+ - dwyp),

discusses our results and puts them in a general decormlu
perspective, comparing with other deconvolution ressligh
as those for G"?‘“SS""‘” deconvolution. . block of p which containsk (where notation is cyclic, i.e.

In the following, upper (lower boldface) symbols will beb N L

. (=1) = b(n)). If the limit

used for matrices (column vectors) whereas lower symbdls wi
represent scalar valueg,)” will denote transpose operator, Kyo= lim K,,n
(.)* conjugation and.) = ((.)7)" hermitian transposeL., N=oo
will represent then x n identity matrix. We lettr,, be the exists, thenk, ., is called aVandermonde mixed moment
normalized trace for matrices of orderx n, andT'r the non- expansion coefficient
normalized traceV will be used only to denote Vandermonde These coefficients will for Vandermonde matrices play the
matrices with a given phase distribution. The dimensiorth®f same role as the cumulants do for large Gaussian matrices.
Vandermonde matrices will always Bé x L unless otherwise We will not call them cumulants, however, since they don't

%herewm,...,wmp‘ are i.i.d. (indexed by the blocks qf),
all with the same distribution as, and whereb(k) is the
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share the same multiplicative properties (embodied in what(7) can be written
called the moment cumulant formula). &

The following is the main result of the paper. Different m. — K d. (10)
versions of it adapted to different Vandermonde matricdb wi " 1Zk e 71;[1 "

be stated in the succeeding sections. TiteetTR=n

Theorem 1:Assume that thgD,.(N)}1<-<, have a joint For the firsts moments this becomes
limit distribution asN — oo. Assume also that all Vander- e = Kid
monde mixed moment expansion coefficiefts,, exist. Then ! _ Kldl 2
the limit ’ me = Rady+ Kyady

ms = K3d3 + K271d2d1 + Kl,l,ld%
My, =limy—c Eftr.( Di(N)VIVDy(N)VHV (5) my = Kiydy+ Kz 1dgdy 4+ K 2d3 + Kz 11d2d? +
e X DH(N)VHV)] ‘Kvl,l’l,ldiL
; ms = Ksds + Ky1dadi + +K32dzda+
also exists wher}% — ¢, and equals Kot 1dsd® + Ky d3dy + Ko 11 1dad+
Z Kp,wc‘p‘_le- (6) Ki111.1d3
pEP(n) : :
The proof of theoreni]l can be found in appenfik A. (11)

Although the limit of K, ,, y asN — oo may not exist, itwill Thus, the algorithm for computing the asymptotic mixed
be clear from sectioR IV that it exists when the density.of moments of Vandermonde matrices with matrices independent
is continous. Theoreffd 1 explains how convolution with Varfrom them can be split in two:

dermonde matrices can be performed, and also provides us a& (@), which scales with the matrix aspect ratioand
extension of the concept of free convolution to Vandermonde. (1), which performs computations independent of the

matrices. Note that wheb,(N) = --- = D, (N) = I, we matrix aspect rati@.
have that Similar splitting of the algorithm for computing the asyrofi¢
M, = lim E [tr,; ((VHV)")} : mixed moments of Wishart matrices and matrices independent
—00 from them was derived iri_[19].

so that our our results also include the limit moments of the Alternatively, [11) gives us means of performing deconvo-
Vandermonde matrices themselvas, corresponds also to thelution. Indeed, suppose that one knows all the moments of
limit moments of the empirical eigenvalue distributié),,,, DV*V, i.e. them;, and would like to infer on the moments

defined by of D, i.e. thedy. By solving recursively the equations {11),
N O#HIN <A} one is able to retrieve thé;: For example,
Fyny(\) = —————,
N g = M
(where); are the (random) eigenvalues ¥ V), i.e. YK
2
M, = lim E UA"dFN(A)} . g — K (F)
N—o0 2 = )
K>
@) will also be useful on the scaled form and so on. Although the matricd®,;(N) are assumed to
cM,, = Z K, .(cD),. 7 be determinstic matrices throughout the paper, all forswula
pEP(n) ' extend naturally to the case whEn () are random matrices

independent fronV. The only difference when thB; (V) are
random is that certain quantities are replaced with fluainat
D, D, should for instance be replaced with

When D;(N) = Dy(N) = --- = D,(N), we denote
their common valueD(N), and define the sequende =
(D1, Da,...) with D,, = limy_,0try ((D(N))™). In this

caseD, does only depend on the block cardinalitigsg|, lim E |tr; (D(N))trg, ((D(N))Q)}
so that we can group together thé, . for p with equal N—oo
block cardinalities. If we group the blocks pfso that their whenD,(N) is random.
cardinalities are in descending order, and set In the next sections, we will derive and analyze the Vander-
. monde mixed moment expansion coefficieits,, for various
P)rsrarire = AP = {p1, -, i} € P(n)|pi] = rivi}, cases, which is essential for the the algorithm (11).
wherer; >ry > --- > rg, and also write
[1l. UNIFORMLY DISTRIBUTED w
KTl-,Tz »»»»» K T Z prwv (8) . ) . . )
Py We will let « denote the uniform distribution do, 27). We
PEP(N)ry rg, .. ry, !
. - can write
then, after performing the substitutions L
. Hnn Kpu,N = Goymraer=m X
m, = (cM),=climy_ F [trL ((D(N)V V) )] , n 1 N Ehk—1) b)) (12)
dy = (CD)n =climy_ o trg (Dn(N)), f(O,Qw)‘P‘ Hk:l 1—e? @b(k—1) ~Tb(k))

(9) da:l---dx‘p‘,
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where integration is w.r.t. Lebesgue measure. In this cadthenw = v, (11) takes the form
one particular class of partitions will be useful to us, the

noncrossing partitions:

Definition 3: A patrtition is said to be noncrossing if, when-

everi < j < k <, i andk are in the same block, and algo my = d
and!/ are in the same block, then dllj, k, ! are in the same my = dy+d3
block. The set of noncrossing partitions is denotedVay (n). my = ds+3dody + d
The_ noncrossing partitions have alrgady shown t_he|r_ useful my = dy+A4dsdy + >d2 + 6dod? + d?
ness in expressing the freeness relation in a particulacky n
way [21]. Their appearance here is somewhat different than i ms = ds+ bdady + §d3d2 + 10dsd? +
the case for the relation to freeness: 40 3
2 3 5
Theorem 2:Assume that thgD,.(N)}1<,.<, have a joint ?del + 10dzdy +dy
limit distribution asN — oo, Then the Vandermonde mixed me = dg+ 6dsdy + 12dsdy + 15d,d? +
moment expansion coefficient 151 , 3
2_0d3 + 50d3zdady + 20d3dy +
11d3 + 40d3d3 + 15dad; + dS
49
, my = dy + Tdedy + —dsds + 21dsd; +
Ky, = th K,un 107 3
g dads + 84dadad, + 35d4d3 +
1057 693
——d3dy + ——dsd3 + 175d3dad3 +

exists for allp. Moreover0 < K, ,, <1, theK,, are rational
numbers for alp, andK, ,, = 1 if and only if p is noncrossing.

The proof of theorerh]2 can be found in apperidix B. Due

20 10

4 3 280 2 73
85dydy + TTd3dy + —=d3di +
21dods + d.

to theorent L, theorel 2 guarantees that the asymptotic mixed

moments[(b) exist whe% — ¢ for uniform phase distribution,
and are given by[{6). The valuds, , are in general hard to

compute for higher order with crossings. We have performed
some of these computations. It turns out that the followinf€oreni2 and lemnid 1 reduces the proof of thedrem 3 to a

computations suffice to obtain thefirst moments.

Lemma 1:The following holds:

K{3).02.4))
K{{1,4),{2,5).{3.6}} u
K({1,4),{2,6).{3.5}} u

K{135),{2,4,6)}u
Ki1,5),(3.711.{2.4.6}}u

K{{1,6},2,4},{3,5,7} },u

B|©8|©8|:l\3|>—‘l\3|>—‘0\3|l\3

simple count of partitions. Theordr 3 is proved in appehdix D
To compute higher moments:,, K,, must be computed
for partitions of higher order. The computations performed
in appendiX_C an@D should convince the reader that this can
be done, but is very tedious.

