
Chapter 1

Probability review

1.1 Measure theory for probabilists

In this first section, we recall the main notions of measure theory needed in probability theory.
Standard (advanced) textbooks on the subject are [5, 8]. A first introduction is given in [43].

1.1.1 Probability space

Definition 1.1.1. A probability space is a triple (Ω,F ,P) where Ω is a given set (sometimes
called the ”fundamental set”), F is a σ-field on Ω, and P is a probability measure on (Ω,F).
We recall here that

- A σ-field (or σ-algebra) on Ω is a collection F of subsets of Ω such that
(i) ∅ ∈ F ,

(ii) if A ∈ F , then Ac ∈ F ,

(iii) if (An, n ≥ 1) ⊂ F , then ∪n≥1An ∈ F .

- A probability measure (or probability distribution, or distribution) on (Ω,F) is an applica-
tion P : F → [0, 1] such that

(i) P(∅) = 0,
(ii) if (An, n ≥ 1) ⊂ F is such that An ∩Am = ∅ for all n 6= m, then

P (∪n≥1An) =
∑

n≥1

P(An),

(iii) P(Ω) = 1.

Definition 1.1.2. A sub-σ-field of F is a collection G of subsets of Ω such that

(i) G ⊂ F (that is, if A ∈ G, then A ∈ F),

(ii) G is itself a σ-field.

Definition 1.1.3. Given a collection A of subsets of Ω, the σ-field generated by A and denoted
by σ(A) is the smallest σ-field on Ω that contains A.

Example 1.1.4. The σ-field on R generated by the collection of open intervals ]a, b[ with a < b,
is called the Borel σ-field on R and is denoted by B(R). Elements of B(R) are called Borel sets.
Note that B(R) is also generated by the collection of semi-infinite intervals ] −∞, x], x ∈ R.

Example 1.1.5. The measure µ that assigns to each interval ]a, b[⊂ R its length b − a can
be extended uniquely to all subsets of B(R). It is called the Lebesgue measure on R and and
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is denoted by µ(B) = |B|. Note that it is not a probability measure, since µ(R) = ∞, but it
verifies points (i) and (ii) of the definition. Moreover, it becomes a probability measure when
restricted to the interval [0, 1].

Remark 1.1.6. In this course, probability measures on (R,B(R)) will generally be denoted by
the letter µ, in order to avoid confusion with probability measures P on general spaces (Ω,F).

1.1.2 Random variable

Let (Ω,F ,P) be a probability space.

Definition 1.1.7. A random variable on (Ω,F) is an application X : Ω → R such that

{ω ∈ Ω : X(ω) ∈ B} ∈ F , ∀B ∈ B(R).

Note that in order to check that a given application X is a random variable, it is sufficient to
verify that

{ω ∈ Ω : X(ω) ≤ t} ∈ F , ∀t ∈ R.

Remark 1.1.8. The set {ω ∈ Ω : X(ω) ∈ B} is often simply denoted by {X ∈ B}.
Definition 1.1.9. - Let G be a sub-σ-field of F . A random variable X is said to be G-measurable
if

{ω ∈ Ω : X(ω) ∈ B} ∈ G, ∀B ∈ B(R).

- σ(X) denotes the σ-field generated by the collection of subsets {{X ∈ B}, B ∈ B(R)} (note
that this collection of subsets is itself a σ-field; it is therefore equal to the σ-field σ(X)).

Remark 1.1.10. - X is a G-measurable random variable if and only if σ(X) ⊂ G.
- A B(R)-measurable random variable f : R → R is also called a Borel-measurable function.
- Any continuous function f : R → R is Borel-measurable.
- If X is a random variable and f : R → R is a Borel-measurable function, then f(X) is a
random variable.

Definition 1.1.11. The law (or distribution) of a random random variable X : (Ω,F) →
(R,B(R)) is the probability measure µX defined on (R,B(R)) as

µX(B) = P({X ∈ B}), B ∈ B(R).

A random variable (considered separately) is essentially characterized by its law. Two ran-
dom variables X, Y with the same law are said to be identically distributed (i.d.) and this is
denoted by X ∼ Y . We distinguish two particular types of random variables.

A) Discrete random variables. If X takes its values in a countable set D, then its law µX is
entirely characterized by the sequence of non-negative numbers (µX({x}), x ∈ D) that sums up
to 1.

B) Continuous random variables. If the law of X is absolutely continuous with respect to
Lebesgue’s measure on R (this is to say that µX(B)=0 for all Borel sets B such that |B| = 0),
then the Radon-Nikodym theorem implies that there exists a Borel-measurable function pX :
R → R+, called the density function of X, such that

µX(B) =

∫

B

pX(x) dx, ∀B ∈ B(R).

This implies in particular that
∫

R
pX(x) dx = 1.
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Remark 1.1.12. In the expression pX(x), the subscript X recalls that the application pX is
the density function of the variable X (as it is the case for the law µX), whereas x is a real
number, namely the point in which the application pX is evaluated.

Definition 1.1.13. For A ∈ F , the application 1A : Ω → R, called the indicator function of A,
is defined as

1A(ω) =

{

1, if ω ∈ A,
0, if ω /∈ A.

It is a random variable and is moreover discrete (taking only two values 0 and 1).

1.1.3 Expectation

Let (Ω,F ,P) be a probability space. Recall that an event A ∈ F is said to be negligible if
P(A) = 0. On the contrary, an event B ∈ F is said to be almost sure (a.s.) if P(B) = 1.

The definition of the expectation (or average, or mean, or even Lebesgue’s integral, depending
on the context) of a random variable X on (Ω,F ,P) is made in three steps.

Step 1. For any random variable X of the form

X(ω) =

∞
∑

i=0

xi 1Ai
,

where xi are non-negative numbers and Ai ∈ F , we define

E(X) =

∞
∑

i=0

xi P(Ai) ∈ [0,∞].

In particular, note that E(1A) = P(A).

Step 2. For any non-negative random variable X, let us define the following sequence of random
variables

Xn(ω) =

∞
∑

i=0

i

2n
1{ i

2n ≤X< i+1

2n }(ω).

Note that Xn is of the type defined above: i
2n ≥ 0 and Ai = { i

2n ≤ X < i+1
2n } ∈ F because X is

F-measurable. Moreover, Xn(ω) ≤ Xn+1(ω) for all n and ω and limn→∞Xn(ω) = X(ω) (Xn is
a sequence of staircases with more and more refined steps below the function X). It is therefore
natural to define

E(X) = lim
n→∞

E(Xn) = lim
n→∞

∞
∑

i=0

i

2n
P({ i

2n
≤ X <

i+ 1

2n
}) ∈ [0,∞].

Note that the sequence (E(Xn)) is also non-decreasing and therefore converging in [0,∞].

Step 3. For any random variable X, let us define X+ = max(X, 0) and X− = max(−X, 0), its
positive and negative parts. Note that |X| = X+ + X− ≥ 0. We say that X is integrable if
E(|X|) <∞ and we define

E(X) = E(X+) − E(X−).

Another notation for E(X) is the following:
∫

Ω
X(ω) dP(ω)

(

or

∫

Ω
X(ω) P(dω)

)

.
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When P = µ is a probability measure on (R,B(R)) and X = f is a Borel-measurable function,
this notation becomes

∫

R

f(x) dµ(x).

We have the following useful formulas for computing expectations.

Proposition 1.1.14. Let X be a random variable and g : R → R be a Borel-measurable function
such that E(|g(X)|) <∞. Then

E(g(X)) =

∫

R

g(x) dµX (x),

where µX is the law of X. We moreover have the following two particular cases.

A) If X is a discrete random variable with values in D, then

E(g(X)) =
∑

x∈D

g(x) P({X = x}).

B) If X is a continuous random variable with density function pX , then

E(g(X)) =

∫

R

g(x) pX(x) dx.

We list hereafter some well known properties of expectation.

(i) Linearity: if c ∈ R and X, Y are integrable, then E(cX + Y ) = cE(X) + E(Y ).

