
SPECTRAL MEASURE OF LARGE RANDOM HANKEL,MARKOV AND TOEPLITZ MATRICES.W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGAbstrat. We study the limiting spetral measure of large symmetri randommatries of linear algebrai struture.For Hankel and Toeplitz matries generated by i.i.d. random variablesfXkg of unit variane, and for symmetri Markov matries generated by i.i.d.random variables fXi;jgj>i of zero mean and unit variane, saling the eigen-values by pn we prove the almost sure, weak onvergene of the spetralmeasures to universal, non-random, symmetri distributions H , M , and Tof unbounded support. The moments of H and T are the sum of volumes ofsolids related to Eulerian numbers, whereas M has a bounded smooth densitygiven by the free onvolution of the semi-irle and normal densities.For symmetri Markov matries generated by i.i.d. random variablesfXi;jgj>i of mean m and �nite variane, saling the eigenvalues by n weprove the almost sure, weak onvergene of the spetral measures to the atomimeasure at �m. If m = 0, and the fourth moment is �nite, we prove that thespetral norm of Mn saled by p2n log n onverges almost surely to one.1. Introdution and main resultsFor a symmetri n � n matrix A, let �j(A); 1 � j � n denote the eigenvaluesof the matrix A, written in a non-inreasing order. The spetral measure of A,denoted �̂(A), is the empirial distribution of its eigenvalues, namely�̂(A) = 1n nXj=1 Æ�j(A)(so when A is a random matrix, �̂(A) is a random measure on (R;B)).Large dimensional random matries are of muh interest in statistis, wherethey play a pivotal role in multivariate analysis. In his seminal paper, Wigner[Wig58℄ proved that the spetral measure of a wide lass of symmetri randommatries of dimension n onverges, as n ! 1, to the semi-irle law (also alledthe Sato-Tate measure, see [Ser97℄ and the referenes therein). Muh work hassine been done on related random matrix ensembles, either omposed of (nearly)independent entries, or drawn aording to weighted Haar measures on lassial (e.g.orthogonal, unitary, simpleti) groups. The limiting behavior of the spetrum ofsuh matries and their ompositions is of onsiderable interest for mathematialphysis (see [PV00℄ and the referenes therein). In addition, suh random matriesplay an important role in operator algebras studies initiated by Voiulesu, knownnow as the free (non-ommutative) probability theory (see, [HP00℄ and the manyDate: July 25, 2003; Revised: May 28, 2004.Researh partially supported by NSF grants #INT-0332062, #DMS-0072331, #DMS-0308151.AMS (2000) Subjet Classi�ation: Primary: 15A52 Seondary: 60F99, 62H10, 60F10Keywords: random matrix theory, spetral measure, free onvolution, Eulerian numbers.1



2 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGreferenes therein). The study of large random matries is also related to interestingquestions of ombinatoris, geometry and algebra (see the review [Ful00℄, or forexample [Spe97℄). In his reent review paper [Bai99℄, Bai proposes the study of largerandom matrix ensembles with ertain additional linear struture. In partiular,the properties of the spetral measures of random Hankel, Markov and Toeplitzmatries with independent entries are listed among the