Following the proof of theorernl2, we can also obtain for-
mulas for the fluctuations of mixed moments of Vandermonde
matrices. We will not go into details on this, but only stdte t
following equations without proof:

limy oo E [tre, (D(N)VEV)™) (tr, (D(N)VEV))™]
= E [tr, (D(N)VEV)")] D

climy oo E {Tr ((D(N)VHV)Q) trr ((D(N)VHV)Q)}
= 3d3 + 4dad? + 4dzdy + dg. w3

Following the proof of theoreni]2 again, we can also
obtain exact expressions for moments of lower order random

The proof of lemma]l is given in appendix¥ C. Combininandermonde matrices with uniformly distributed phased, n
theorem2 and lemm@l 1 into this form, we will prove thenly the limit. We state these only for the first four moments.

following:

Theorem 3:AssumeD; (N) = Dy(N)

Theorem 4:AssumeD;(N) = Dy(N) = --- = D,(N).
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Whenw = u, (I1) takes the exact form Note also that theorell 5 gives a very special role to the
uniform phase distribution, in the sense that it minimiZes t

mo= di » , moments of the Vandermonde matric¥s’ V. This follows
my = (1-N"")dy+d7 from (I3), since
ms = (1—3N71+2N72)d3 2m ol 2 ol

+3 (1= N1 dido + d /0 pu(2)” dz S/O P (z)’dz
me = (1 _ @Nfl +1IN"2 - gNg) dy for any densityp,. In [22], several examples are provided

3 6 where the integral§ (14) are computed.
+(4—12N"' +8N"2) dsd
( 8 19 ) dadh V. w WITH DENSITY SINGULARITIES
+ (g —5N" + €N2> d3 The asymptotics of Vandermonde matrices are different

when the density ofw has singularities, and depends on
the density growth rates near the singular points. It will be
Theoreni# is proved in appendix E. Exact formulas for thelear from these results that one can not perform deconvo-
higher order moments also exist, but they become increlgsinytion for suchw to obtain the higher order moments of the
complex, as entries for higher order ters” also enter the {D,(N)}i1<,<» (only their first moment can be obtained).
picture. These formulas are also harder to prove for highEhe asymptotics are first described fowith atomic density
order moments. In many cases, exact expressions are siogularities, as this is the simplest case to prove. Aftés, t
what we need: First order approximations (i.e. expressiofignsities with polynomial growth rates near the singuisit
where only theL ~!-terms are included) can suffice for manyare addressed.
purposes. In appendix E, we explain how the simpler case ofTheorem 6:Assume thatp, = .., pid,, IS atomic
these first order approximations can be computed. It seetwiered,, (z) is dirac measure (point mass)a&f, and denote
much harder to prove a similar result when the phases are hytp™ = >""_, p?* the corresponding moments. Then
uniformly distributed.

+6 (1= N7V dod? + df.

Jim E[Tr( Dl(N)%VHVDg(N)%VHV
V. w WITH CONTINOUS DENSITY
The following result tells us that the limik, ,, exists for
manyw, and also gives a useful expression for them in terms el (n) -
of the density ofv, and K, ,,. = " ipt )]\}EHOOH”L (Di(N)) -
Theorem 5:The Vandermonde mixed moment expansion o=t
coefficients K,,, = limy_.0 K, n €Xist whenever the Note here that the non—normgllzed trace is used. .
density p, of w is continous on0, 27). If this is fulfiled, ~ "€ Proof can be found in appendix] G. In particular,
then theorem[b states that the asymptotic momentsyo¥ Vv
o coincide with the moments of,,, up to the scaling factor
Kyw= Kp7u(27r)""_1 (/ pw(:c)”d:v) ) (14) c¢"~1. The theorem is of great importance for the estimation
0 of the anglesy; and the point masses in our Vandermonde
The proof is given in append[x F. deconvolution framework. In blind seismic and telecommu-
Besides providing us with a deconvolution method for finddication applications, one would like to detect the angles
ing the mixed moments of theD,.(V)}1<,<n, theoreni b also «; through deconvolution. Unfortunately, theorémn 6 tells us
provides us with a way of inspecting the phase distributipn that this is impossible, since thé™ (which are moments
by first finding the moments of the density, iﬁ,’r p.(z)*dx.  which we can find through deconvolution), do not depend on
However, note that we can not expect to find the density ofthem (this parallels theorel 5, since also there we could not
itself, only the density of the density af. To see this, define recover the density,, itself). Having found the)(™ through
deconvolution, one can, however, find the point magseby
Qu(@) = u({zlpo < }) solving for p1, ps, ... in the Vandermonde equation

X Dn(N)%VHV)]

n

for 0 < z < oo, wherey is uniform measure on the unit P op2 o pr 1 p
circle. Write alsog,, (z) as the corresponding density, so that 2 2 L p2 1 (2)
. . : L b1 P2 by =| P
qw(z) is the density of the density of. Then it is clear that . ) ) ) ’
2m 0o
/ po(@)lflde = / x" gy (v)dx. (15) even if the number of atoms may be unknown.
0 0

? The case when the density has non-atomic singularities is
These quantities correspond to the moments of the measggre complicated. We provide only the following result, athi

with densityq,,, which can help us obtain the density itself  addresses the case when the density has polynomic growth rat
(i.e. the density of the density of). However, the density., near the singularities.

can not be obtained, since we see that any reorganization ofhegrem 7:Assume that
its values which do not change its densijty will provide the ) .
same values if{15). Jim |z — a;]°pu,(z) = p; for somed < s <1
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for a set of pointsay, ..., a.,, with p, continous forw # matrices, where in (I3) is replaced by a random variable

a1, ..., Then taking values in0, N) (uniformly distributed or not), i.e.
1 = 1 " e~ JA1wi A
Nh~r>noo E[Tr( Dl(N)NSV VDQ(N)FV A% 1 e—itewi L. g—idewr
- x D, (N)=—=VV)] VN | ¢ Lo
Nsn e~ JANWIL .. o—iANwWL
= " tg™ R [Ttz i) with the \; mutually independent, and also independent from
=1 the w;. The integralsk, , and K, ., y can be defined as in
where (@) here also. They will, however, additionally dependfoar
. A, so they will be denoted b¥<, ., s, Kpw,r.n, Kpwor, and
g™ = (2F(1 — 5) cos (@)) p(™) x 16 Kp,w,/\,z_v- . _ o
i i 1 (16) We first look at the case whan is uniformly distributed.
0.1]" 22k=1 Jap g —ax 77 We explain how to compute the limit distributions based on

. the results for non-generalized Vandermonde matrices. The
() = 3 pn - i
andp >, pi'. Note here that the non-normalized trace '3quat|on56) of appendi B are now replaced by

used.
The proof can be found in appendi¥ H. Also in this case Z flig—1) = Z flig). (19)
it is only the point massep; which can be found through kEp; k€Ep;

deconvolution, not the singularity locations. Note that the
integral in [16) can also be written as anfold convolution.
Similarly, the definition ofK, ., v given by [4) can also be
viewed as a&-fold convolution whenp has two blocks, and
as a3-fold convolution whenp has three blocks (but not for
p with more than3 blocks).

A very useful application of theorefd 7 is the case wh

. ) : the S€ WNeHtegrands. The same applies fit(p, u, \).
w = sin(z), with = uniformly distributed. The density will = 500 \we only explain how the proof of this goes for
then be of the formfi2resin(w) L

—=» Which goes toinfinity certain , in particular wherp is noncrossing. The equations
nearw = £1 (which correspond te: = +7/2) at ratez~ /2. (37) are the same also for generalized Vandermonde matrices
TheoreniY thus applies with= 1/2. For this case, however, with uniformly distributed phases, with the differencettttze

the "edges” atk/2 are never reached in practice [22], i.e. wariablesz, ..., z, now all have the densitp;. Whenp is

can restricto in our analysis to clusters of interval§[a;, 5;]  noncrossingk, ., ; becomes

not containingt1, for which the results of sectidnV suffice.

Since the distribution of converges to a probability measure
with densityps, we can prove the following:

Theorem 8:The Vandermonde mixed moment expansion
coefficientsK, ., .y can be computed by evaluating integrals
over the same volumes as those in the proof of lerhima 1 in
appendi{C, with additional insertions of the dengityin the

n+1—|p|

In this way, we also avoid the computation of the cumbersome ! K (p)s]
integral [16). 1:]1: /0 pr(z) dx, (20)
where we have used the observation from appendix B that the
VI. GENERALIZED VANDERMONDE MATRICES free variables in the equation system](37) are given by the

Until h b iderina Vand d i block structure in the Kreweras complemeiitp) [21]. In
ntil now, we have been considering Vandermonde matric ) we have also used thak'(p)| = n + 1 — |p|, and have

where the colum_ns have a umform d|str|but|_oq of powers. | enoted the blocks ok (p) by K (p);.
this section we will look at matrices where this is not theecas A

. ) ) s another exampl becomes the sum of
Such matrices are called generalized Vandermonde matrices PI&X ({13 2.4 s

and are of the form f()l Olfrl Or1+zs
e ifWwr . gmif(Dwr pr(@1)ps(@2)pp(xs)ps (@1 + w3 — 2)dwodrsdry
L eir@en L i@ (21)
V= | . _ 7 17) and

1 r1 -1
fO flle jI1+£E371
pr(@1)pys(w2)py(2s)ps(z1 + a3 — fcz)dfczd%dx(lzvz)
where f is a discrete function taking values i0,....,N —  4ccording to the integrals computed in apperidix C. The other
1}, apd Who_se empirical distribution function converges to R'p,u,f are computed by inserting densities in the integrand
function Py, i.e. similarly: For eachp we compute the reduced row echelon
LR < N form of the equation systemh (37), and insert the dependence
[{kIF (k) < Na}| _ . e
= Ps(x) equations from the reduced form (suchaas= z; + x3 — x2
in the above) into the integrand variables as above. g
for 0 <z < 1. We will denote byp; the density ofPy. We That the same result applies when matrices of the form
will also consider a second type of generalized Vandermon@&) is used, is apparent from the law of large numbers.