(ii) Monotony: if X, Y are integrable and X ≥ Y a.s. (that is, P({X ≥ Y }) = 1), then
E(X) ≥ E(Y ). This implies in particular positivity: if X ≥ 0 a.s. then E(X) ≥ 0.

(iii) Strict positivity: if X ≥ 0 a.s. and E(X) = 0, then X = 0 a.s.

Furthermore, we say that a random variable X is square-integrable if E(X2) < ∞ and that
it is bounded if there exists K > 0 such that |X| ≤ K a.s. We have the following series of
implications:

X is bounded ⇒ X is square-integrable ⇒ X is integrable,

X is integrable and Y is bounded ⇒ XY is integrable

and

X,Y are both square-integrable ⇒ XY is integrable.

We define the variance of a square-integrable random variable X as

Var(X) = E((X − E(X))2) = E(X2) − E(X)2 ≥ 0

and the covariance of two square-integrable random variables X, Y as

Cov(X,Y ) = E((X − E(X))(Y − E(Y )) = E(XY ) − E(X)E(Y ).
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1.1.4 Inequalities

We list here some of the well known inequalities concerning expectation.

Proposition 1.1.15. (Cauchy-Schwarz’ inequality)
If X, Y are square-integrable random variables, then

E(|XY |) ≤
√

E(X2)
√

E(Y 2).

Proposition 1.1.16. (Chebychev’s inequality)
If X is a random variable and ϕ : R → R+ is increasing on R+ and such that E(ϕ(X)) < ∞,
then for any a > 0, we have

P({X > a}) ≤ E(ϕ(X))

ϕ(a)
.

Note that the above inequality has actually different names (Chebychev, Markov, Bernstein,
Chernoff, ...), depending on the community of researchers. We shall use it often with ϕ(x) =
exp(tx), t > 0.

Proposition 1.1.17. (Jensen’s inequality)
If X is a random variable and ψ : R → R is convex and such that E(|ψ(X)|) <∞, then

ψ(E(X)) ≤ E(ψ(X)).

1.1.5 Convergence theorems

Let us cite here the three famous convergence theorems of measure theory.

Lemma 1.1.18. (Fatou’s lemma)
If (Xn) is a sequence of non-negative random variables, then

E

(

lim inf
n→∞

Xn

)

≤ lim inf
n→∞

E(Xn).

Theorem 1.1.19. (Beppo-Levi’s monotone convergence theorem)
If (Xn) is a sequence of non-negative random variables such that Xn ≤ Xn+1 a.s. for all n, then

lim
n→∞

E(Xn) = E

(

lim
n→∞

Xn

)

.

Theorem 1.1.20. (Lebesgue’s dominated convergence theorem)
If (Xn) is a sequence of random variables such that X = limn→∞Xn exists a.s. and there exists
an integrable random variable Y with |Xn| ≤ Y a.s. for all n, then

lim
n→∞

E(|Xn −X|) = 0 and lim
n→∞

E(Xn) = E(X).

1.1.6 Independence

Let (Ω,F ,P) be a probability space. We define the notion of independence for three different
objects.

1) Independence of events. A collection (A1, ..., An) of events in F is said to be independent if

P(A∗
1 ∩ . . . ∩A∗

n) = P(A∗
1) · · ·P(A∗

n)

for any A∗
i = Ai or Ac

i .
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2) Independence of σ-fields. A collection (G1, ...,Gn) of sub-σ-fields of F is said to be independent
if

P(A1 ∩ · · · ∩An) = P(A1) · · ·P(An)

for all Ai ∈ Gi.

Remark 1.1.21. The collection of events (A1, ..., An) is independent if and only if the collection
of σ-fields (σ(A1), ..., σ(An)) is independent.

3) Independence of random variables. A collection (X1, ...,Xn) of random variables is said to be
independent of the corresponding collection of σ-fields (σ(X1), ..., σ(Xn)) is independent.

Remark 1.1.22. In order to check that the collection (X1, ...,Xn) is independent, it is actually
sufficient to verify that

P(X1 ≤ t1, ...,Xn ≤ tn) = P(X1 ≤ t1) · · · P(Xn ≤ tn),

for all t1, ..., tn ∈ R.

Remark 1.1.23. - The independence of two objects is often denoted by the sign ⊥; we may
therefore write G⊥H, X⊥Y or X⊥G. Note that if X⊥Y and f, g : R → R are Borel-measurable
functions, then f(X)⊥ g(Y ).

1.2 Conditional expectation

The conditional probability of an event A given an event B is defined as

P(A|B) =
P(A ∩B)

P(B)
, given that P(B) > 0.

In a similar way, we may define

E(X|B) =
E(X 1B)

P(B)
, given that P(B) > 0.

This generalizes easily to conditioning with respect to a discrete random variable Y with values
in a countable set D:

P(A|Y ) = ϕ(Y ), where ϕ(y) = P(A|Y = y), y ∈ D.
E(X|Y ) = ψ(Y ), where ψ(y) = E(X|Y = y), y ∈ D.

However, how can we generalize such a formula for a continuous random variable Y , since
P(Y = y) = 0 for all y ∈ R? The answer is obtained by conditioning with respect to a σ-field.

Definition 1.2.1. Let (Ω,F ,P) be a probability space, G be a sub-σ-field of F and X be an
integrable random variable on (Ω,F ,P). The conditional expectation of X given G is the random
variable Z such that

(i) Z is G-measurable,
(ii) E(ZY ) = E(XY ) for any random variable Y G-measurable and bounded.

Z is denoted by E(X|G).

Remark 1.2.2. The existence of Z is guaranteed by Radon-Nikodym’s theorem and it follows
from the definition that Z is integrable. Note moreover that if both Z1, Z2 satisfy (i) and (ii),
then Z1 = Z2 a.s., so the conditional expectation is well defined up to a negligible set.
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We further define

- P(A|G) = E(1A|G) for A ∈ F .

- E(X|Y ) = E(X|σ(Y )) for a random variable Y .

Remark 1.2.3. Note that E(X|G) or E(X|Y ) is a random variable, whereas in many textbooks
on information theory, conditioning often denotes the expectation of some random variable;
think for example at the conditional entropy of two random variables with joint density function
pX,Y :

h(X|Y ) = −E(log(pX|Y )) = −E(log(pX,Y )) + E(log(pY )).

(recall that pX|Y =
pX,Y

pY
by definition).

Example 1.2.4. When do we have an explicit expression for conditional expectation? This is
the case at least in two particular situations, for which we recover classical formulas.

A) If X, Y are two discrete random variables with values in a countable set D, then

E(X|Y ) = ψ(Y ), where ψ(y) =
∑

x∈D

x P(X = x|Y = y), y ∈ D.

B) If X,Y are two continuous random variables with joint density function pX,Y , then

E(X|Y ) = ψ(Y ), where ψ(y) =

∫

R

x
pX,Y (x, y)

pY (y)
dy, y ∈ R,

and pY is the marginal density function of Y given by pY (y) =
∫

R
pX,Y (x, y)dy, assumed here

to be positive everywhere for simplicity.

In many other situations however, the conditional expectation of a random variable with respect
to some general σ-field is not directly computable. We therefore need some rules in order to
proceed; these are listed below.

1) E(E(X|G)) = E(X).

2) If X is independent of G, then E(X|G) = E(X) a.s.

3) If X is G-measurable, then E(X|G) = X a.s.

4) If Y is G-measurable and bounded, then E(XY |G) = E(X|G)Y a.s.

5) If H is a sub-σ-field of G, then E(E(X|H)|G) = E(E(X|G)|H) = E(X|H) a.s.

Moreover, Jensen’s inequality is also valid for conditional expectation.

Proposition 1.2.5. Let X be a random variable, G be a sub-σ-field of F and ψ : R → R be
convex and such that E(|ψ(X)|) <∞. Then

ψ(E(X|G)) ≤ E(ψ(X)|G) a.s.

A further property is given in the following proposition.