unsolved random matrixproblems posed in [Bai99, Setion 6℄. We shall provide here the solution for thesethree problems.We note in passing that Hankel matries arise for example in polynomial regres-sion, as the ovariane for the least squares parameter estimation for the modelPp�1i=0 bixi, observed at x = x1; : : : ; xn in the presene of additive noise (see [SS90,page 36℄). Toeplitz matries appear as the ovariane of stationary proesses, inshift-invariant linear �ltering, and in many aspets of ombinatoris, time seriesand harmoni analysis. See [GS84℄ for lassial results on deterministi Toeplitzmatries, or [Dia03℄ and the referenes therein, for their appliations to ertain ran-dom matries. The in�nitesimal generators of ontinuous time Markov proesseson �nite state spaes are given by matries with row-sums zero (whih following[Bai99℄, we all Markov matries). Suh matries also play an important role ingraph theory, as the Laplaian matrix of eah graph is of this form, with its eigen-values related to numerous graph invariants, see [Moh91℄.We next speify the orresponding three ensembles of random matries studiedhere. Let fXk : k = 0; 1; 2 : : :g be i.i.d. real-valued random variables. For n 2 N,de�ne a random n� n Hankel matrix Hn = [Xi+j�1℄1�i;j�n,Hn = 26666666664 X1 X2 : : : : : : Xn�1 XnX2 X3 Xn Xn+1::: . . . Xn+1 Xn+2Xn�2 Xn�1 . . . :::Xn�1 Xn X2n�3 X2n�2Xn Xn+1 : : : : : : X2n�2 X2n�1
37777777775 ;(1.1)and a random n� n Toeplitz matrix Tn = [Xji�jj℄1�i;j�n,Tn = 2666666664 X0 X1 X2 : : : Xn�2 Xn�1X1 X0 X1 Xn�2X2 X1 X0 : : : :::::: : : : X2Xn�2 X0 X1Xn�1 Xn�2 : : : X2 X1 X0
3777777775 :(1.2)Let fXij : j � i � 1g be an in�nite upper triangular array of i.i.d. randomvariables and de�ne Xji = Xij for j > i � 1. LetMn be a random n�n symmetrimatrix given by Mn = Xn �Dn ;(1.3)where Xn = [Xij ℄1�i;j�n and Dn = diag(Pnj=1 Xij)1�i�n is a diagonal matrix, soeah of the rows of Mn has a zero sum (note that the values of Xii are irrelevantfor Mn).The limiting spetral distribution for a Toeplitz matrix Tn is as follows.Theorem 1.1. Let fXk : k = 0; 1; 2; : : :g be i.i.d. real-valued random variableswith Var(X) = 1. Then with probability one, �̂(Tn=pn) onverges weakly as n!1



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 3to a non-random symmetri probability measure T whih does not depend on thedistribution of X, and has unbounded support.The spetrum of non-random Toeplitz matries, the rows of whih are typiallyabsolutely summable, is well approximated by its ounterpart for irulant matries(.f. [GS84, page 84℄). In ontrast, note that the limiting distribution T is notnormal as the alulation shows that the fourth moment is m4 = 8=3. This di�ersfrom the analogous results for random irulant matries, see [BM02℄, a fat thathas been independently notied also in referenes [BCG03℄ and [HM03℄.Our next result gives the limiting spetral distribution for a Hankel matrix Hn.Theorem 1.2. Let fXk : k = 0; 1; 2; : : :g be i.i.d. real-valued random variableswith Var(X) = 1. Then with probability one, �̂(Hn=pn) onverges weakly as n !1 to a non-random symmetri probability measure H whih does not depend onthe distribution of X, has unbounded support, and is not unimodal.