e—if(Nywi .. g=if(N)wr

R N
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These "generalized” integrals are easily computed based orProof: This follows in the same way as theorEm 3 is proved

the evaluation of the integrals in appenfik C, for cases whéom lemmall, by only considering which are less tham,

py is a polynomial. and also by using theorem 5. are for the listed moments
Similar reasoning applies when has a continous density: {{1},{2}}, {{1,3},{2,4}}, and{{1,3,5},{2,4,6}}, respec-

Theorenib can be used in this case also, with the change tinaly. ]

the integrals fork, , are replaced with integrals with addi- The results here can also be extended to the case with

tional insertions of the density,,, as explained in theoreld 5.independent Vandermonde matrices with different phase dis
We will not consider generalized Vandermonde matricegbutions:

with density singularities. Theorem 10:Assume tha{V,;}1 <<, are independent Van-
dermonde matrices, wheM; has continous phase distribution
VIl. THE JOINT DISTRIBUTION OF INDEPENDENT w;. Denote byp,,, the density ofu;. Then equation{23) still
VANDERMONDE MATRICES holds, with K, ., replaced by
In the case when many independent random Vandermonde or s
matrices are involved, the following holds: Kﬁu(gw)\f)\*l/ pri ()7l da,
Theorem 9:Assume that thgD,.(N)}:1<,<, have a joint 0

limit distribution asN' — oco. Assume also thaly, Vs, . wherep; is the partition ofs; consisting of the blocks op
are [ndgpendent Vandermonde matrices with _the same phasfiained ino;,
dIStI’I.bu.'[IOI’lw, and that the density ob is continous. Then The proof is omitted, as it is a straightforward extension of
the limit the proofs of theorenid 5 ahdl 9. Until now, we have not treated
limy oo Eftr( Di(N)VIIV;,Dy(N)VIV;, mixed moments of the form
X Dy (N)VEV,)]

_ D, (N)V,VIDy(N)V;, VI ... x D, (N)V; V]
also exists wher}% — ¢, and equals

217

which are the same as the mixed moments of thedrém 9

Y. K,udiD, (23) except for the position of thd;(N). We will not go into
p<oeP(n) depths on this, but only remark that this case can be treated
whereo is the partition where: andj are in the same block in the same vein as generalized Vandermonde matrices by
if and only if i, = 7,. replacing the density (or p, in case of continous generalized
For the proof of theorem] 9 and the next results, we defiMandermonde matrices) with functionsp, () defined by
o; to be the blocks of, i.e. pp, () = D;(N)(|Lz],|Lz]) for 0 < = < 1. This also
] ] covers the case of mixed moments of independent, genatalize
o;j = {klix = j}. Vandermonde matrices (and, in fact, there are no restnistio
Proof: Note that theoreif]5 guarantees that the lifjt, = on the horizontal and vertical phase densifigs andp,; for

limy o0 K, N EXists. The partitiorp simply is a grouping €ach matrix. They may all be different). The proof for this is
of random variables into independent groups. It is theeefostraightforward.

impossible for a block irp to contain elements from bothy

and o9, so that any block is contained in either or o5. As VIIl. DISCUSSION

a consequencg, < o. ]

Corollary 1: The first three mixed moments We have already explained that one can perform deconvolu-

tion with Vandermonde matrices in a similar way to how one
M, = lim E [tm ((V{IVQVQLIVI)”)} can perform deconvolution for Gaussian matrices. We have,
N—oo

however, also seen that there are many differences.
of independent Vandermonde matric€s, V, are given by

M, = I A. Convergence rates

My, = 212 +2I5+ Iy In [15], almost sure convergence of Gaussian matrices was
:1)’1 shown by proving exact formulas for the distribution of lawe

M; = %IQ + 413+ 914 + 615 + Is, order Gaussian matrices. These deviated from their linyts b

terms of the forml/L?. In theoreni#, we see that terms of
2 the form1/L are involved, which indicates that we can not
I, = (2m)leI—1 (/ pw(x)pda?> . hope for almost sure convergence of Vandermonde matrices.
0 There is no reason why Vandermonde matrices should have the
In particular, when the phases are uniformly distributé® t almost sure convergence property, due to their very differe

where

first three mixed moments are given by degree of randomness when compared to Gaussian matrices.
M, = 1 Figures[1[ P show the speed of convergence of the moments
11 of Vandermonde matrices (with uniformly distributed ple)se
M, = £} towards the asymptotic moments as the matrix dimensions
411 grow, and as the number of samples grow. The differences

Mz = 20 between the asymptotic moments and the exact moments are
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1 T T T T T 1 T T T T T
+ +  MSE between exact and asymptotic moments + +  MSE between exact and asymptotic moments
O MSE between estimated and exact moments O MSE between estimated and exact moments
0.9 b 0.9 b
[¢]
0.8 q 0.8 q
0.7 + - 0.7 + B
0.6 - 0.6 B
+ ° +
0.5 o o B 0.5 B
*o o © +
0.4 O b 0.4 b
ot o +
03%0 4 © o4 03t + B
[e]
o ++ o ° +
0.2k Lo o 0.2k $+ 4
o © © © *e
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Ty © 09 000 o o 00 ° ©
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Fig. 1. MSE of the firs#4 estimated moments from the exact moments foFig. 2. MSE of the firstt moments from the actual moments 820 samples
80 samples for varying matrix sizes, witN = L. Matrices are on the form for varying matrix sizes, withV = L. Matrices are on the foriv 'V with
VHV with V a Vandermonde matrix with uniformly distributed phasese ThV a Vandermonde matrix with uniformly distributed phasese MSE of the
MSE of the first4 exact moments from the asymptotic moments is also showmoments and the asymptotic moments is also shown.

1 T T T T T
+  MSE between exact and asymptotic moments

also shown. To be more precise, the MSE of figlides 1[and o e e e
is computed as follows: oor © |
1) K samplesV; are independently generated usihy (1). oer ]
2) The4 first sample moments;; = 1tr, (V{IVZ-)J) ool |
(1 <j < 4) are computed from the samples. o
3) Thed first estimated momentd/; are computed as the °°f
mean of the sample moments, i, = % Zfil Mji.  osl i
4) The 4 first exact momentsE); are computed using

theorenl 4. 04 1
5) The4 first asymptotic momentd; are computed using .| ° 5 |

theoren{B. o 5

. . e}

6) The mean squared error (MSE) of the firstesti- o2 CHR L © . ]

mated moments from the exact moments is compute |° ° ., ° % ° & o

~ 2 1 o o o i
4

aszj:l Mj N Ej ' oﬂ:1911HH‘PDH@MMQM111??1%19??@1‘?%@1191%? ’“w?w muci)w??w&?\m??\u

7) The MSE of the firstt exact moments from the asymp- 50 100 150 0 250 400

totic moments is computed g8, (E; — 4;)°.

Figured1 gn@]Z are in _sharp cor?tr_ast with Gaussian matric%g'\;‘ryir']\gsﬁgi;hgi;;%ﬂfwT,eitst.m,\Tamgezcgzl ﬁmir‘};?g;@?'ﬁs

as shown in figurgl3. First of all, it is seen that the asymptotiith X a complex standard Gaussian matrix. The MSE of the momenks an

moments can be used just as well instead of the exact momehrggsymptotic moments is also shown.

(for which expressions can be found in_[23]), due to the

O(1/N?) convergence of the moments. Secondly, it is seen

that only5 samples were needed to get a reliable estimate @8 n — oo [21]. For our analysis, we will only need the

the moments. classical Poisson distribution with rateand jump sizel. We
will denote this quantity by/.. The free Poisson distribution

with rate A and jump sizex is defined similarly as the limit
B. Inequalities between moments of Vandermonde matriggs

and moments of known distributions (( A A BN
1-2) w50

We will state an inequality involving the moments of Van- 0o+ ﬁéf’

dermonde matrices, and the moments of known distributions

from probability theory. The classical Poisson distribativith asn — oo, whereH is the free probability counterpart of
rate A and jump sizex is defined as the limit of classical additive convolution [21], [16]. For our analysive

will only need the free Poisson distribution with ra%eand
((1 /\) ot /\6 )*N jump sizec. We will denote this quantity byu.. p. is the
- 0 e
n n

n

same as the better known Marthenko Pastur law, i.e. it has
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the density[[15] The first three moments coincide for the three distributions
and arel, 2, and5, respectively.

1 V@ —a)tb—o)t ’

122 — _ 2\t

fre@) =0 c) do() + Imex (24 The numbersfp, and p, are simply the number of

where(z)* = max0, z), a = (1— /)%, b= (1++/2)2. Since partitions in NC(n) and P(n), respectively. The number

the classical (free) cumulants of the classical (free) gemis Of partitions in NC(n) equals the Catalan number, =

2n H
distribution are\a” [21], we see that the (classical) cumulants 77 () [21], so they are easily computed. The number of

of v, arec,c, c,c, ..., and that the (free) cumulants pf, are partitions ofP(n) are also known as the Bell numbéss [21].