Proposition 1.2.6. Let G be a sub-σ-field of F , X, Y be two random variables such that X
is independent of G and Y is G-measurable, an let ϕ : R

2 → R be a Borel-measurable function
such that E(|ϕ(X,Y )|) <∞. Then

E(ϕ(X,Y )|G) = ψ(Y ), where ψ(y) = E(ϕ(X, y)).
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This property has the following consequence: when computing the expectation of a function ϕ
of two independent random variables X and Y , one can always divide the computation in two
steps by writing

E(ϕ(X,Y )) = E(E(ϕ(X,Y )|Y )) = E(ψ(Y ))

where ψ(y) = E(ϕ(X, y)) (this is actually nothing but Fubini’s theorem).

Homework 1.2.7. Using only definition 1.2.1, prove
- formulas A) and B) in example 1.2.4.
- properties 1) to 5).
- proposition 1.2.6 in the case where X, Y are discrete and G = σ(Y ).

1.3 Convergences of sequences of random variables

For a given sequence of random variables (Xn, n ≥ 1) defined on a common probability space
(Ω,F ,P), there are several notions of convergence to a limiting random variable X. Let us
review the most important ones.

The first one is convergence in probability.

Definition 1.3.1. The sequence (Xn) is said to converge in probability to X (and this is denoted

by Xn
P→ X) if for all ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0.

A stronger notion of convergence is that of almost sure convergence.

Definition 1.3.2. The sequence (Xn) is said to converge almost surely to X (and this is denoted
by Xn → X a.s.) if

P

(

lim
n→∞

|Xn −X| = 0
)

= 1.

Almost sure convergence implies convergence in probability, whereas convergence in probability
only implies that there exists a subsequence converging almost surely. Moreover, we have the
following equivalent criterion for almost sure convergence:

Xn → X a.s. iff ∀ε > 0, P(|Xn −X| > ε i.o.) = 0, (1.3.1)

where ”i.o.” stands for ”infinitely often”, that is, ”for an infinite number of n”.

Example 1.3.3. (Convergence in probability does not imply almost sure convergence)
Let (ξn) be a sequence of i.i.d. (that is, independent and identically distributed) random variables
such that P(ξn = 1) = P(ξn = 0) = 1/2. Let us define X1 = 1, X2 = ξ1, X3 = 1− ξ1, X4 = ξ1ξ2,
X5 = ξ1(1− ξ2), X6 = (1− ξ1)ξ2, X7 = (1− ξ1)(1− ξ2), X8 = ξ1ξ2ξ3 and so on. It is easy to see
that (Xn) is a sequence of 0’s and 1’s such that

P(Xn = 1) =
1

2j
, ∀n ∈ {2j , ..., 2j+1 − 1}.

It therefore converges to 0 in probability as n→ ∞, but not almost surely, since each realization
of the sequence contains an infinite number of 1’s.

A sufficient condition guaranteeing almost sure convergence is given in the following lemma.
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Lemma 1.3.4. (Borel-Cantelli)
Let (An) be a sequence of events in F .

a) If
∞
∑

n=1

P(An) <∞, then P

(

lim sup
n→∞

An

)

= 0.

b) If

∞
∑

n=1

P(An) = ∞ and the events (An) are independent, then P

(

lim sup
n→∞

An

)

= 1.

Let us recall here that lim sup
n→∞

An =
⋂

m≥1

⋃

n≥m

An and that

ω ∈ lim sup
n→∞

An iff ω ∈ An i.o. (1.3.2)

Therefore, using (1.3.1) and part a) of the Borel-Cantelli lemma, we see that Xn → X a.s. if
for all ε > 0,

∞
∑

n=1

P(|Xn −X| > ε) <∞.

Let us finally give two more notions of convergence for sequences of random variables.

Definition 1.3.5. Let (Xn) be a sequence of integrable (resp. square-integrable) random vari-
ables defined on a common probability space (Ω,F ,P). (Xn) is said to converge in mean (resp.
quadratically) to X if

lim
n→∞

E(|Xn −X|) = 0 (resp. lim
n→∞

E(|Xn −X|2) = 0).

Note that by Chebychev’s inequality, either convergence in mean or quadratic convergence im-
plies convergence in probability.

Homework 1.3.6. - Prove (1.3.2).

- For a sequence (An) of events in F , one also defines lim inf
n→∞

An =
⋃

m≥1

⋂

n≥m

An. Note that

ω ∈ lim inf
n→∞

An iff there exists m ≥ 1 such that ω ∈ An for all n ≥ m, (1.3.3)

and that
(

lim sup
n→∞

An

)c

= lim inf
n→∞

Ac
n. (1.3.4)

Deduce (1.3.1) from (1.3.2), (1.3.3) and/or (1.3.4).

1.3.1 Laws of large numbers

Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables defined on a common probability space
(Ω,F ,P) and let us define the sequence of empirical means

Sn =
1

n

n
∑

i=1

Xi, n ≥ 1.

We recall below the two laws of large numbers.

Theorem 1.3.7. (Weak law of large numbers)
a) If E(|X1|) <∞, then

Sn
P→ E(X1).

b) If lima→∞ aP(|X1| > a) = 0, then

Sn − E(X1 1{|X1|≤n})
P→ 0.
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Remark 1.3.8. - Assumptions are made only on X1, since the Xn are i.i.d.
- Assumption in part b) does not imply that E(|X1|) <∞. It is actually the weakest condition
under which convergence in probability takes place.

Theorem 1.3.9. (Strong law of large numbers)
a) If E(|X1|) <∞, then

Sn → E(X1) a.s.

b) If E(|X1|) = ∞, then

lim sup
n→∞

|Sn| = ∞ a.s., that is, (Sn) diverges a.s.

The conclusion of the strong law (part a) is definitely stronger than that of the weak law (part a).
One can however appreciate the difference of the conclusions when the assumption E(|X1|) <∞
is relaxed.

Homework 1.3.10. - Show that

E(|X1|) =

∫ ∞

0
P(|X1| > a) da

and use this to prove that in the weak law, assumption a) implies assumption b).
- Prove the weak law (part a) under the assumption that E(X2

1 ) <∞.
- Prove the strong law (part a) under the assumption that E(X4

1 ) <∞ and E(X1) = 0.

1.4 Distributions

Let µ be a distribution on (R,B(R)). In this section, we define a series of objects related to µ
and discuss their properties.

1.4.1 Distribution function

Definition 1.4.1. The distribution function of a distribution µ is the application Fµ : R → [0, 1]
defined as

Fµ(t) = µ( ] −∞, t]), t ∈ R.

Fµ has the following properties:

(i) Fµ is non-decreasing on R.
(ii) limt→−∞ Fµ(t) = 0 and limt→+∞ Fµ(t) = 1.
(iii) Fµ is right-continuous on R, that is, limε↓0 Fµ(t+ ε) = Fµ(t), for all t ∈ R.

Reciprocally, we have the following proposition.

Proposition 1.4.2. Any function F satisfying conditions (i) to (iii) is the distribution function
of some distribution µ, and there is a one-to-one correspondence between the set of distributions
and the set of distribution functions.

Let us consider the following two particular cases.

A) If µ is discrete (that is, there exists a countable set D such that µ(D)=1), then Fµ is the
step function given by

Fµ(t) =
∑

x∈D, x≤t

µ({x}), ∀t ∈ R.
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Remark 1.4.3. A frequent notation for discrete distributions is Dirac’s notation:

µ =
∑

x∈D

µ({x}) δx,

where δx denotes the distribution with values in {0, 1} defined as

δx(B) =

{

1, if x ∈ B,
0, if x /∈ B,

and whose distribution function is the step function Fx(t) = 1[x,∞[(t), t ∈ R (also known as
Heaviside’s function).

B) If µ is absolutely continuous with respect to Lebesgue’s measure (that is, µ(B)=0 for all
Borel sets B such that |B| = 0), then Fµ is continuous and differentiable, its derivative being
the density function pµ of µ and

Fµ(t) =

∫ t

−∞
pµ(x) dx, ∀t ∈ R.

Note that because pµ is the derivative of Fµ, one sometimes finds the notation pµ(x) = dµ
dx

(x).