(Reall that a symmetri distribution � is said to be unimodal, if the funtionx 7! �((�1; x℄) is onvex for x < 0.)Remark 1.1. Theorems 1.1 and 1.2 fall short of establishing that the limiting dis-tributions have smooth densities and that the density of H is bimodal. Simulationssuggest that these properties are likely to be true (see [BDJ03℄ for details).Remark 1.2. Consider the empirial distribution of singular values of the non-symmetri random n � n Toeplitz matrix Rn = [Xi�j ℄1�i;j�n. It follows fromTheorem 1.2 that as n ! 1, with probability one �̂((RnRTn )1=2=pn) ! � weakly,where �([0; x℄) = H([�x; x℄); x > 0. Indeed, let Jn = [1i+j=n+1℄1�i;j�n, notingthat Jn�RTn is the Hankel matrix Hn for fXk�n : k = 0; 1; : : :g to whih Theorem1.2 applies. Sine J2n = In, and both Jn and Jn � RTn are symmetri, we haveRnRTn = (RnJn)TJnRTn = H2n. Thus the singular values of matrix Rn are theabsolute values of the (real) eigenvalues of the symmetri Hankel matrix Hn.We now turn to the Markov matries Mn. Wigner's lassial result says that�̂(Xn=pn) onverges weakly as n !1 to the (standard) semi-irle law with thedensity p4� x2=(2�) on (�2; 2). For normal Xn and normal i.i.d. diagonal ~Dnindependent of Xn, the weak limit of �̂((Xn � ~Dn)=pn) is the free onvolutionof the semi-irle and standard normal measures, see [PV00℄ and the referenestherein (see also [Bia97℄ for the de�nition and properties of the free onvolution).This predited result holds also for the Markov matrix Mn, but the problem isnon-trivial beause Dn strongly depends on Xn.Theorem 1.3. Let fXi;j : i > jg be a sequene of i.i.d. random variables withIEX = 0, and Var(X) = 1. With probability one, �̂(Mn=pn) onverges weaklyas n ! 1 to the free onvolution M of the semi-irle and standard normalmeasures. This measure M is a non-random symmetri probability measure withsmooth bounded density, does not depend on the distribution of X, and has un-bounded support.If the mean of Xij is not zero, the following result is relevant.Theorem 1.4. Let fXi;j : i; j 2 N; i > jg be a sequene of i.i.d. random variableswith IEX = m and IEX2 <1. Then �̂(Mn=n) onverge weakly to Æ�m as n!1.



4 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGTurning to the asymptoti of the spetral norm jjjMnjjj := maxf�1(Mn);��n(Mn)gof the symmetri matrix Mn, that is, the largest absolute value of its eigenvalues,we have thatTheorem 1.5. Let fXi;j : i; j 2 N; i > jg be a sequene of i.i.d. random variableswith IEX = 0, Var(X) = 1, and IEX4 <1. Thenlimn!1 jjjMnjjjp2n logn = 1 a.s.If the mean of Xij is not zero, the following result is relevant.Corollary 1.6. Suppose IEX = m and IEX4 <1. Thenlimn!1 jjjMnjjjn = jmj a.s.Theorem 1.5 reveals a saling in n that di�ers from that of the spetral norm ofWigner's ensemble, where under the same onditions, almost surely,limn!1 jjjXnjjjpn = 2(1.4)(.f. [Bai99, Theorem 2.12℄). As shown in Setion 2 en-route to proving Theorems1.4, 1.5 and Corollary 1.6, this is due to the domination of the diagonal terms ofMn in determining its spetral norm.Remark 1.3. The asymptotis of the spetral norm of random Toeplitz Tn andHankel Hn matries is not addressed in this work.In Setion 3 we introdue the ombinatorial strutures whih desribe the