Recall: \[\mathbb{E}(m_{2e}^{(n)}) = \frac{1}{n^{2e}} \sum_{j_1 \cdots j_{2e}} \mathbb{E}(h_{j_1 j_2} h_{j_2 j_3} \cdots h_{j_{2e-1} j_{2e}}) \]

We are going to show that for any \(\varepsilon > 0 \),

\[|\mathbb{E}(m_{2e}^{(n)}) - t_e| = O\left(\frac{1}{n^4}\right) \] (1)

where \(t_e \) are the Catalan numbers.

Notation: \(\mathcal{J}_{2e} = (j_1, \ldots, j_{2e}) \), \(h(\mathcal{J}_{2e}) = h_{j_1 j_2} h_{j_2 j_3} \cdots h_{j_{2e-1} j_{2e}} \)

\[\mathbb{E}(m_{2e}^{(n)}) = \frac{1}{n^{2e}} \sum_{\mathcal{J}_{2e}} \mathbb{E}(h(\mathcal{J}_{2e})) \]

To each sequence \(\mathcal{J}_{2e} \), associate a directed graph \(g(\mathcal{J}_{2e}) \):

We say that two sequences \(\mathcal{J}_{2e} \) and \(\mathcal{J}'_{2e} \) are equivalent if their corresponding graphs are the same:

Notation: \(g_{2e} = g(\mathcal{J}_{2e}) = g(\mathcal{J}'_{2e}) \) or \(\mathcal{J}_{2e} \sim \mathcal{J}'_{2e} \)

\(\mathcal{J} \) with labelled edges:

\((1, 2, 3, \ldots) \)
Because the h_{2e} are identically distributed, and the corresponding graphs are the same,

$$E(h(\gamma_{2e})) = E(h(\gamma_{2e})) \quad \text{if} \quad \gamma_{2e} \sim \gamma_{2e}$$

So

$$E(m_{2e}^{(n)}) = \frac{1}{n^{1+e}} \sum_{\gamma_{2e}} \frac{E(h(\gamma_{2e}))}{\mathcal{Q}(\gamma_{2e})}$$

$$= \frac{1}{n^{1+e}} \sum_{\gamma_{2e}} \left(\frac{\# \{ \gamma_{2e} \in \gamma_{2e} \} \mathcal{Q}(\gamma_{2e})}{\mathcal{Q}(\gamma_{2e})} \right)$$

Let $V(\gamma_{2e})$ be the set of vertices of γ_{2e} and $|V(\gamma_{2e})|$ be the number of such vertices. We have:

$$\# \{ \gamma_{2e} \in \gamma_{2e} \} = \text{number of possibilities of placing } |V(\gamma_{2e})| \text{ ordered points on } 1 \ldots n?$$

$$= n \cdot (n-1) \cdots (n-|V(\gamma_{2e})| + 1)$$

$$= n \cdot |V(\gamma_{2e})| \left(1 + O\left(\frac{1}{n} \right) \right)$$

So

$$E(m_{2e}^{(n)}) = \frac{1}{n^{1+e}} \sum_{\gamma_{2e}} n \cdot |V(\gamma_{2e})| \mathcal{Q}(\gamma_{2e}) \left(1 + O\left(\frac{1}{n} \right) \right)$$

Notice that if an edge appears an odd number of times in the graph, then for the same reason as last time:

$$\mathcal{Q}(\gamma_{2e}) = E(h(\gamma_{2e})) = E(h_{j_{1}j_{2}} \ldots h_{j_{2}j_{3}}) = 0$$

(\text{*) assumptions (i) \& (iii) *)
Therefore, \(Q(g_{2e}) \geq \) if every edge in the graph appears an even number of times (the direction is indifferent, since \(h_{kij} = h_{jik} \)).

Terminology: the graph is said to be even in this case.

- In an even graph, each edge appears at least twice, so each "new" vertex costs at least two edges, therefore \(|V(g_{2e})| \leq 1 + e \) (since \# edges = \(2e \))

\[
E(m_{2e}(n)) = \sum_{g_{2e} \text{ even}} \frac{1}{n+e} \cdot \frac{1}{|V(g_{2e})|} \cdot Q(g_{2e})(1 + O\left(\frac{1}{n}\right))
\]

- By assumption (ii), \(|Q(g_{2e})| \leq \frac{1}{e} E(h_{jije} \ldots h_{jjej})e \leq C^{2e} \)

independently of \(n \), so the only graphs contributing in a non-negligible manner to the above sum, are those for which \(|V(g_{2e})| = 1 + e \), i.e.

\[
E(m_{2e}(n)) = \sum_{g_{2e} \text{ even}} \frac{1}{n+e} \cdot \frac{1}{|V(g_{2e})|} \cdot Q(g_{2e})(1 + O\left(\frac{1}{n}\right))
\]
Finally, for an even graph \(g_{2e} \) such that \(|V(g_{2e})| = 1 + e \), each edge appears exactly twice.

Illustration:

\[
1 + k = 5, \; 2k = 8
\]

So \(\mathbb{R}(g_{2e}) = \mathbb{E}(h_{j:j+2}) \cdots \mathbb{E}(h_{j:j+2}) = 1 \) (by assumption (iv)).

and \(\mathbb{E}(W^{(n)}_{2e}) = \# \{ g_{2e} \text{ even } : |V(g_{2e})| = 1 + e \} + O\left(\frac{1}{n}\right) \)

How many even (and rooted) graphs are there with \(2e \) branches and \(e+1 \) vertices on the line?