In general, Fµ can be a combination of continuous and step functions, or even something more
complicated such as the devil staircase illustrated below:

Figure 1.1: devil’s staircase

This function has the following strange properties. First of all, the set where it is constant has
Lebesgue’s measure equal to 1 (so the function is constant almost everywhere), but on the other
hand, the function is continuous and increasing from 0 to 1! It is neither a step function (being
continuous), nor an absolutely continuous function (because its density function would be equal
to zero almost everywhere, which is impossible).

Homework 1.4.4. - Prove properties (i) to (iii).
- Give an example of distribution µ such that Fµ is not left-continuous.
- From figure 1, deduce a mathematical definition of the devil staircase and prove the assertions
made about it.
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1.4.2 Characteristic function

The characteristic function is an object of central importance for proving limit theorems con-
cerning sums of independent random variables, as shown by proposition 1.4.7 below.

Definition 1.4.5. The characteristic function (or Fourier transform) of a distribution µ is the
application φµ : R → C defined as

φµ(t) =

∫

R

eitx dµ(x), t ∈ R.

φµ has the following properties:

(i) φµ(0) = 1.
(ii) φµ is continuous on R.
(iii) φµ is non-negative definite, that is,

n
∑

j,k=1

cj ck φµ(tj − tk) ≥ 0, ∀n ≥ 1, c1, ..., cn ∈ C, t1, ..., tn ∈ R.

Proof. (i) is clear.
(ii) Using the dominated convergence theorem, we see that

|φµ(t) − φµ(s)| ≤
∫

R

|eitx − eisx| dµ(x) → 0, as |t− s| → 0.

(iii) Let us simply compute

n
∑

j,k=1

cj ck φµ(tj − tk) =

∫

R

n
∑

j,k=1

cj ck e
itjx e−itkx dµ(x) =

∫

R

∣

∣

∣

∣

∣

∣

n
∑

j=1

cj e
itjx

∣

∣

∣

∣

∣

∣

2

dµ(x) ≥ 0.

Reciprocally, we have the following Fourier’s inversion theorem.

Theorem 1.4.6. Any function φ satisfying conditions (i) to (iii) is the characteristic function
of some distribution µ, and there is a one-to-one correspondence between the set of distributions
and the set of characteristic functions. Moreover, we have the following Fourier’s inversion
formula: for all a < b continuity points of the distribution function Fµ,

µ( ]a, b[ ) = Fµ(b) − Fµ(a) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φµ(t) dt. (1.4.1)

Furthermore, if
∫

R
|φµ(t)| dt <∞, then µ admits a bounded continuous density function pµ given

by

pµ(x) = F ′
µ(x) =

1

2π

∫

R

e−itx φµ(t) dt, x ∈ R.

Proof. We only prove here inversion’s formula 1.4.1. By definition of φµ and Fubini’s theorem,
we have for all T > 0,

1

2π

∫ T

−T

e−ita − e−itb

it
φµ(t) dt =

∫

R

(

∫ T

−T

eit(x−a) − eit(x−b)

2πit
dt

)

dµ(x)

=

∫

R

(
∫ T

−T

sin(t(x− a)) − sin(t(x− b))

2πt
dt − i

∫ T

−T

cos(t(x− a)) − cos(t(x− b))

2πt
dt

)

dµ(x)



1.4. Distributions 13

Since t 7→ cos(t(x−a))−cos(t(x−b))
2πt

is an odd function and

lim
T→∞

∫ T

−T

sin(ct)

2πt
dt =

{

1
2 , if c > 0,
−1

2 , if c < 0,

we obtain that

lim
T→∞

∫ T

−T

eit(x−a) − eit(x−b)

2πit
dt = 1]a,b[(x), ∀x 6= a, b.

Since a, b are assumed to be continuity points of Fµ, the dominated convergence theorem finally
implies that

lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φµ(t) dt =

∫

R

1]a,b[(x) dµ(x) = Fµ(b) − Fµ(a).

We list here some more properties of characteristic functions:

(iv) φµ is uniformly continuous on R, that is, ∀ε > 0, ∃δ > 0 such that |φµ(t) − φµ(s)| < ε
whenever |t− s| < δ.

(v) If µ is symmetric on R (that is, µ(B) = µ(−B) for all B ∈ B(R)), then φµ(t) ∈ R, for all
t ∈ R.

(vi) If µ is compactly supported (that is, there exists M > 0 such that µ([−M,M ]c) = 0),
then φµ is C∞ on R; it is moreover the restriction to iR of the analytic function ψµ : C → C

defined by

ψµ(z) =

∫

R

ezx dµ(x), z ∈ C.

Note that ψµ restricted to R is Laplace’s transform of µ.

Finally, let us recall the following result.

Proposition 1.4.7. If µ, ν are two distributions on R, then the characteristic function of their
convolution product µ ∗ ν is given by

φµ∗ν(t) = φµ(t)φν(t), t ∈ R.

Since the convolution product µ ∗ ν is the law of the sum of two independent random variables
X and Y with laws µ and ν respectively, this explains the importance of characteristic functions
for analyzing sums of independent random variables. We will see an application of this in section
1.5.3.

Homework 1.4.8. Prove properties (iv) to (vi) and show that property (iii) implies that
φµ(−t) = φµ(t) and that |φµ(t)| ≤ φµ(0) = 1.

1.4.3 Moments

Definition 1.4.9. The moment of order k ≥ 0 of a distribution µ is the real number mk defined
as

mk =

∫

R

xk dµ(x).
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Note that mj exists and is finite for all j ≤ k if and only if

∫

R

|x|k dµ(x) <∞. (1.4.2)

Given that all the moments (mk, k ≥ 0) of a given distribution µ exist, they have the following
properties:

(i) m0 = 1.

(ii) The infinite matrix M whose entries are given by Mjk = mj+k, j, k ≥ 0 is non-negative
definite, that is,

n
∑

j,k=1

cj ck Mjk ≥ 0, ∀n ≥ 1, c1, ..., cn ∈ C.

Proof. (i) is clear.
(ii) Let us compute

n
∑

j,k=1

cj ck mj+k =

∫

R

n
∑

j,k=1

cj ck x
j+k dµ(x) =

∫

R

∣

∣

∣

∣

∣

∣

n
∑

j=1

cj x
j

∣

∣

∣

∣

∣

∣

2

dµ(x) ≥ 0.

For a given sequence of moments (mk), it is however not clear whether the underlying distribu-
tion µ is unique. In order to get an answer to this question, we first need to relate moments to
characteristic functions.

(iii) Let k ≥ 1. If (1.4.2) is satisfied, then φµ is k times continuously differentiable on R and

dkφµ

dtk

∣

∣

∣

t=0
= ik mk, so φµ(t) =

k
∑

j=0

ij mj

j!
tj + o(tk), (1.4.3)

where g(t) = o(tk) means that limt→0
|g(t)|
|t|k = 0. The first relation shows that φµ is a moment

generating function.

(iv) If φµ is k times differentiable at 0, then

∫

R

|x|2p dµ(x) <∞, ∀p ∈ N such that 2p ≤ k.

From these two properties, we deduce in particular that φµ is C∞ on R if and only if all
moments mk exist. Even in this case however, many characteristic functions (and therefore
many distributions) may correspond to a given sequence (mk). The one-to-one correspondence
is ensured by the following theorem.