mo-ments of the limiting distributions of the Hankel, Markov, and Toeplitz matries,and whih are of some independent interest. In Setion 4 we use ombinatorialarguments and trunation to prove the onvergene of moments, and onlude theproofs of Theorems 1.1, 1.2 and 1.3. Part of the proof that establishes propertiesof these limiting distributions is left for the Appendix.2. Proofs of Theorems 1.4, 1.5 and Corollary 1.6We need the following result, whih follows by Chebyshev's inequality fromSakhanenko [Sak85, Setion 6, Theorem 5℄, or [Sak91, Setion 5, Corollary 5℄.Lemma 2.1 (Sakhanenko). Let f�i; i = 1; 2; : : : g be a sequene of independentrandom variables with mean zero and IE�2i = �2i : If IEj�ijp < 1 for some p > 2;then there exists a onstant C > 0 and f�i; i = 1; 2; : : :g, a sequene of independentnormally distributed random variables with �i � N(0; �2i ) suh thatIP( max1�k�n jSk � Tkj > x) � C1 + jxjp nXi=1 IEj�ijpfor any n and x > 0; where Sk =Pki=1 �i and Tk =Pki=1 �i:Proof of Theorem 1.5. Hereafter let b(n) = p2n logn denote the normalizationfuntion for Theorem 1.5.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 5It follows from (1.3) that jjjjMnjjj�jjjDnjjjj � jjjXnjjj. So, by (1.4) and the de�nitionof Dn, it suÆes to show that as n!1,Wn := 1b(n) nmaxi=1 f j nXj=1 Xij j g ! 1 a:s:(2.1)We �rst show the upper bound, that is,lim supn!1 Wn � 1 a:s:(2.2)Note that fXij ; j � 1 and j 6= ig is sequene of i.i.d. random variables for eahi � 1: By Lemma 2.1 and the ondition that IEjX11j4 < 1; for eah i � 1; thereexists a sequene of independent standard normals fYij ; j � 1 and j 6= ig suh thatnmaxi=1 IP� nmaxk=1 �� kXj=1(Xij � Yij)�� > x� � Cnx4(2.3)for all x > 0 and n � 1, where C is a onstant whih does not depend on n and x,and Yii = 0 for any i � 1. We laim thatUn := 1b(n) nmaxi=1 fj nXj=1(Xij � Yij)jg ! 0 a:s:(2.4)as n!1. First,2m+1maxk=2m Uk � 1b(2m) 2m+1maxi=1 2m+1maxk=1 fj kXj=1(Xij � Yij)jg:By (2.3), for any " > 0;IP� 2m+1maxk=2m Uk � "� � 2m+1IP� 2m+1maxk=1 j kXj=1(Xij � Yij)j � "b(2m)� � C"m2for some onstant C" depending only on ". Sine " > 0 is arbitrary, by the Borel-Cantelli lemma, max2m+1k=2m Uk ! 0 a.s. as m!1; whih implies (2.4). LetVn = 1b(n) nmaxi=1 j nXj=1 Yij j:By the de�nitions in (2.1) and (2.4), we have that Wn � Un + Vn, so by (2.4) weget (2.2) as soon as we show that lim supn!1 Vn � 1. To this end, �x Æ > 0 and� > 1=Æ. Then,IP� (m+1)�maxn=m� Vn � 1 + Æ� � (m+ 1)�IP� (m+1)�+1maxn=1 j nXj=1 Y1j j � (1 + Æ)b(m�)�� 2(m+ 1)�IP�j (m+1)�+1Xj=2 Y1j j � (1 + Æ)b(m�)� ;(2.5)where Levy's inequality is used in the seond step. Sine Yij 's are independentstandard normals, � := (m + 1)��=2P(m+1)�+1j=2 Y1j is a standard normal randomvariable. Thus, by the well known normal tail estimate1p2� x1 + x2 e�x2=2 � IP(� > x) � 1p2� 1xe�x2=2 for x > 0,(2.6)