Illustration: \(e = 3 \)

Unfold:

\[
\text{i.e. } \# \{ g_{2e} \text{ even } : |V(g_{2e})| = 1 + e \}
\]

\[
= \# \{ \text{planar planted rooted trees with } e \text{ branches } \} = t_e
\]

So \(|\mathbb{E}(W^{(n)}_{2e}) - t_e| = O\left(\frac{1}{n}\right) \); this concludes the proof of (ii).
What about (2): \(\text{Var}(m^{(n)}_e) = O\left(\frac{1}{n^2}\right) \)?

First remark: this behaviour of the variance is atypical!

- Indeed, \(m^{(n)}_e = \frac{1}{n} \sum_{j=1}^{n} (A^{(n)j})^e \).

If the random variables \(x^{(n)}_j \) were iid, then we would have

\[
\text{Var}(m^{(n)}_e) = \frac{1}{n^2} \sum_{j=1}^{n} \text{Var}(A^{(n)j})^e = \frac{1}{n} \text{Var}(A^{(n)})^e = O\left(\frac{1}{n}\right)
\]

But the eigenvalues of a random matrix are everything but iid (as already seen from the joint distribution of the eigenvalues of the GOE at finite \(n \)), which explains the different behaviour of the variance.

- A simple heuristic for explaining the \(O\left(\frac{1}{n^2}\right) \) is the following: \(m^{(n)}_e = \frac{1}{n} \text{Tr}(A^{(n)})^e \);

\(m^{(n)}_e \) can therefore be seen as a function of the order \(n^2 \) iid entries of the matrix \(A^{(n)} \), which "explains" the variance of order \(\frac{1}{n^2} \), as opposed to the classical case with \(n \) iid random variables and variance \(\frac{1}{n} \).

(*) a rigorous proof of (2) can be found in Jonssoon 82
Let us shift our attention from \(m^{(n)}_e = \frac{1}{n} \sum_{j=1}^{n} f(x_j^{(n)})^2 \)

to \(\frac{1}{n} \sum_{j=0}^{n} f(x_j^{(n)}) \), where \(f: \mathbb{R} \to \mathbb{R} \) is a continuous

function satisfying moreover:

(i) \(f \) is convex

(ii) \(f \) is Lipschitz with constant \(L \), i.e. \(|f(x) - f(y)| \leq L| x - y | \)

Remember that \(\frac{1}{n} \sum_{j=1}^{n} f(x_j^{(n)}) = \frac{1}{n} \text{Tr} \left(f(H^{(n)}) \right) \)

So that this object can also be seen as a function of the order \(n^2 \) iid entries of the matrix \(H^{(n)} \).

Theorem (Ganemmel - Zeitouni 2006)

Under assumptions (i), (ii), (iii) - (vi),

\[
P \left(\left| \frac{1}{n} \sum_{j=1}^{n} f(x_j^{(n)}) - \int_{\mathbb{R}} f(x) \, \rho_{n}(x) \, dx \right| > t \right) \\ \leq 4 \exp \left(-n^2 \left(t - O(\frac{1}{n}) \right)^2 / 16 C^2 L^2 \right) \quad \forall t > 0
\]

More concretely, this theorem says that

\[
\frac{1}{n} \sum_{j=1}^{n} f(x_j^{(n)}) = \int_{\mathbb{R}} f(x) \, \rho_{n}(x) \, dx + O(\frac{1}{n})
\]

(in the probabilistic sense)

i.e. that the variance is of order \(\frac{1}{n^2} \) again.
Proof idea

\[\frac{1}{n} \sum_{j=1}^{n} f(H^{(j)}) = \frac{1}{n} \text{Tr} \left(\frac{1}{n} H^{(j)} \right) = F_n(\{ \frac{1}{n} h_j, j \leq k \}) \in [-c, c] \]

It can be shown that

\[f: \mathbb{R} \rightarrow \mathbb{R} \text{ convex} \implies F_n: [-c, c]^n \rightarrow \mathbb{R} \text{ is convex} \]

\[f: \mathbb{R} \rightarrow \mathbb{R} \text{ Lipschitz with constant } L \implies F_n: [-c, c]^n \rightarrow \mathbb{R} \text{ is Lipschitz with } \frac{L}{n} \]

\[\text{i.e. } |F_n(u) - F_n(v)| \leq \frac{L}{n} |u - v| \forall u, v \in [-c, c]^n \]

- **Talagrand's concentration inequality (Annals of Prob. 1996):**

\[
\begin{cases}
\text{If } Y_1, Y_n \text{ are iid random variables such that } |Y_i| \leq c \\
\text{and } F: [-c, c]^n \rightarrow \mathbb{R} \text{ is convex and Lipschitz with constant } K,
\end{cases}
\]

\[\text{then } \mathbb{P}(|F(Y_1, \ldots, Y_n) - \tilde{F}_F| \geq t) \leq 4 \exp\left(-\frac{t^2}{16c^2K^2}\right) \]

where \(\tilde{F}_F \) is the median of \(F(Y_1, \ldots, Y_n) \).

- Here, \(n_0 = \frac{n(n-1)}{2} \) and \(K = \frac{L}{n} \), so

\[\mathbb{P}(|F_n(\frac{1}{n} h_j, j \leq k)| - \tilde{F}_{F_n}| \geq t) \leq 4 \exp\left(-\frac{n^2K^2}{16c^2L^2}\right) \]

- The last step consists in showing that

\[\tilde{F}_{F_n} = \mathbb{E}(F_n) + O\left(\frac{1}{n}\right) = \int_{\mathbb{R}} f(x) p_n(x) \, dx + O\left(\frac{1}{n}\right) \]