Theorem 1.4.10. If µ is a distribution such that its moments (mk) satisfy

lim sup
k→∞

1

2k
(m2k)

1

2k <∞, (1.4.4)

then µ is the unique distribution with sequence of moments (mk).
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Remark 1.4.11. Carleman showed that condition (1.4.4) can be replaced by the slightly weaker
condition ∞

∑

k=1

m
− 1

2k

2k = ∞. (1.4.5)

Both (1.4.4) and (1.4.5) are conditions limiting the growth of the sequence (m2k). They may
in turn be reformulated into conditions limiting the weight of the distribution’s tail. Note that
they are both satisfied if m2k ≤ (Ck)2k for some C > 0 (in which case the above series is greater
than or equal to the harmonic series). Note moreover that these conditions only involve even
moments m2k because Cauchy-Schwarz’ inequality guarantees that

m2
2k+1 =

(
∫

R

xk xk+1 dµ(x)

)2

≤
∫

R

x2k dµ(x)

∫

R

x2k+2 dµ(x) = m2k m2k+2, ∀k ≥ 0. (1.4.6)

Proof of theorem 1.4.10. (sketch)
We show the result under the much stronger condition that there exists C > 0 such that

m2k ≤ C2k, ∀k ≥ 0. (1.4.7)

(This condition is satisfied for example if we know a priori that the measure µ is compactly
supported). By Cauchy’s criterion, φµ admits the following Taylor’s expansion

φµ(t) =
∑

k≥0

ik mk

k!
tk, |t| < R, (1.4.8)

with convergence radius R = 1
L
, where

L = lim sup
k→∞

( |mk|
k!

)
1

k

= lim sup
k→∞

(

m2k

(2k)!

)
1

2k

,

using (1.4.6). Stirling’s formula (log(k!) ∼ k log k) then implies that

L = lim sup
k→∞

1

2k
(m2k)

1

2k

so condition (1.4.7) guarantees that L = 0, i.e. R = ∞, i.e. the function φµ is analytic on R

(or more precisely, is the restriction to R of an analytic function on C). It is therefore entirely
determined by the sequence of its derivatives at 0, i.e. the sequence (ik mk). Fourier’s inversion’s
theorem 1.4.6 allows us to conclude that (mk) determines µ entirely. �

Remark 1.4.12. Note that condition (1.4.4) only guarantees that L < ∞, i.e. R > 0. This
does not allow us to conclude directly that φµ is uniquely determined by the sequence (mk)
(since it is not analytic outside [−R,R]), so the proof of the theorem becomes more delicate.

Example 1.4.13. A famous example of distribution which is not characterized by its moments
is the log-normal distribution µ0 with density function

p0(x) =
1√
2π

1

x
exp

(

−(log x)2

2

)

, x > 0.

This distribution has moments mk = exp(k2/2) that do not satisfy condition (1.4.5) because

∞
∑

k=1

(exp(2k2))−
1

2k =
∞
∑

k=1

exp(−k) <∞.
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It can be checked that the distributions µa, −1 ≤ a ≤ 1, with corresponding densities

pa(x) = p0(x) (1 + a sin(2π log(x))), x > 0,

have the same sequence of moments for any −1 ≤ a ≤ 1.

Homework 1.4.14. - Prove properties (iii) and (iv).
- Prove that any sequence of real numbers (mk) satisfying (i), (ii) and condition (1.4.7) is indeed
the sequence of moments of some distribution µ (hint: use characteristic function).
- Consider the sequence (mk = 1

k+1 , k ≥ 0). Is the related matrix M non-negative definite?
What is then the associated distribution µ? Is this distribution unique?
- Check the assertions made in example 1.4.13 and show furthermore that for any a > 0, the
discrete distributions νa defined by

νa({aej}) = ca a
j exp(−j2/2), j ∈ Z,

have the same moments mk = exp(k2/2) (where ca is an appropriate normalization constant).
- For λ > 0, let µλ be the distribution with density function

pλ(x) = cλ exp(−xλ), x > 0,

where cλ is an appropriate normalization constant. For which values of λ is the distribution µλ

uniquely determined by its moments? From this example, deduce approximately the limiting
weight of a distribution’s tail, above which condition (1.4.4) is not satisfied.

1.4.4 Stieltjes’ transform

In random matrix theory, Stieltjes’ transform plays a role similar to the one of characteristic
function for sums of independent random variables.

Definition 1.4.15. The Stieltjes (or Cauchy) transform of a distribution µ is the application
gµ : C → C defined as

gµ(z) =

∫

R

1

x− z
dµ(x), z ∈ C.

Remark 1.4.16. gµ is a priori ill-defined on R (or more precisely on supp µ). We will see
however that the distribution µ is entirely determined by the behavior of gµ on the set C+ =
{z ∈ C : Im(z) > 0}. The situation is much more complicated for measures µ with support in
the complex plane. These appear when studying eigenvalues of non-Hermitian random matrices.

We immediately see from the definition that

|gµ(z)| ≤
∫

R

1

|x− z| dµ(x) ≤
∫

R

1

|Im(z)| dµ(x) =
1

|Im(z)| .

Moreover, gµ has the following properties:

(i) gµ is analytic on C\R (it is actually analytic outside supp µ).
(ii) Im (gµ(z)) Im(z) > 0 for all z ∈ C\R.
(iii) lim

v→∞
v |gµ(iv)| = 1.

Proof. (i) For all ε > 0, the application z 7→ 1
x−z

is analytic on {z ∈ C : |Im(z)| ≥ ε}, and the
dominated convergence theorem allows us to show that the same is true for gµ(z).
(ii) Denoting z = u+ iv with v 6= 0, we can decompose gµ(z) into its real and imaginary parts:

gµ(u+ iv) =

∫

R

x− u

(x− u)2 + v2
dµ(x) + i

∫

R

v

(x− u)2 + v2
dµ(x). (1.4.9)
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This implies that

Im (gµ(z)) Im(z) =

∫

R

v2

(x− u)2 + v2
dµ(x) > 0.

(iii) The above formula (1.4.9) gives also

v |Im(gµ(iv)| =

(

(
∫

R

xv

x2 + v2
dµ(x)

)2

+

(
∫

R

v2

x2 + v2
dµ(x)

)2
)

1

2

→
v→∞

1.

Reciprocally, we have the following proposition.

Proposition 1.4.17. Any function g satisfying properties (i) to (iii) is the Stieltjes transform
of some distribution µ, and there is a one-to-one correspondence between the set of distributions
and the set of Stieltjes’ transforms. Moreover, we have the following inversion formula: for all
a < b continuity points of the distribution function Fµ,

µ( ]a, b[ ) = Fµ(b) − Fµ(a) = lim
v↓0

1

π

∫ b

a

Im (gµ(u+ iv)) du. (1.4.10)

Furthermore, if µ admits a density pµ, then

pµ(u) = F ′
µ(u) =

1

π
lim
v↓0

Im (gµ(u+ iv)), u ∈ R.

Proof. We only prove here formula (1.4.10). Using (1.4.9) and Fubini’s theorem, we obtain that
for all v > 0,

1

π

∫ b

a

Im (gµ(u+ iv)) du =
1

π

∫

R

(
∫ b

a

v

(x− u)2 + v2
du

)

dµ(x)

=

∫

R

(

1

π
arctan

(

a− x

v

)

− 1

π
arctan

(

b− x

v

))

dµ(x).

Since the integrand converges to 1]a,b[(x) for all x 6= a, b as v ↓ 0, and since a, b are continuity
points of Fµ, the conclusion follows by dominated convergence theorem.

Finally, let us consider the relation between Stieltjes’ transform and moments in the case where
µ is compactly supported (i.e. there exists M > 0 such that µ([−M,M ]c) = 0 and all moments
mk exist). Using the following Taylor’s expansion:

1

x− z
= − 1

z(1 − x
z
)

= −1

z

∑

k≥0

(x

z

)k

,

valid for all x such that |x| < |z|, we obtain the following Laurent’s expansion of gµ:

gµ(z) = −1

z

∑

k≥0

mk

zk
, (1.4.11)

valid for |z| > M . One can deduce from this formula that gµ(z) behaves like −1
z

as |z| → ∞.
Using Cauchy’s formula, we moreover obtain that

mk =
i

2π

∫

CR

zk gµ(z) dz, k ≥ 0,

where CR denotes the circle of radius R > M centered at zero. In this sense, the Stieltjes
transform is also a moment generating function.
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Homework 1.4.18. - Compute the Stieltjes transform of the following distributions: µ = δx0
,

µ = U([0, 1]).
- Compute the inverse Stietjes’ transform of

gµ(z) =
−z +

√
z2 − 4

2
, z ∈ C.

Does µ admit a density function? How does it look like?