6 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGwe see that IP�j�j � (1 + Æ)(m+ 1)��=2b(m�)� � bCÆm��(1+Æ)for some onstant bCÆ > 0. Consequently, for some C 0Æ > 0 and all m, by (2.5),IP� (m+1)�maxn=m� Vn � 1 + Æ� � C 0Æm��Æ :With �Æ > 1, we have by the Borel-Cantelli lemma that,lim supm!1 n (m+1)�maxn=m� Vno � 1 + Æ a:s:It follows that lim supn!1 Vn � 1 + Æ a.s. and taking Æ # 0 we obtain (2.2).We next prove that lim infn!1 Wn � 1 a:s:(2.7)To this end, �xing 1=3 > " > Æ > 0, let n" := [n1�"℄ + 1. Then,Wn � 1b(n) n"maxi=1 j nXj=1 Xij j� 1b(n) n"maxi=1 j nXj=n"+1Xij j � 1b(n) n"maxi=1 j n"Xj=1 Xij j := Vn;1 � Vn;2 :(2.8)By (2.2), lim supn!1Wn" � 1 a:s: Thus, with b(n")=b(n)! 0 as n!1, we havethat Vn;2 =Wn" b(n")b(n) ! 0 a:s:(2.9)Sine fXij ; 1 � i � n"; n" < j � ng are i.i.d. for any n � 1, it follows thatIP(Vn;1 � 1� 3Æ) = IP�j n�n"+1Xj=2 X1j j � (1� 3Æ)b(n)�n" :(2.10)With b(n) � pn, by Lemma 2.1 there exists a sequene of independent standardnormals fYjg suh that for some C = C(Æ) <1 and all nIP�j n�n"+1Xj=2 X1j � n�n"Xj=1 Yj j � Æb(n)� � Cn�1 :(2.11)Further, by the left inequality of (2.6) we have that for all n suÆiently large,IP�j n�n"Xj=1 Yj j � (1� 2Æ)b(n)� � IP(jY1j � (1� Æ)p2 logn) � 1� 2n�(1�Æ) :Combining this bound with (2.11) and (2.10) we get that for all n large enoughIP(Vn;1 � 1� 3Æ) � �1� 2n�(1�Æ) + Cn�1�n" � �1� n�(1�Æ)�n1�" � e�n"�Æ :Reall that " > Æ, implying thatPn�1 IP(Vn;1 � 1�3Æ) <1. By the Borel-Cantellilemma, lim infn!1 Vn;1 � 1� 3Æ a:s:This together with (2.8) and (2.9) implies that almost surely lim infn!1Wn �1� 3Æ, and the lower bound (2.7) follows by taking Æ # 0.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 7Proof of Corollary 1.6. Let fMn denote the Markov matrix obtained when eXij =Xij � IEXij replae Xij in (1.3). Obviously,Mn = fMn +Yn;(2.12)where Yn = [Yij ℄ is the n�n matrix with Yij = m�nm1i=j . Clearly, �1(Yn) = 0,�2(Yn) = � � � = �n(Yn) = �nm, so jjjYnjjj = njmj. By (2.12) and Theorem 1.5, wehave that ���� jjjMnjjjn � jjjYnjjjn ���� � jjjfMnjjjn ! 0as n!1: This implies that jjjMnjjj=n! jmj a.s.In the ontext of this paper, the next lemma is very handy for trunation pur-poses.Lemma 2.2. Let fXij : j > i � 1g be an in�nite triangular array of i.i.d. randomvariables with IEX11 = 0 and Var(X11) = �2. Let Xji = Xij for i < j and Xii = 0for all i � 1: Then 1n2 nXi=1( nXj=1 Xij)2 ! �2 a:s:as n!1:Proof. De�ne Un := nXi=1 X1�j<k�nXijXik:(2.13)Then 1n2 nXi=1( nXj=1 Xij)2 = 1n2 nXi=1 nXj=1 X2ij + 2n2Un:By the strong Law of Large Numbers, the �rst term on the right hand side onvergesalmost surely to �2, so it suÆes to show thatUnn2 ! 0 a:s:(2.14)To this end, denote by Fk the �-algebra generated by the random variablesfXij ; 1 � i; j � kg. Noting thatUn+1 � Un = X1�j<k�nX(n+1)jX(n+1)k + nXi=1 nXj=1 XijXi(n+1);it is easy to verify that fUn : n � 1g is a martingale for the �ltration fFn : n � 1g.Further, the n2(n� 1)=2 terms in the sum (2.13) are unorrelated. Indeed, if i 6= i0and j < k, j0 < k0 then IE(XijXikXi0j0Xi0k0) = 0 as at least one of the four variablesin this produt must be independent of the others. Thus, IE(U2n) � �4n2(n� 1)=2for any n � 2, and by Doob's sub-martingale inequalityIP( max1�i�m2 jUij � m4") � IE(U2m2)m8"2 � �4m2"2 :It follows by the Borel-Cantelli Lemma, that almost surelyZm := m�4 max1�i�m2 jUij ! 0;