1,¢,¢2,¢3, ... In other words, ifa; has the distribution., They can easily be computed from the recurrence relation
then
o(at) = X encn) c‘n‘—lpll =2 peNC(n) clE@l-1
= Z NC(n P = n
e @) B = B},
k=0

Here we have used the Kreweras complementation map, which

is an order-reversing isomorphism 8fC(n) which satisfies

lp| + |K(p)] = n + 1 (here¢ is the expectation in a non-

commutative probability space). Alsodf has the distribution |t is not known whether the limiting distribution of our

v, then . ¥ Vandermonde matrices has compact support. Cordllary 3 does
E(a3)= > . (26) ot help us in this respect, since the Marchenko Pastur law
pEP(n) has compact support, and the classical Poisson distributio

We immediately recognize the”|~!-entry of theorenill in has not. In figurél4, the mean eigenvalue distributior4f

@3) and [ZB) (except for an additional power ©in (28)). samples of d600 x 1600 Vandermonde matrix with uniformly
Combining theorenfl]2 wittD;(N) = --- = D,,(N) = Iy, distributed phases is shown. While the Poisson distributio

@5), and [(26), we thus get the following corollary to theo¥: iS purely atomic and has massesoatl, 2, and3 which
aree !, e7t, e71/2, ande!/6 (the atoms consist of all

rem[2:
Corollary 2: Assume thatV has uniformly distributed integer multiples), the Vandermonde histogram shows a more
phases. Then the limit moment continous eigenvalue ditribution, with the peaks which the
. Poisson distribution has at integer multiples clearly blesi
My = lim E {tTL ((VHV) )} here as well (the peaks are not as sharp though). We remark

that the support oWV goes all the way up tdV, but lies
within [0, N]. It is also unknown whether the peaks at integer
d(a?) < M, < lE(ag), multiples in the Vandermondg histogram grow to infinity as
c we let N — oo. From the histogram, only the peak at
wherea; has the distribution. of the Maréhenko Pastur law, seems to be of atomic nature. In figufds 5 &hd 6, the same
anday has the Poisson distributian.. In particular, equality histogram is shown forl600 x 1200 (i.e. ¢ = 0.75) and
occurs form = 1,2,3 andc¢ = 1 (since all partitions are 1600 x 800 (i.e. ¢ = 0.5) Vandermonde matrices, respectively.
noncrossing forn = 1,2, 3). It should come as no surprise that the effect of decreasiag
Corollary[2 thus states that the moments of Vandermonsietching the eigenvalue density vertically, and congingsit
matrices with uniformly distributed phases are boundedr@abohorizontally. just as the case for the different MartheRkstur
and below by the moments of the classical and free Poisdaws. Eigenvalue histograms for Gaussian matrices which in
distributions, respectively. The different Poisson disitions the limit give the corresponding (in the sense of coroll@dy 2
enter here because their (free and classical) cumulants Marchenko Pastur laws for figur€s 5 (i.ee.75) and[® (i.e.
semble thec!?!—l-entry in theoren(]l, where we also canus), are shown in figures] 7 ard 8.
use thatk,, = 1 if and only if p is noncrossing to get a
connection with the Marchenko Pastur law. To see how close
the asymptotic Vandermonde moments are to these upper and
lower bounds, the following corollary to theordrh 3 contains
the first moments:
Corollary 3: Whenc = 1, the limit moments
My, = lim E [ty (VIV)")]
N—

o0

satsifies the inequality

C. Deconvolution

the momentsfp, of the Marchenko Pastur law;, and the

, AE IR ) Deconvolution with Vandermonde matrices (as stated in
momentsp,, of the Poisson distribution; satisfy

(@) in theorem) differs from the Gaussian deconvolution

fra=14 < My= 43—4 ~ 14.67 < pa=15 counterpart[2/1] in the sense that there is no multiplieafd]
fps =42 < My =126 ~ 4867 < ps=2052 structure involved, sincé(, ., is not multiplicative inp. The
fre =132 < M= Bn ~ 178.556 < pg =203 Gaussian equivalent of theordm 3 (i€ V replaced with
frr =429 < M;= @ ~ 713.67 < p;=28T77. %XXH, with X an L x N complex, standard, Gaussian
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Fig. 4. Histogram of the mean eigenvalue distribution 6a0 samples
of VHEV, with V a 1600 x 1600 Vandermonde matrix with uniformly

distributed phases.
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Fig. 5. Histogram of the mean eigenvalue distribution 6a0 samples
of VHEV, with V a 1600 x 1200 Vandermonde matrix with uniformly

distributed phases.

matrix) is

mp =
mo =
m3 =
myg =
ms =

meg =

dy

da + di

ds + 3dsdy + d?

dy + 4dsdy + 3d3 + 6d2d? + df
ds + 5dady + 5dsds + 10d3d%+
10d3d1 + 10d2d3 + d3

d + 6dsdy + 6dads + 15d,d3+
3d3 + 30dsdady + 20d3d3+

5d3 + 10d3d3 + 15d2d} + d

d7 + Tdedy + Tdsda + 21d5d3+
Tdyds + 42dydady + 35d4d3+
21d%dy + 21d3d3 + 105d3dadi+
35dsd} + 35d3d; + 70d3d3+
21dad5 + df,

10

(27)

4 5 6 7 8 9 10

Fig. 6. Histogram of the mean eigenvalue distribution6df) samples of
VHV, with V a1600 x 800 Vandermonde matrix with uniformly distributed
phases.

0.9 7

0.8 q

0.7 4

4 5 6 7 8 9 10

Fig. 7. Histogram of the mean eigenvalue distribution20f samples of
XX, with X an L x N = 1200 x 1600 complex, standard, Gaussian
matrix.

(where them; and thed; are computed as i](9) by scaling
the respective moments k. This follows immediately from
asymptotic freeness, and from the fact tI;ipKXH converges

to the Marchenko Pastur law.. In particular, when all
D;,(N) = I, and ¢ = 1, we obtain the limit moments:
1,2,5,14,42,132,429, which also were listed in corollar@B8e

can also write down a Gaussian equivalent to the fluctuations
of Vandermonde matrice§ (13) (fluctuations of Gaussian ma-



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, JANARY 2008 11

splits the numerics into two parts: The approximation of the
0ol | integrals [ p,(z)?ldz, and the approximation of th&, .. A
strategy for obtaining the latter quantities could be tal@anly
generate many numbers betwe@rand 1 and estimate the
volume as the ratio of the solutions which satisfy](37) in
appendix[B. Implementations of the various Vandermonde
1 convolution variants given in this paper can be found.in [25]

In practice, one often has a random matrix model where
independent Gaussian and Vandermonde matrices are both
71  present. In such cases, it should be possible to combine the
individual results for both of them. In_[22], examples on how
this can be done are presented.

IX. CONCLUSION AND FURTHER DIRECTIONS

I I I I I I
4 5 6 7 8 9 10

We have shown how asymptotic moments of random Van-

Fig. 8. Histogram of the mean eigenvalue distribution26f samples of dermonde matrices can be computed analytically, and tteate

+XXH, with X an L x N = 800 x 1600 complex, standard, Gaussianmany different cases. Vandermonde matrices with uniformly
matrix. distributed phases proved to be the easiest case and was give
separate treatment, and it was shown how the case with more

trices are handled more thoroughly in [24]). These are ~ 9eneral phases could be expressed in terms of the case of
uniformly distributed phases. The case where the phase-dist

E [(trn (D(N)%XXH))Q} bution has singularities was also given separate treatrasnt

= (tr,(D(N))? + ﬁtrn(D(N)Q) this case displayed different asymptotic behaviour. Alsxech

E(tr (D(N)iXXH))”] moments of independent Vandermonde matrices were com-

= (tr,(D(N))" + O(N~2) putegl, as I\/velldz:l;_the mo;nents of g:enerallzeo! Vandermqnde
1 H 1 e H)\2 matrices. In addition to the general asymptotic expression

E Ltrn (D(N)NXX )trn ((D(N)NXX ) )} stated, exact expressions for the first moments of Vandedmon

7o (D(N))trn (D(N)?) + O(N2). matrices with uniformly distributed phases were also state
These equations can be proved using the same combinatoricalhroughout the paper, we assumed that only diagonal
methods as in[[23]. Only the first equation is here stated amtrices were involved in mixed moments of Vandermonde
an exact expression. The second and third equations algo hamatrices. The case of non-diagonal matrices is harder to
exact counterparts, but their computations are more ieeblv address, and should be addressed in future research. The
Similarly, one can write down a Gaussian equivalent to theanalysis of the support of the eigenvalues is also of impeoga
rem[4 for the exact moments. For the first three moments (the well as the behavior of the maximum and minimum
fourth moment is dropped, since this is more involved), ¢hegigenvalue. The methods presented in this paper can not be
are used directly to obtain explicit expressions for the asyotipt
mean eigenvalue distribution, so this is also a case fordutu

mo= ) research. A way of attacking this problem could be to develop
my = dy+dj for Vandermonde matrices analytic counterparts to what one
ms = (14+N7?)ds+3dids + d. has in free pobability (such as th@- and S-transform and

their connection with the Stieltjes transform).

Finally, another case for future research is the asymptotic
behaviour of Vandermonde matrices when the matrix entries
éignoutside the unit circle. The asymptotics are very défer
In, this case. The choice of Vandermonde matrix entries on
tunit circle was applied for this paper since the asyniptot

aviour is more easily addressed in this case.