1.5 Weak convergence of sequences of distributions

This is the central notion of convergence for sequences of distributions. It has several equivalent
formulations, which we review here.

Definition 1.5.1. A sequence (µn, n ≥ 1) of distributions on (R,B(R)) is said to converge
weakly to a limiting distribution µ (and this is denoted by µn ⇒ µ) if for all f ∈ Cb(R),

lim
n→∞

∫

R

f(x) dµn(x) =

∫

R

f(x) dµ(x).

Remark 1.5.2. A distribution may be viewed as an element of the dual space of Cb(R), the
space of continuous bounded functions on R. The term ”weak convergence” comes from the fact
that convergence of (µn) only takes place against test functions f , and not in some norm defined
on the space of distributions. Note that from the strict point of view of functional analysis, this
type of convergence should actually be called ”weak-* convergence” and not ”weak convergence”.

We have the following characterization of weak convergence, known as portmanteau’s theorem.

Theorem 1.5.3. The following are equivalent:

a) The sequence (µn) converges weakly to µ, according to definition 1.5.1.

b) For any closed set G ⊂ R, lim supn→∞ µn(G) = µ(G).

c) For any open set U ⊂ R, lim infn→∞ µn(U) = µ(U).

d) For any Borel set B ⊂ R such that µ(∂B) = 0, limn→∞ µn(B) = µ(B) (recall that ∂B is
the boundary of B).

Note that condition d) of the theorem can in turn be rephrased into the following simpler
one: (µn) converges weakly to µ if and only if for all a < b continuity points of the distribution
function Fµ,

lim
n→∞

µn( ]a, b[ ) = µ( ]a, b[ ). (1.5.1)

Weak convergence allows us to define a further notion of convergence for sequences of random
variables.

Definition 1.5.4. A sequence of random variables (Xn) (not necessarily defined on the same
probability space) is said to converge in distribution (or in law) to a random variable X (and

this is denoted by Xn
d→ X) if the sequence of distributions (µXn) converges weakly to µX .

Let us note that convergence in probability implies convergence in distribution. Reciprocally,
we have the following proposition.

Proposition 1.5.5. Let (µn) be a sequence of distributions converging weakly to µ. Then
there exists a sequence of random variables (Xn) and X defined on a common probability space
(Ω,F ,P) such that µn = µXn , µ = µX and Xn → X a.s.
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1.5.1 Weak convergence and distribution function

One deduces easily from (1.5.1) that the sequence (µn) converges weakly to µ, according to
definition 1.5.1, if and only if

lim
n→∞

Fµn(t) = Fµ(t), for all t continuity points of Fµ.

This condition is actually the easiest to check in many practical situations. We shall see other
nice characterizations of weak convergence in the following paragraphs.

A slightly weaker notion of convergence for distribution functions is that of vague convergence,
which we define below.

Definition 1.5.6. A sequence (Fn) of distribution functions is said to converge vaguely to a
non-decreasing and right-continuous function F on R if

lim
n→∞

Fn(t) = F (t), for all t continuity points of F.

The only difference with the preceding definition is that F may not be a distribution function.
The reason for being interested in vague convergence comes from the next theorem, known as
Helly’s selection theorem.

Theorem 1.5.7. (Helly)
Any sequence (Fn) of distribution functions admits a subsequence (Fn(k)) that converges vaguely.

When does vague convergence imply weak convergence? In order to answer this question, we
need the following notion.

Definition 1.5.8. A sequence (µn) of distributions (resp. a sequence (Fn) of distribution func-
tions) is said to be tight, if for all ε > 0, there exists M > 0 such that

lim sup
n→∞

µn([−M,M ]c) < ε

(

resp. lim sup
n→∞

(1 − Fn(M) + Fn(−M)) < ε

)

,

that is, up to a factor ε, all the weight of the distribution µn remains in the bounded interval
[−M,M ] as n goes to infinity.

Proposition 1.5.9. If (Fn) converges vaguely to F and (Fn) is tight, then F is a distribution
function.

Remark 1.5.10. Recalling the following criterion for the convergence of real numbers:

xn → x iff any subsequence (xn(k)) admits itself a subsequence that converges to x,

we see that

µn ⇒ µ iff any subsequence (µn(k)) admits itself a subsequence that converges weakly to µ.
(1.5.2)

We could therefore be tempted to say, using Helly’s theorem 1.5.7, that any tight sequence (µn)
of distributions converges weakly to some limiting distribution µ. This is wrong however, since
nothing guarantees that all subsequences of (µn) converge weakly to the same limit.
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Example 1.5.11. Let us consider the following sequences of distributions: µn = U([−n, n]) or
µn = N (0, n). It is easy to see in both cases that the corresponding sequences of distribution
functions Fµn satisfies

lim
n→∞

Fµn(t) =
1

2
, ∀t ∈ R

However, the constant function F (t) ≡ 1
2 is not a distribution function. As an immediate

corollary, we obtain that the sequence (µn) is not tight. Actually, one can check the stronger
statement that for any M > 0,

lim sup
n→∞

µn([−M,M ]c) = 1,

that is, all the weight of the limiting distribution is ”lost at infinity”.

1.5.2 Weak convergence and characteristic function

The following theorem is known as Lévy’s continuity theorem.

Theorem 1.5.12. (Lévy)
Let (µn) be a sequence of distributions on (R,B(R)).

a) If (µn) converges weakly to a limiting distribution µ, then the corresponding sequence
(φµn) of characteristic functions converges pointwise to φµ.

b) Reciprocally, if the sequence (φµn) converges pointwise to a limiting function φ that is
continuous at 0, then the sequence (µn) is tight, φ is a characteristic function and (µn) converges
weakly to the distribution µ with characteristic function φ.

Proof. (sketch)
Part a) of the theorem is a direct consequence of the definition 1.5.1 of weak convergence, since
x 7→ eitx is a bounded continuous function on R, for any t ∈ R.

In order to prove part b), we would first have to check that the assumption of φµn converging to
φ continuous at 0 ensures that the sequence (µn) is tight (but let us skip this). Therefore, any
subsequence (µn(k)) admits itself a subsequence converging weakly to a distribution ν, and the
part a) proved above implies that φν = φ, so φ is a characteristic function. Fourier’s inversion’s
theorem 1.4.6 then implies that ν is independent of the subsequence considered, and (1.5.2)
allows us to conclude.

One can see why continuity at 0 is needed, by considering the following example. If µn = N (0, n),

then φµn(t) = exp(−nt2

2 ) and this sequence of characteristic functions converges pointwise to φ
given by φ(0) = 1 and φ(t) = 0 for all t 6= 0. This function is neither continuous at 0 nor a
characteristic function.

1.5.3 Central limit theorem

Let (Xn) be a sequence of i.i.d. random variables defined on a common probability space
(Ω,F ,P) and let

Sn =
1

n

n
∑

i=1

Xi, n ≥ 1.

We recall below the well known important consequence of Lévy’s theorem.
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Theorem 1.5.13. (Central limit theorem)
If E(X2

1 ) <∞, then
√
n (Sn −m)

d→ Y ∼ N (0, σ2).

where m = E(X1) and σ2 = Var(X1).

This is to say that the sequence of distributions µn of
√
n (Sn−m) converges weakly to a gaussian

distribution µ = N (0, σ2). This result is therefore a refinement of the law of large numbers; it
tells us that the deviation of Sn from m is of order 1√

n
and that the law of this deviation tends

to a Gaussian as n goes to infinity. Note that the Gaussian law appears independently of the
law of X1; the central limit theorem is therefore a universal result.

Proof. (sketch)
Let us consider the sequence of characteristic functions

φµn(t) = E(exp(it
√
n (Sn −m))) = E

(

exp

(

it√
n

n
∑

i=1

(Xi −m)

))

=
n
∏

i=1

E

(

exp

(

it√
n

(Xi −m)

))

=

(

φ1

(

t√
n

))n

where φ1 is the characteristic function of the law of X1 − m (note that we have used here
proposition 1.4.7). Since X1 is square-integrable, we have the following Taylor’s expansion
((1.4.3) for k = 2):

φ1(t) = 1 − σ2 t2

2
+ o(t2).