8 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGas m ! 1. Sine n�2jUnj � (m=(m � 1))4Zm whenever (m � 1)2 � n � m2,m � 2, we thus get (2.14).Let dBL denote the bounded Lipshitz metri for the weak onvergene of mea-sures, dBL(�; �) = supfZ fd�� Z fd� : kfk1 + kfkL � 1g;(2.15)see [Dud02, Setion 11.3℄. For the spetral measures of n�n symmetri real matriesA;B we havedBL(�̂(A); �̂(B)) � supf 1n nXj=1 jf(�j(A)) � f(�j(B))j : kfkL � 1g� 1n nXj=1 j�j(A)� �j(B)j:By Lidskii's theorem [Lid50℄, see also [Bai99, Lemma 2.3℄,nXj=1 j�j(A)� �j(B)j2 � tr((B�A)2);so d2BL(�̂(A); �̂(B)) � 1n tr((B�A)2):(2.16)Proof of Theorem 1.4. We use the notation from the proof of Corollary 1.6 andwrite �2 = Var(X11). By (2.12) and (2.16) the bounded Lipshitz metri (2.15)satis�es dBL(�̂(Mn=n); �̂(Yn=n)) � �n�3tr(fM2n)�1=2 :(2.17)Note that f eXij ; 1 � i < jg are i.i.d. random variables with mean zero and �nitevariane. By the lassial strong Law of Large Numbers and Lemma 2.2n�2tr(fM2n) = 0� 2n2 X1�i<j�n eX2ij + 1n2 nXi=1( nXj=1 eXij)21A! 2�2 a:s:(2.18)as n ! 1. Reall that all but one of the eigenvalues of Yn are �nm, hene�̂(Yn=n) onverges weakly to Æ�m. Combining this with (2.17) and (2.18), we havethat almost surely, �̂(Mn=n) onverges weakly to Æ�m.3. The limiting distributions H , M , and T3.1. Moments. The probability measures H , M , and T will be determined fromtheir moments. It turns out that the odd moments are zero, and the even momentsare the sums of numbers labeled by the pair partitions of f1; : : : ; 2kg.It is onvenient to index the pair partitions by the partition words w; these arewords of length jwj = 2k with k pairs of letters suh that the �rst ourrenes ofeah of the k letters are in alphabeti order. In the ase k = 2 we have 1� 3 suhpartition words aabb abba abab;



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 9whih orrespond to the pair partitionsf1; 2g [ f3; 4g f1; 4g [ f2; 3g f1; 3g [ f2; 4gof f1; 2; 3; 4g. Reall that the number of pair partitions of f1; : : : ; 2kg is 1 � 3 �� � � � (2k � 1).De�nition 3.1. For a partition word w, we de�ne its height h(w) as the numberof enapsulated partition sub-words, i. e., substrings of the form xw1x, where x is asingle letter, and w1 is either a partition word, or the empty word.For example, h(abab) = 0, h(abba) = h(abab) = 1, while h(aabb) =h(abba) = 3 (the enapsulating pairs of letters are underlined).In the terminology of [BS96℄, h assigns to a pair partition the number of on-neted bloks whih are of ardinality 2. These onneted bloks of ardinality 2are the pairs of letters underlined in the previous examples.See [BDJ03, Proposition B.2 and Corollary B.4℄ for a (diret) proof that theeven moments of M are given bym2k(M ) = Xw:jwj=2k 2h(w) :(3.1)For the Toeplitz and Hankel ase, with eah partition word w we assoiate asystem of linear equation whih determine the ross-setion of the unit hyperube,and de�ne the orresponding volume p(w). We have to onsider these two asesseparately.3.2. Toeplitz volumes. Let w[j℄ denote the letter in position j of the word w.For example, if w = abab then w[1℄ = a; w[2℄ = b; w[3℄ = a; w[4℄ = b.To every partition word w we assoiate the following system of equations inunknowns x0; x1; : : : ; x2k .8>>>>>>>><>>>>>>>>:
x1 � x0 + xm1 � xm1�1 = 0 if m1 > 1 is suh that w[1℄ = w[m1℄x2 � x1 + xm2 � xm2�1 = 0 if there is m2 > 2 suh that w[2℄ = w[m2℄:::xi � xi�1 + xmi � xmi�1 = 0 if there is mi > i suh that w[i℄ = w[mi℄:::x2k�1 � x2k�2 + x2k � x2k�1 = 0 if w[2k � 1℄ = w[2k℄.