This follows from a careful count of all possibilities aftére
matrices have been multiplied together (for this, see @8 [
where one can see that the restriction that the mati;¢4V)
are diagonal can be dropped in the Gaussian case). It is s
contrary to theorenfi]4 for Vandermonde matrices, that tHd
second exact moment equals the second asymptotic monLQ
from (27), and also that the convergence is faster Q(e.~2)) e
for the third moment (this will also be the case for higher

moments).
The two types of (de)convolution also differ in how they APPENDIXA
can be computed in practice. Inh_]19], an algorithm for free THE PROOF OF THEOREN(]

convolution with the Mar¢henko Pastur law was sketched. A

similar algorithm may not exist for Vandermonde convolu- We can write

tion. However, Vandermonde convolution can be subject to

numerical approximation: To see this, note first that thedBe  E [tr, (D1 (N)VZ VD, (N)VHV ... D, (N)VIV)] (29)
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L7 in B Di(N)(j1,51)VH (j1,02) V (i2, j2)
Dy (N) (52, j2) VH (52, i3) V (i3, j3)

Ds(N) (s )V (s i)V (i1, 1)

(30)
The (j1,...,jn) give rise to a partitiorp of {1,...,n}, where

each blockp; consists of equal values, i.e.

pj = {kljr =7}
Write
Pj = {leapjm "'7pj‘pj‘}'

When (51, ..., jn) give rise top, we see that since

Jpir = Jpjz = 7" = Jpjip;0
we also have that
Wiejg T Wipe T T wj"j\raj\ ’

and we will denote their common value hy,, as in defini-
tion[2. With this in mind, it is straightforward to verify tha

(30) can be written as

Zpe?(n)
2 (inemin)

o G1sein)
giving rise to,
N[t

ol J ZkEp- ikflfzkep- ik )Wpy
k:lE e ( j j )

D1 (N)(j1,41)D2(N) (2, j2)
o X Dy (N) (s Jn)

We will in the following switch between the forni (81) and

the form

ZPET‘(n)
L G1sesdn)
giving rise top
(2150001m)
Nlpl=n=1¢lpl=1 Il
HZ:I E (e-j(“’b(kfl)—wb(k))ik
D1 (N)(j1, j1)D2(N) (52, j2)

where we also have reorganized the powersVoaaind L in

(31)

(32)

The notation for a joint limit distribution simplified _(B2).
Indeed, add to[(32) for eaghthe terms

Zp’e?(n)7p’>P

L U1edn)
giving rise to,
C?p\*lL*\p\Kp_’w_’N (34)

D1(N)(j1, 51)D2(N) (2, j2)
<+ X Dp(N)(fns Jn)

These go td) as N — oo, since they are bounded by
APl L NI = K,y LI = oL .

After this addition, the limit of [[3B) can be written

> K, D, (35)
pEP(n)
which is what we had to show.
APPENDIXB
THE PROOF OF THEORENR
Note that
E (ej(zkeﬂj -1 kep ik)ij) -0
when
Z ih—1 # Z ks
k€p; kep;
and1 if
Y iki= ik (36)
kep; kep;
We thus define
SN =
{it i} 3 i = >0 ik € {1, lol},
kep; kep;

and|S, n| to be the cardinality of5, 5. With this definition
in place, it is obvious that

lim
N—oo
Finding the limit distribution thus boils down to finding, ~|,
which is equivalent to finding the number of solutions to
equations of the form[(36), where the variables are integers
constrained to lie betweeh and N. For lemmalll we will
compute|S, n| for certainp of lower order. To prove theo-

. 1
K,u= ngnoo Kyun= mwm N)|

(31), and changed the order of summation (i.e. summed ovem[2, we need not compute specifft, v |.

the differentiy, ..., 4, first). (32) will also be written

Zpeﬂ’(n)
L L Usesin)
giving rise to,
c‘P“lL“P‘Kp,w,N
D1 (N)(j1,41)D2(N)(j2, j2)

(33)

whereK, ., v is defined in theorerl 1. This form is obtainedree variables among, ..

from (32) by using the geometric sum formula.

First we explain whyK, , < 1. Itis clear thatS, v| is the
number of integer solution@y, ..., i, ) between 1 andV to a
system of the formAi = 0, wherei = (iy,...,4i,), and A is
|p| x n, with all entries being-1, 0 or 1. Also, it is clear from
(38) that each column afl contains exactly one-1 and one
1, or contains just zeroes. Such a matrix has rgnk- 1, as
can be found through elementary row reduction. Hence, there
are |p| — 1 pivot columns inA, so that there are + 1 — |p|
.,in) in the solution set oAi = 0.
Therefore,|S, x| < N**1=I7l, which proves thats, ., < 1.
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Also, by dividing the equation$ (B6) hi/, and letting N is not equals to a free variable. But théf), , < 1 for such
go to infinity, we see thai, ,, can alternatively be expressedp, which proves the theorem.

as the volume of the solution set of We remark that it is the form{87) which will be used
in the other appendices to compuk&, , for certain lower
Z Th—1 = Z Tk- (37) order p. From the proof, we see that whenis noncrossing,
wep kep there exists a partition of1,...,n} into n + 1 — |p| blocks,

as a volume inR"+1= Il (i.e. the volume is computed afterwhere two elements are defined to be in the same block

expressing the remaining| — 1 variables in then + 1 — |p| if and only if their corresponding variables are equal. It is
free variables). Sincé < i, < N, we have thad < z;, < 1, obvious from the construction above that this partitionhie t
so that the volume lies withif0, 1]"+'~17I, and is bounded Kreweras complt_emept of, denotedK (p) [21]. This fact is
by a finite set of hyperplanes due @ §37). The integral faised elsewhere in this paper.
such a volume can be expressed for any gigethowever
complex). Although we will only compute a few of these APPENDIXC
integrals directly, it is clear that the integral computesat THE PROOF FOR LEMMAT]
rational _number greater tha(m bUt. less thanl, since only We will in the following compute the volume of the solution
polynomials are involved in the integration procedure, and . 1|l 1|
: set of [37), as a volume ino, 1] PlC R rl, as
since only0 and 1 may be constant upper or lower bounds : K .
) ) : o explained in the proof of theorel 2. These integrals are very
in the integrals. From these integrals it is also clear that t_ "
: : : . tedious to compute. The formula
integral is equal tal if and only if the reduced row echelon
form of (34) only contains rows witB nonzero entries (these rls! vt .
2 entries will then bel and —1 respectively), after removing 1 / z"(1 - z)°de
: : : (r+s+1)! Jp

the rows which have only’s. This corresponds to solutions o ] )
where each constrained variable is equal to one of the fe& be used to simplify some of the calculations for higher
variables. For the rest of the proof it therefore sufficeshions  V&lues ofn.
that such a solution set occurs if and only if the partitiois
noncrossing. A. Computation o (1 3} (2.4}}.u

If p is noncrossing, there exists a blopk (after renum-
bering the blocks if necessary) which consists of a sing(lﬁ
interval of numbers, sayr,r + 1,...,7 + |p1|}. This block’s
equation in [(3b) is easily seen to imply that ; = i, ,,|.
Also, ir.’ - if+|ﬁl‘*1 can be chos_en arbitrarily. Therefore, thi$, R3_ Since this means that
block gives rise tdp; | —1 free variables. We now add together
the equation for the block;, and the equation for the block x4 = o1 + x3 — X2 lies betweerD and 1,
p2 which containsr + |p1| + 1 (again after renumbering the
blocks if necessary), and replaces the two rows with this.su
Columnsr, ..., + |p1| are easily seen to contain orlis, so i
that these can be removed from our equation system (sirg@trioution

This is equivalent to finding the volume of the solution set

X1+ X3 =29+ x4

We can set up the following integral bounds: Whert x5 <
1, we must have that < x5 < 7 + 23, so that we get the

we are just interested in counting the number of free vaegbl Lopl=z pzitas

in the solution set. These removed variables gave rise to /0 /0 /0 dzydzsdz,
|p1| — 1 free variables). The new equation system corresponds L/1

to the equation system for another noncrossing partition of = /O (5 - 5;5%) dxq

{1,...,n — |p1|} (created by merging the blocks and p-),

with |p| — 1 blocks. The step where we find a block which is _ [lxl _ lxﬂ '
an interval can now be repeated to combine two more blocks 2 67! 0
to merge, and this process can be repeated until we remain 111
with 1 block with |p|,|| elements aftefp| — 1 block merges. T 2 6 3

Itis clear that this last block gves rise fo,|| free variables. \yhen1 < 4, + 24, we must have that, + 25— 1 < 25 < 1
If we sum up the total number of free variables we get ¢4 that we get the contribution -

lpl—1

1 1 1
ol + 32 (ol = 1) =n— (lpl = 1) =n+1~ ol [ [ dndsdn
i=1 0 1—x1 Jx14+2x3—1
1
All in all we see that the solution set is as described as = / (_1(1 — )2+ 1) dx;
above (i.e. each constrained variable is equal to one of the 0 2 2

free variables), so thav"*!~Il choices ofiy, ..., i, satisfy
(36), which shows thai, , = 1 whenp is noncrossing. It is
easy to see that, whenhas crossings, the procedure followed 1 1
above will fail, so that at least one of the constrained \deis = 6 + 573