A small piece of analysis (watch out that the above o(t2) is complex) allows us to conclude that

lim
n→∞

φµn(t) = lim
n→∞

(

1 − σ2 t2

2n
+ o
(t2

n

)

)n

= exp

(

−σ
2 t2

2

)

.

This function is continuous at 0 and it is the characteristic function of N (0, σ2), so conclusion
follows by Lévy’s theorem.

Homework 1.5.14. (De Moivre-Laplace’s theorem)
Prove the central limit theorem in the case where (Xn) is a Bernoulli sequence with P(X1 =
+1) = P(X1 = −1) = 1

2 , without the help of Lévy’s theorem.

1.5.4 Weak convergence and moments

Theorem 1.5.15. Let (mk, k ≥ 0) be a sequence of real numbers satisfying condition (1.4.4).
If (µn) is a sequence of distributions such that for all k ≥ 0,

∫

R

xk dµn(x) → mk, as n→ ∞,

then there exists a unique distribution µ with sequence of moments (mk) and such that (µn)
converges weakly to µ.

Proof. The sequence (µn) is tight because for any M > 0,

µn([−M,M ]c) =

∫

[−M,M ]c
1 dµn(x) ≤

∫

[−M,M ]c

x2

M2
dµn(x) ≤ 1

M2

∫

R

x2 dµn(x)
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and lim supn→∞
∫

R
x2 dµn(x) = m2 < ∞ by assumption. Therefore, any subsequence of the

sequence (µn) admits itself a subsequence that converges weakly to a distribution with the
sequence of moments (mk). Condition (1.4.4) and theorem 1.4.10 then imply that there is only
one such distribution, so (1.5.2) allows us to conclude.

The advantage of this characterization of weak convergence is that only a countable number of
limits needs to be computed. On the other hand, it has two serious drawbacks: first, all the
moments of all distributions µn need to exist, as those of the limiting distribution µ; then, even
in the case where we know that the limit exists, it is not always a trivial problem to deduce the
distribution µ from the sequence (mk), even though formulas like (1.4.8) or (1.4.11) may help
(used together with inversion’s theorems).

1.5.5 Weak convergence and Stieltjes’ transform

Theorem 1.5.16. A sequence (µn) of distributions converges weakly to a limiting distribution µ
if and only if the corresponding sequence (gµn) of Stieltjes’ transforms converges to gµ uniformly
on compact sets of C+.

Proof. (sketch)
We first prove that weak convergence of (µn) implies uniform convergence of (gµn) on compact
sets of C+. It is actually sufficient to verify that

sup
z∈R

|gµn(z) − gµ(z)| → 0, as n→ ∞. (1.5.3)

for all rectangles R = [−M,M ] × [m,M ] with M > m > 0. Using the Arzela-Ascoli theorem,
the above uniform convergence takes place if

gµn(z) → gµ(z), ∀z ∈ R,

and for all ε > 0, there exists δ > 0 such that

sup
n≥1

|gµn(z1) − gµn(z2)| ≤ ε, whenever |z1 − z2| ≤ δ, z1, z2 ∈ R.

The first condition is verified since x 7→ 1
x−z

is a bounded continuous function on R, for any
z ∈ R. Let us check the second:

|gµn(z1) − gµn(z2)| ≤
∫

R

∣

∣

∣

∣

1

x− z1
− 1

x− z2

∣

∣

∣

∣

dµn(x) =

∫

R

∣

∣

∣

∣

z2 − z1
(x− z1)(x− z2)

∣

∣

∣

∣

dµn(x)

≤ |z2 − z1|
m2

∫

R

dµn(x) =
|z2 − z1|
m2

,

so the conclusion follows, since m is a fixed positive number.

We then give an idea of the proof of the reverse implication, which follows the lines of the proof
of Lévy’s theorem. The uniform convergence of (gµn) on compact sets of C+ guarantees that
(µn) is tight (again, this needs to be checked carefully). So every subsequence (µn(k)) admits
itself a subsequence that converges weakly to a distribution ν, and the first part of the proof
implies that gν = gµ. Inversion’s theorem 1.4.17 then shows that ν = µ, independently of the
subsequence considered and (1.5.2) allows us to conclude.
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1.6 Empirical distribution and convergence

Definition 1.6.1. The empirical distribution µn of a set of n random variables X1, ...,Xn is
given by

µn =
1

n

n
∑

i=1

δXi
.

This is to say that

µn(A) =
1

n
#{i ∈ {1, ..., n} : Xi ∈ A}, ∀A ∈ B(R),

where #B denotes the cardinality of B.

Note that µn is a random distribution in general and that for any Borel-measurable function
f : R → C, we have

∫

R

f(x) dµn(x) =
1

n

n
∑

i=1

f(Xi).

The empirical distribution of a set of i.i.d. random variables converges to the theoretical distri-
bution, as shown in the following proposition.

Proposition 1.6.2. If (Xn) is a sequence of i.i.d. random variables with law µ, then the
sequence of corresponding empirical distributions µn converges weakly to µ, almost surely.

Proof. (sketch)
Using the convergence criterion established for distribution functions, we see that what needs
to be proved is that

lim
n→∞

Fµn(t) = Fµ(t) for all t continuity points of Fµ, a.s.

There is a technical issue concerning the position of the two letters ”a.s.” that we do not address
here. We simply note that

Fµn(t) =
1

n
#{i ∈ {1, ..., n} : Xi ≤ t} =

1

n

n
∑

i=1

1{Xi≤t}

and that the random variables Yi = 1{Xi≤t} are i.i.d. with mean

E(Y1) = P(X1 ≤ t) = Fµ(t),

so we obtain by the law of large numbers 1.3.9 that

lim
n→∞

Fµn(t) = Fµ(t), a.s.

for all t ∈ R. Modulo the above technical issue, the proposition is proved.

This result is an illustration of the fact that a sequence of random distributions may converge
almost surely to a deterministic limit. We will encounter the same phenomenon when considering
the empirical distribution of eigenvalues of random matrices.

1.7 Concentration

For large n-dimensional systems, asymptotic results of the type ”law of large numbers” often
present much interest on their own, even for relatively small values of n. In many applications
however, it may happen that one becomes interested in studying the deviation of some quantity
depending on n from its asymptotic value. This can be done essentially in two ways, either
by studying the law of the standard deviation using a central limit theorem, or by looking at
probabilities of large deviations. We review here this second method.
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1.7.1 Large deviations principle

Let (µn, n ≥ 1) be a sequence of distributions on (R,B(R)).

Definition 1.7.1. Let (an, n ≥ 1) be an increasing sequence of positive integers (so an ≥ n)
and I : R → [0,∞] be a function such that

{x ∈ R : I(x) ≤ α} is a compact set, ∀α ∈ R+. (1.7.1)

The sequence (µn) is said to satisfy a large deviations principle with speed an and (good) rate
function I if

lim sup
n→∞

1

an
log µn(G) ≤ − inf

x∈G
I(x), for any closed set G ⊂ R, (1.7.2)

and

lim inf
n→∞

1

an
log µn(U) ≥ − inf

x∈U
I(x), for any open set U ⊂ R. (1.7.3)

In a more readable way, conditions (1.7.2) and (1.7.3) may be rewritten together as

lim
n→∞

1

an
log µn(B) = − inf

x∈B
I(x), for any ”nice” set B,

or even more intuitively as

µn(B) ∼ exp

(

−an inf
x∈B

I(x)

)

, as n→ ∞,

which says in particular that if inf
x∈B

I(x) > 0, then µn(B) decays exponentially to zero as n goes

to infinity. Note that the above principle is sharp, because it gives an upper and a lower bound
to µn(B).

Remark 1.7.2. Condition (1.7.1) implies that the infimum of I on any closed set G is achieved.
Sometimes, condition (1.7.1) is replaced by the weaker condition that I is lower semi-continuous,
that is,

{x ∈ R : I(x) ≤ α} is a closed set, ∀α ∈ R+,

in which case the rate function I is not anymore ”good”, because its infimum on a closed set
may not be achieved.