Il
|
—~
—_
|
8
-
~—
w
+
|
8
-
| I
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Adding the contributions together we g%twhich is the stated C. Computation of((; 4} (2.5},{3.6}}.u

expression f_orK{{l,3}7{2,4_}}7u- S This is equivalent to finding the volume of the solution set
Computation of certaink,, can be simplified by the ¢

following: Let al(m)(x) be the polynomial which gives the
volume inR™~! of the solutions set ta:y + -+ - + x,, = =
(constrained t® < z; < 1) for I <z <1+ 1. Itis clear that in R*, which is computed as

these satisfy the integral equations 1 9
! . / (@P)3(t)dt + / (@3 (t)dt
al™ ™ (z) = / al™ (t)dt + / a™(t)dt,  (38) 0 1

T1+ T4 =22 + x5 =23 + T

2

-1 ! 1y ! 1 4
_ _ = |t +|-=(2-1)
which can be used to compute thg'(z) recursively. Note 4 ], 4 1
first thatal" (z) = 1. Form = 2 we have _ 1 n 1 1
P 4 4 2
a((JQ) (x) = / aél)(f)dt = which is the stated expression féf( (1 41 (2.5},{3,6}},u-
0
1
(2) _ (1) —9_ .
a1 (x) - ~/m—1 o (t)dt =2-z D. Computation Of[({{174}7{276}7{375}}7u
Form = 3 we have fThis is equivalent to finding the volume of the solution set
z 0
(3) _ ) 12
ag’(x) = /0 ag’(t)dt 57 I
! i To+xe = T3+T
ag?’)(:v) / a((JQ)(t)dt—i—/ af)(t)dt S
r—1 1

in R*. Since this means that

rs = x1 — T2 + x4 lies betweer) and1,
(3— I)2. r¢ = x1 — T2+ x3 lies betweer) and1,

_ _ @ we can set up the following integral bounds:
By integrating thea;’ (x), we can double-check our compu- For z, > z; we must haver, — z1 < z3,z4 < 1, SO that

tation of K11 31 12,43}, above: we get the contribution
1 @) 2 ) 1 1 1 1
[ @i+ [ @2 L[] [ s
0 1 0 x1 Jro—x1 JT2—2T1
1 1 1 2 1 1
= [gtﬂo + {—5(2 - t)?’] 1 = /0 / (1 — 22 + x1)*daaday
1
2 1
_ = 1 1
1 1 7!
B. Computation of{(; 35} 2.4.6}},u = [_Ex‘f + §I1]
For m = 3, integration gives 1 1 1 °
1 2 3 = 277977
3 12 4
| @i [ @@roas [@@roa
0 1 2 Itis clear that forz; > zo we get the same result by symmetry,
1 .1t so that the total contribution i$ + 1 = %, which proves the
5 . 172
= [2_Ot L + claim.
1 = 1 1
t+—(t—1P°——2—-t)°—-=(t—-1)° .
[1 * 20( )1 20( ) 3( ;o E. Computation ofK'((1 51 3.7}, {2.4,6}}.u
2=t + =(t—-1))+ is is equivalent to finding the volume of the solution set
2=+ (t = 1)} This is equival finding the vol f the soluti
of
1 ak
——(3—1t)°
[ 20( ):|2 1+ x5 = X2+ Tg
= J— 1 J— - - - = I - 3 7 4 1
20+ +20+20 3 3+60+2O .
11 in R®, or
20 Te = a5+ 11 — 20 lies betweerd and1,

which is the stated expression féf((; 351 12.4,6}},u- r7 = x4+ 2 — x3 lies betweerD and1 . (39)
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Assume first thatr; < x5 < z3. Thenazy — 27 < 25 <1 andzs — z; < x4 <1, so that we get the contribution

andxzs — x; < x4 < 1, so that we get the contribution 1 pzy pl pmg—midl el
/ / / / / d$4d$5d$3d$2d$1
0 0 z1 JO T3 —T1

1 T 1
= / / / (1+ 29 —x1)(1 — 23 + x1)dwsdrada,
1,1 pl gl 1
/0 /:51 /:E2 /Iz_w1 /CES_I1 drsdrsdrsdrada / / __xl (1420 —21)
1

1
= /0 / (1 -2+ x1)(1 — 23 + x1)drzdredr, 2(1 + x5 — x1))droday
1
1 1 1
1 _ Lo 1, 2 1 1 2
= ‘/0 /m(§(1_x2+x1)3 = A <—ZI1+ZI1(1—I1) +Z—Z(1—I1) dIl
1 1111
—Ex%(l—xg—i—:cl))d:cgd:cl = —E‘Fm‘i‘z—ﬁ
o ) 1 _ —10+1+30-10
= / |:—§(1—$2+$1)4+Z$%(1_$2+$1)2:| dxl B 120
0 T 11
1 = —.
1 1 1 1
— [ (g gat+get - gedan 120 .
o 8 8 4 4 We get the same contribution fag < z; < x5 by symmetry.
_ 11 n 1 1 Adding the six contributions together, we get
8 40 20 12
15-34+6—-10 8 1 4 1 27 )

_ L _ + _—=— = -,
= Y0 101 _ 15_ 60 60 20
which proves the claim.

F. The computation of((1 6} 2,4},{3,5,7}},u

We get the same contribution faf, < 23 < z» by symmetry. ~ This is equivalent to finding the volume of the solution set

of
Assume thatrs < z3 < z1. Then0 < z5 < 1+ z9 — 71 n B n
and0 < z4 < 1+ 25 — x1, So that we get the contribution TiTde = T27I7
To+ 2Ty = X3+ I
in R®, or
e = x7+ w9 — 71 lies betweer) and1,
1 1 o 1+xzo—2x1 1+x3—x1 .
/ / / / / dzydrsdrsdreds, x5 = x4+ x2 — 3 lies betweerD andl, .
0

1 pzy pwo This can be obtained fron[_(B9) by a permutation of the
/ / / 1+ 29 —x1)(1 + 23 — x1)dwzdradr,  variables, so the contribution frofd; 6}, (2,4},{3,5,7}},u Must

also be20, which proves the claim.
APPENDIXD
_5 (1 + 22 — 21)(1 — 21)?)dwoday THE PROOF FOR THEOREN
1y We will have use for the following result, taken from [21]:
= / (= —=(1—ax)* Lemma 2: The number of noncrossing partitionsNvC'(n)
o 8 8 with r; blocks of lengthl, ro blocks of length2 and so on
_i(l —x)? + i(l —a1)")dx (so thatry + 2ry + 3rg + -+ - nry, = n) is
1111 n .
= §_4_O_ﬁ+% rilrel - orpln+1—ry —rg-oomy)!
_ L-3-10+6_ 8 _1 Using this and a similar formula for the number of partitions
120 120 15 with prescribed block sizes, we obtain the following listcaf-

dinalities for noncrossing partitions iNC/(7) with prescribed
block sizes. The cardinalities of all partitions #(7) with
these prescribed block sizes is also shown in parenthesis:

We get the same contribution fop < z3 < 21 by symmetry. ¢ (7): 1 (of 1)
. (6,1):7 (of 7)
Assume thatts < 1 < z3. Then0 < 5 < 29 — 21 + 1 e (5,2): 7 (of 21)
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o (5,1,1): 21 (of 21) 2) p = {p1, p2, p3} With |p1| = |p2| = 2, [ps| = 1. There

e (4,3): 7 (of 35) are 15 such partitions, of whicts have crossings. The total

o (4,2,1): 0 contribution is therefore

4,2 42 (of 105 ibution is theref

3 IR Lie

° )y = + .

. (3,2,2): 21 (of 105) 3

* (gv?’ 17 1)11035(022;2) C. The moment of sixth order

. . 0 . . .

. 52’ 2’ 2’ 1): 2))5 of((of 10)5) Five cases require extra attention:

. (2’2’ 1’1 1): 70 (of 105) 1) p = {p1, p2} with |p1| = 4, |p2| = 2: There arel5 such

. (2’ 1’ 1’ 1’ 1,1): 21 (of 21) partitions, ands of them are noncrossing. The crossing ones

. (1’ 1’ 1’ 1’ 1’ 1): 1 (of 1) contribute with K1y 3y 12,4}},u, SO the total contribution is
This totals429 noncrossmg partitions, angir7 partitions. A 6 + 9K{£1 3},{2,4} },u
similar listing can be written down for partitions of ordér = 6+9x % =12
5, and6 also. .

' , 2) p = {p1,p2} with |p1| = |p2| = 3: There arel0 such

F(;)_r trll_et, proof, we needéq Comtptlr’] (8')|hf__c()]rlfu _p:_cr)]ss]lble bllo rtitions. 3 of these are noncrossing. One of the crossing
cardinalities(ry, ..., 7i,), and insert these i )- The formula artitions contribute Withi(((; 3 5} (2.4,6}},u» the others con-

for the three first moments are obvious, since all partitiohs tribute with &
length < 3 are noncrossing. For the remaining computations,
the following two observations save a lot of work: 3+6 x K{{l 3}.{2, 4;; ut K{1,35},{2,4.6}}u

e If p1 € P(m1), p2 € P(ns) With ny < na, andp; can = 346x 2+ =1l
be otained fronp, by omitting elements in {1,...,n2} 3) p = {p1, p2, ps} With |p1| = 3,|p2] = 2,|ps| = 1:

such thatk and k + 1 are in the same block, then WeThere are60 such partitions, of whict80 are noncrossing.
must have thak(,, ., = K, .. This is straightforward to The total contribution is

prove since it folows from the proof of theordm 2 that
ix+1 can be chosen arbitrarily betweérand NV in such
a case.

o K, u=K,,, if the set of equation§(37) fqr, can be ~ 4) p = {p1,p2, p3} with |p1| = |p2| = |ps| = 2: There
obtained by a permutation of the variables in the set f 15 such partitions.5 of them are noncrossingt of the
equations forpy. Since the rank of the matrix fof {B7) partitions with crossings have no inner block, and each of
equals the number of equationsl, we actually need these contributes Withi((; 43 125} (3,6}},.- The remaining
only have that|p;| — 1 of the |p;| equations can be 6 partitions with crossings have an inner block, and each

{{1,3}.{2.4}},u- The total contribution is therefore

30 4+ 30 x K{{l 3},{2,4}},u
= 30+30>< = =50.

obtained from permutation dfp.| — | equations of the contributes with Ky 3y 2.4y}, The total contribution is
|p2| equations in the equation system fer therefore
5+ 4K{g1 4,25 (3,61 u T 0813} (24130
A. The moment of fourth order = S+4x5+6x 5 =1L

The result is here obvious except for the case for the threes) p = {pl,pQ,pg,p4} W|th lp1] = |p2| = 2, |ps| = |pa| =
partitions with block cardinalitie$2,2) (for all other block 1: There are45 such partitions, of which5 has crossings.
cardinalities, all partitions are noncrossing, so that ,, ...,  The total contribution is
is simply the number of noncrossing partitions with block 30 + 15K
cardinalities(r1, ..., 7). this number can be computed from
lemmal2). Two of the partitions with blocks of cardinality
(2,2) are noncrossing, the third one is not. We see frof) The moment of seventh order
lemmall that the total contribution is

[L3) (24} )
= 30415 x ——40.

8 cases require extra attention:

Ko i 2+£{§1é3}7{2=4}}7u 1) p = {p1,p2} With |p1| = 5, |p2| = 2: There are21
= 2+35=3 such partitions, and’ of them are noncrossing. The total
The formula for the fourth moment follows. contribution is

7+ 14 x K{{l %} A{2,4}}u
B. The moment of fifth order = 7+14x

Here two cases require extra attention: 2) p = {p1, p2} with |p1| = 4, |p2| = 3: There are35

1) p = {p1, p2} with |p1| = 3, |p2| = 2: There arel0 such such partitions, of whiclf are noncrossingd. of the partitions
partitions, and of them have crossings and constribute witlvith crossings contribute Withi'r¢q 553 2.4,61},4, the rest
K{{1,3},42,4}},u- The total contribution is therefore contribute withK'¢; 3} {2,41},.- The total contribution is

5+5XK{{13(}{24}}71 7+7><K{{135}{246}}u+21XK{{13}{24}}u

= 5+5x2=2 = TH+Tx B +21x2=91
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3) p={p1,p2,p3} With [p1| =4, |p2| = 2, |ps| = 1: The
total contribution is

7x 12 = 84.

4) p = {p1,p2, p3} With |p1]| =3, [p2| =3, [ps| = 1: The

total contribution is

151

151 _ 1057
7 X 20 = 20

20 °

5) p = {p1,p2, p3} With |pj| = 3, |p2| = |ps| = 2: This is
the hardest one to compute. A close inspection of @3l such
partitions in light of lemmall gives thatl of them contribute
with 1 (the noncrossing ones)4 of them contribute withzi,
42 of them contribute with%, and28 of them contribute with
3. The total contribution is therefore

693

63 _ 693
10 ©

21+ 14x 5 +42x 2 +28x 1 =63+ 8 =

6) p = {p1,p2.p3,pa} With [p1| = 3, |p2]| = 2, |p3| =

|p4] = 1: The total contribution is
21 x 22 =175.

7) p = {p1.p2,p3,pa} With |p1]| = |p2| = |p3| = 2, |psa| =
1: The total contribution is

7Tx11="177.

8) p = {p1,p2,p3,p4,p5} With |p1| = |p2| = 2, |ps| =
|pa] = |ps| = 1: The total contribution is

280

8 _
35 X 5 = ==,

APPENDIXE
THE PROOF OF THEORENH]

In order to get the exact expressions in theokém 4, we now

17

T, in terms of theD,. We obtain the following formulas for
n =4

Ti{1,2,3,4y) = Da

Ti{1,2,31,4433 = DsDy — L™ Dy

Ti{12y 4341y = D3 = L' D4

Tiq1.2y, 4314413

= DQD% —2L1 (D3D1 — L_1D4)

~L ' (D3~ L~'Dy) — LDy

= DyD} — L™ (D3 +2D3D;) 4 2L72D,

Trqy 23,3144

=D} — 6L~ (DyD? — L™ (D3 +2D3D1) + 2L72D,)

—3L72 (D2 — L™'Dy)

—4L72 (D3D1 — L_1D4) — L_3D4

= —6L73Dy+ L2 (8D3D1 4+ 3D3) — 6L~ 'D,D?} + 1(7‘11.)
42

Forn = 3 andn = 2 the formulas are

Ti(1,2,3)) = Dj

Tiqioy,0313y = DiDa—L7'Ds

T{{1}7{2}){3}} = D% — 3L_1D1D2 + 2L_2D3 (43)
Tia2n = D

Tiaygzy = DI—L7'Ds.

It is clear that [[4R) and[{43) cover all possibilities when it

comes to partition block sizes. Using] (9), and puttihg] (40),
(42), and [(4B) into[(33) we get the expressions in thedrem 4
after some calculations.

A. First order approximations to theorelnh 4

If we are only interested in first order approximations rathe
than exact expression§, {41) gives us

> L7'D,,

p'>p
lpl—=1p'1=1

T,~D,—

need to keep track of th&, , v defined byI(#), not only the \hich is easier to compute. Also, we need only first order
limits K, ,, (if we had not assumed = w, the calculations 45 oximations tok «.N» Which is much easier to compute

for K, . ~ would be much more cumbersome). Wheris
a partition of{1,...,n} andn < 4, we have that, , v =
K,.=1whenp# {{1,3},{2,4}}. We also have that

2 1 1
Kpsrzapeny =3+ 5 + eya (40)
where we have used that )" i? = ¥ (N + 1)(N + 1) [28].
We also need the exact expression for the quantity
17, = > o G1aein)

giving rise to,

L—lel

Dl(N)(.]lajl)DQ(N)(]Qan)

from (33) (i.e. we can not adf (B4) to obtain the approxinmatio

(39) here). We see that

T,=D,— Z re'i=lel,,

p'>p

(41)

than the exact expression. Fbrj(40), this is

2 1
K3y, (2.4} uN R 3 4 N’

Inserting these two approximations [0 {33) gives a first orde
approximation of the moments.

APPENDIXF
THE PROOF OF THEOREND

For p = 1,, theorenib is trivial. We will thus assume that
p # 1, in the following. We first prove thalimy .. K, . .~
exists whenevep,, is continous. To simplify notation, define

n

[1

k=1

1 — eI N(wpk—1)—Wo(k))
Flw) = c

1 — e (Wok—1) —Wb(x))

n

sin (N(wb(kﬂ) - wb(k))/Q)
k=1 sin ((Wa(k—1) — W(r))/2)

(where D, and D,, are defined as in sectién Il, but withoutand setw = (w1, ...,w|p|) anddw = dw; - - - dw),|. Sincew is

taking the limit) which can be used recursively to express tltontinous, there

exists @,q. such thatp, (w;) < pmas for
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all w;. Then we have that le% for any 0 < ¢ < 1. Also, then — 2-fold convolution
plel (we wait with then — 1'th convolution till the end) Ofll%
|Kp7w7N| < ﬁ .

n | sin(V s —ea)/2) with itself exist outsided wheneverd < (n —2)e < 1, and is
X ﬁ072ﬁ)‘p‘ T, Sin((mb; 7; ( ;/2) dz, on the formrm for some constant [26]. Therefore,
e (47) is bounded by
where we have converted to Lebesgue measure. Consider first 1 1 1
the set / TW mdl’ / de‘f
U= {w||xb(k,1) — xb(k)| < FV/C} |z[>1 |m|>12T
When 2% < |wyx—1) — wpy| < 0, it is clear that = m—2)0c—1'

sin (N (zp(5-1) — Tor))/2) This proves that the entire sgr‘ri[47) is bou_nded, an_d thus

sin ((Zp(k_1) — To(e))/2) ; (44) also the statement on thg existence of the lififp,w) in
b(k—1) ™ “b(k) theoren{b when the density is continous.