In the following, we will essentially be interested in obtaining upper bounds of the type (1.7.2)
for various sequences of distributions (µn). The upper bound implies that there exists C > 0
and n0 sufficiently large such that

µn(G) ≤ C exp

(

−an inf
x∈G

I(x)

)

, ∀n ≥ n0.

Consider now the particular case where I : R → [0,∞] is a function with a unique root x0 ∈ R.
For any ε > 0, the set ]x0 − ε, x0 + ε[c is closed, so the assumptions made on I and remark 1.7.2
imply that

inf
x∈ ]x0−ε,x0+ε[c

I(x) = Iε > 0.

Using the upper bound (1.7.2), we therefore obtain that there exists C > 0 and n0 sufficiently
large such that

µn ( ]x0 − ε, x0 + ε[c) ≤ C exp(−an Iε), ∀n ≥ n0.

In other words, all the weight of the distribution µn concentrates around x0 at exponential speed
an, as n goes to infinity. This concentration phenomenon is of most interest for us.

Homework 1.7.3. Prove the statement made in remark 1.7.2 and find an example of ”bad”
rate function I for which the statement is wrong.
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1.7.2 An example: sequences of i.i.d. random variables

Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables defined on a common probability space
(Ω,F ,P). Let ν be the law of X1 (and therefore of any Xn). We assume that

ψν(t) = E(etX1) =

∫

R

etx dν(x) <∞, for some t > 0 and some t < 0, (1.7.4)

(note that this condition implies that all moments of ν exist) and define the function Iν : R →
[0,∞] by

Iν(x) = sup
t∈R

(xt− logψν(t)), x ∈ R.

We state the following lemma without proof.

Lemma 1.7.4. Under assumption (1.7.4), the function Iν defined above is convex, satisfies
(1.7.1) and has a unique root x0 = E(X1) =

∫

R
x dν(x). Moreover, it is non-increasing on

] −∞, x0], non-decreasing on [x0,∞[ and

Iν(x) = sup
t≥0

(xt− logψν(t)), ∀x ≥ x0, and Iν(x) = sup
t≤0

(xt− logψν(t)), ∀x ≤ x0.

Let Sn = 1
n

∑n
i=1Xi and µn be the law of Sn. We have the following theorem, due to Cramér.

Theorem 1.7.5. (Cramér)
Under assumption (1.7.4), the sequence of distributions (µn) satisfies a large deviations principle
with speed n and rate function Iν. In particular, for all ε > 0, there exists C > 0 and n0

sufficiently large such that

P(|Sn − x0| ≥ ε) = µn( ]x0 − ε, x0 + ε[c) ≤ C exp

(

−n inf
x∈ ]x0−ε,x0+ε[c

Iν(x)

)

, ∀n ≥ n0. (1.7.5)

Proof. We shall not prove here the whole large deviations principle; we only prove inequality
(1.7.5). First note that

P(|Sn − x0| ≥ ε) = P(Sn ≥ x0 + ε) + P(Sn ≤ x0 − ε). (1.7.6)

For the first term on the right-hand side, we obtain by Chebychev’s inequality that for all t ≥ 0,

P(Sn ≥ x0 + ε) ≤ e−t(x0+ε)
E
(

etSn
)

= e−t(x0+ε)
E

(

e
t
n

(X1+...+Xn)
)

= e−t(x0+ε)

(

ψν

(

t

n

))n

= exp

(

−n
(

t

n
(x0 + ε) − logψν

(

t

n

)))

.

Since this inequality is satisfied for all t ≥ 0, we also have

P(Sn ≥ x0 + ε) ≤ inf
t≥0

exp

(

−n
(

t

n
(x0 + ε) − logψν

(

t

n

)))

= exp

(

−n sup
t≥0

(

t

n
(x0 + ε) − logψν

(

t

n

)))

= exp

(

−n sup
t≥0

(t (x0 + ε) − logψν(t))

)

,

= exp (−n Iν(x0 + ε)) ,

by lemma (1.7.4). A similar computation shows that

P(Sn ≤ x0 − ε) ≤ exp (−n Iν(x0 − ε)) ,
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so using (1.7.6, we obtain that

P(|Sn − x0| ≥ ε) ≤ 2 exp

(

−n inf
x∈ ]x0−ε,x0+ε[c

Iν(x)

)

,

which concludes the proof.

This concentration phenomenon has the following immediate consequence:
∑

n≥1

P(|Sn − x0| ≥ ε) =
∑

n≥1

µn ( ]x0 − ε, x0 + ε[c) <∞, ∀ε > 0,

(because of the exponential decrease). Part a) of Borel-Cantelli’s lemma 1.3.4 therefore implies
that Sn → x0 a.s. This tells us that we may easily recover ”law of large numbers” results from
concentration results.

Example 1.7.6. In the case where ν = N (x0, σ
2), we have

ψν(t) = exp

(

σ2 t2

2
+ x0 t

)

<∞, ∀t ∈ R,

and

Iν(x) =
(x− x0)

2

2σ2
, x ∈ R.

Iν is therefore continuous (implying (1.7.1)), convex and has a unique root x0 ∈ R. By the proof
of the preceding theorem, we obtain that for any ε > 0,

P(|Sn − x0| ≥ ε) ≤ 2 exp

(

−nε
2

2σ2

)

. (1.7.7)

Homework 1.7.7. - Prove the assertions made in lemma 1.7.4.
- Check the computations of example 1.7.6.
- Compute ψν and Iν when ν is the binomial distribution given by ν({+1}) = ν({−1}) = 1

2 .

1.7.3 Talagrand’s concentration inequalities

What we deduce from the preceding paragraph is that the empirical mean of n i.i.d. random
variables concentrates around the theoretical mean with exponential speed n. Talagrand has
shown that this concentration phenomenon holds in much greater generality for functions de-
pending on n independent random variables.

Let us recall here that the median of a random variable X is the real number M(X) defined as

M(X) = sup{t ∈ R : P(X ≤ t) ≤ 1

2
}

and that a function f : R
n → R is Lipschitz with Lipschitz constant L if

|f(x) − f(y)| ≤ L ‖x− y‖, ∀x, y ∈ R
n,

where ‖x‖2 = x2
1 + ...+ x2

n.

Theorem 1.7.8. (Talagrand)
If (X1, ..,Xn) is a collection of independent random variables such that max1≤i≤n |Xi| ≤ K a.s.
and f : R

n → R is convex and Lipschitz with Lipshitz constant L, then for all ε > 0,

P(|f(X1, ...,Xn) −M(f(X1, ...,Xn))| ≥ ε) ≤ 4 exp

(

−
( ε

4KL

)2
)

.
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Although it is not directly clear from the above formulation, an important feature of this theo-
rem is that the resulting speed of concentration is equal to the number n of independent random
variables involved in the problem. We shall come back to this point when dealing with eigen-
values of random matrices, but let us illustrate this in a well known situation.

Let us consider for instance the case where the Xi are i.i.d., bounded by some constant K and

f(x1, ..., xn) =
1

n

n
∑

i=1

xi,

so that f(X1, ...,Xn) = Sn, the empirical mean of the Xi. f is convex because it is linear and

|f(x) − f(y)| ≤ 1

n

n
∑

i=1

|xi − yi| ≤
1

n

√

∑n
i=1 1

√

∑n
i=1 |xi − yi|2 =

1√
n
‖x− y‖,

so f has Lipschitz constant L = 1√
n
. The above theorem implies therefore that

P(|Sn −M(Sn)| ≥ ε) ≤ 4 exp

(

− nε2

16K2

)

,

which is of the same flavor as inequality (1.7.7). There are slight differences however:

- The expectation E(X1) has been replaced by the median M(Sn). Note that either the
above result itself or the law of large numbers (see section 1.3.1) imply that M(Sn) tends to
E(X1) as n goes to infinity. This remains true for many situations where concentration takes
place.

- Although the above result is valid only for bounded random variables, it can be extended
to more general random variables such as gaussian random variables (and the assumption that
f is convex can also be removed).
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