since]sin (N(zp—1) — :vb(k))/2)] < 1, and since sin(z)| > For_the rest of the proof of theordnh 5 , we first record the

|Z] when|z| < Z. When|zy;—1) — 25| < 2 we have that following result:

( ) Lemma 3:For anye > 0,

sin (N (@p(r—1) — »”Cb(k))/2 1

: <N. (45) m ot _

s ((xb(kfl) - ffb(k))/Q) o /Be R Fw)dw =0, (49)

N —oo N’n-ﬁ-l—‘p‘
Let ki, ..., k|, € Z, and assume that, = 0. By using the where
triangle inequality, it is clear that on the set

4

Tp(k—1) — LTo(k)

<

ok Be,r = {(wla ---aw\p\)”wb(rfl) - wb(r)| > 6}'
]\’f < %Vl <i<|pl}, Proof: The setB. , corresponds to those, ..., k|, in (47)
for which |y 1) — k(| > %e. Thus, for largeN, we sum
when |k, — ks| > 2 for all r,s, the i'th factor in F'(z) is overky, ..., k, in (47) for which|ky,_1) —ky,| is arbitrarily

Tr; —

Dy, ks = {wl

bounded by(‘kb( )4]Zb( = due to [(4%). Also, whef%,. — large. By the convergence of the Fourier integralﬁqf, it is
r—1) " ry|—41)mT X =

ks| < 2 for somer, s, the corresponding factors if(x) are clear that this converges to zero. ]

bounded byN on Dy, .., due to [@5). Note also that the Define

volume of Dy, .., _, is (2m)/?I='N'=I¢l. By adding some Be = {(w1, .. w)p| )| |wi — w;| > € for somei, j}.

more terms (to compensate for the different behaviouykior

i _ 2¢
k| > 2 and|k, —k,| < 2), we have that we can find a constanjl & € Bes there must exist an so thatw,, 1) —wyr) | > 57,

so thatw € B, »./,,. This means that

D that
m fU |F(l')|d(E B€ - UTBT,QE/na
< s N so that by lemma&]3 also
X Z(}Sk ,,,,, klp|—1<N (H?:l #) 27T(27T)IPI_IN1_IPI . 1 _
a" lki d|fferent I b(r—1) b(v‘)‘ ]\}Enoo m . F(W)dw =0.

— n n 1
= (27-‘—)‘9‘D Zogkl ..... klp|—1<N Hrzl Tovr—1)—Fom |’

all »; different This means that in the integral fdk, . n, we need only

(46) integrate over ther which are arbitrarily close to the diagonal,

where we have integrated w.ri, also (i.e.k, is kept (wherew; =---= wyp|). We thus have
constant in[(46)). A similar analysis as fot applies for the ) . ol
complement set Ko =lmy oo 3mgi=pr f[o_’%)‘p‘ F(x) T2, po(x,)d

= limy—o m f[o,zn)\p\ F@)Pw(ﬁm)‘”dm
=limy_ o0 m fozﬂ pw(zlpl)‘p‘

(f[O,zw)\p\—l F(z)dxy - - dz|p)—1

dzjp)-

We used here the fact that the density is continous. Using tha

V = {w|r < |xp—1) — Ty | < 27 for somek},
so that we can find a consta@t such that

m f[o.,zn)\p\ |F(x)|dx

1
< CZogkl ,,,,, k|p|—1<N Hrzl m,
all x; different

It is clear this sum converges: First of all, this is only negd limpy 00 m f[oy%)\p\fl F(z)dxy - - dx)p—y (50)

(47)

to prove forp = 0,,, since the summands for+# 0,, is only = (277)‘P‘*1Kp_,u
a subset of the summands for= 0y.. __whenz,, is kept fixed at an arbitrary value (this is straightfor-
Secondly, forp = 0,,, (41) can be bounded by_ consideringyard by using the methods from the proof of theof@m 2 and
convolutions of the following function with itself: (12)), and again using the fact that the density is continous
L for |z| > 1 we get that the above equals
={ Il
/(@) { 0 for |2] <1 (48)

2T
K,.(27 lpH/ po(@)Plda;,
The assumption thaf(z) = 0 in a neighbourhood of zero is pu(2m) 0 (®i01) lel
due to the fact that thi; are all different. Note thatf(«)| < which is what we had to show.
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APPENDIXG In (583), the N"-factor appears in exactly the same way as
THE PROOF OF THEORENg] in the proof of theoren]5 in appendi® &V —!”| appears as
The contribution in the integrak, ., y comes only from @ volume inRI?, and N'#I* comes from evaluation of the

N ] - e 2k : e 1
when thew; coincide with the atoms ofp. Actually, we density in the points; = <%=, 1 <i < [p|). Since - has a

jNw . . . i i i
evaluatel=¢"“ in points on the formw = a; — a;. This bounded integral aroun@, and since the sum still converges

1—ew

evaluates taV"p? when allw; are chosen equal to the saméit is dominated by[(47))[(83) is
. j N w .
atomay;. Sincelimy ..o §gogey = 0 for any fixedw # 0, O (s(lp| —n) - 1).

limy oo Ky NN~ = 0 whenw is chosen from nonequal

atoms. [3) (with additional /N-factors) thus becomes This has it's highest order whép| = n, so that we can restrict

to looking at0,,. Note also that we may just as well assume

D peP(n) that p., () is identical top;|x — w;|~* at an interval around
G1seepin) wj, sincelim, _.q, | — o;|*pu(x) = p; implies that
giving rise to, . .
Ganrin) 61 Pw(T) = pilr — w;i| 7% 4 k(x)|z — w;] (54)
Nlpl=2n=1clpl=1 1 ~lel (1) wherelim,_.,,, k(z) = 0. It is straightforward to see that the
(X N"pit +apNN™)) contribution of the second part ifi_(54) tb_{53) vanishes as
D1 (N)(j1, 1) D2(N) (2, j2) N — oo, so that we may just as well assume tha(z) is
X Dy (N) (i, jin) identical top; |z — w;|~* at an interval around;, as claimed.
wherelimy .+ a, v = 0. Multiplying both sides withV and Also, since _
letting N go to infinity gives lim x e dr =0
n—oo |z]|>e
lim Z Nlel=nlpl-1 (Zp? + ap.N> D,. for all e > 0, and since the contributions from largelominate
N—oo - ’ . . —s A Lo
pEP(n) P in (5) below (since), |n|~* diverges), it is clear that we

can restrict to an interval aroung when computing the limit
also (sincep,, is continous outside the singularity points, this
follows from theorenils, and due to the additiong}-factor
i n el () . added to[(l1)). After restricting t6,,, multiplying both sides
¢ <ZPZ> ao, = c"~'p™ Tim J[trs (Di(), with IV, summing over all singularity points, and usifgl(52),
! we obtain the approximation

It is clear that this converges tbwhenp # 0,, (since|p| < n
in this case), so that the limit is

N—o00 -
i=1

which proves the claim

Z(ilv'“vin)
APPENDIXH >
THE PROOF OF THEOREN N—msen—lx
We need the following identity [26]: (2pap(1 — 8) cos ((1—;%))" «
o 1 F 1 - jsgn(n)(l—s)m n ej(ik— —ig)aa
/ 28I o — %8#, Hk:l m
0 Il trp (D1 (N))try (Da(N)) - - try (D (V)
wheresgn(z) = 1 if 2 > 0, sgn(z) = -1 if z < 0, and0 » ‘ (55)
otherwise. From this it follows that to (32). Since[[;_, e(x-1~)% =1, we recognize

ffooo pilr — ;| TS eI dx =

2p;edne LU=9) (g ((135)”) ) (52) g = (2F(1 — 5) cos (@))” (1Zap2) X

—ns n
Z(i17~~~7in)N Hk:l Iikfl—iklli'S’

Note that the measure with densijtyhas the same asymptoticsas a factor in[{85) such that the limit GF{55) 45— oo can
nearq; as the measure with density|x — a;|~° on be written

1 1
1—s\T=* [1—s\T¢ n
- . n—1 71: (n,N) 71: )
( < 2p; ) ’ ( 2p; ) ) ¢ ]\;E»noo q ngnoo 1:[1 trr, (Dz (N)) :

As in the proof in appendik G, the integral for the expansiof therefore suffices to prove thitny_, o ¢ = ¢(. To
coefficients is dominated by the behaviour near the poirdge this, write

(o, ...,a;). To see this, note that the behaviour near the

‘nllfs

singular points on the diagonal i (s(|p| —n) — 1) when L 1

polynomic growth of ordes of the density near the singular ik — il " N (%)17S Jik—1 — |

points is assumed. This is very much related 47) in 1 1

appendiXF, sincé<, ., here in a similar way can be bounded T Nl |7

by (taking into account new powers &) N N
Cm]\rﬂ]\f*m']\ﬂms S(:%Ting ok\J/er glll gdil, S _g N, itis clearhf_rohm this that
%3 ocrramen 1T \kbwl)lfkb(r)\ Hz‘til 3 (53) ¢ can be viewed as a Riemann sum which converges to

all &; different ¢ asN — .
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