(3.2)
Although we list 2k � 1 equations, in fat k � 1 of them are empty. Informally,the left hand-sides of the equations are formed by adding the di�erenes over thesame letter when the variables are written in the spae \between the letters". Forexample, writing the variables between the letters of the word w = abab:::: we getx0ax1bx2ax3bx4x5 : : :xn xn+1 : : : :(3.3)The orresponding system of equations is8>>><>>>: x1 � x0 + x3 � x2 = 0x2 � x1 + x4 � x3 = 0x5 � x4 + xn+1 � xn = 0::: :(3.4)



10 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGSine in every partition word w of length 2k there are exatly k distint letters,this is the system of k equations in 2k + 1 unknowns. We solve it for the variablesthat follow the last ourrene of a letter, leaving us with k + 1 free variables: x0,and the k variables that follow the �rst ourrene of eah letter.We then require that the dependent variables lie in the interval I = [0; 1℄. Thisdetermines a ross-setion of the ube Ik+1 in the remaining free k+1 oordinates,the volume of whih we denote by pT (w). For example, if w = abab, solving the�rst pair of equations (3.4) for x3 = x0 � x1 + x2, x4 = x0, de�nes the solidfx0 � x1 + x2 2 Ig \ fx0 2 Ig � I3;whih has the (Eulerian) volume pT (abab) = 4=3! = 2=3.We de�ne m2k(T ) = Xw:jwj=2k pT (w):(3.5)Proposition 4.2 below shows that these are indeed the even moments of T .3.3. Hankel volumes. We proeed similarly to the Toeplitz ase. With eahpartition word w we assoiate the following system of equations in unknownsx0; x1; : : : ; x2k .8>>>>>>>><>>>>>>>>:
x1 + x0 = xm1 + xm1�1 if m1 > 1 is suh that w[1℄ = w[m1℄x2 + x1 = xm2 + xm2�1 if there is m2 > 2 suh that w[2℄ = w[m2℄:::xi + xi�1 = xmi + xmi�1 if there is mi > i suh that w[i℄ = w[mj ℄:::x2k�1 + x2k�2 = x2k + x2k�1 if w[2k � 1℄ = w[2k℄.

(3.6)
Informally, the equations are formed by equating the sums of the variables atthe same letter. For example, the word abab with the variables written as in (3.3)gives rise to the system of equations� x1 + x0 = x3 + x2x2 + x1 = x4 + x3 :(3.7)As in the Toeplitz ase, sine there are exatly k distint letters in the word,this is the system of k equations in 2k + 1 unknowns. We solve it for the vari-ables that preede the �rst ourrene of a letter, leaving us with k free variables: : : ; x�1 ; : : : ; x�k = x2k�1 that preede the seond ourrene of eah letter, andwith the (k + 1)-th free variable x2k. We add to the system (3.6) one more equa-tion: x0 = x2k :As previously, we require that the dependent variables are in the interval I =[0; 1℄. This determines a ross-setion of the ube Ik+1 in the remaining k + 1oordinates with the volume whih we denote by pH(w).Due to the additional onstraint x2k = x0, this volume might be zero. Forexample, equations (3.7) have solutions x0 = 2x2 � x4; x1 = x3 � x2 + x4 with freevariables x2; x3; x4. Equation x0 = x4 gives additional relation x4 = x2, and reduesthe dimension of the solid f2x2 � x4 2 Ig \ fx3 � x2 + x4 2 Ig \ fx4 = x2g � I3to 2. Thus the orresponding volume is pH(abab) = 0.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 11We de�ne m2k(H) = Xw:jwj=2k pH(w):(3.8)In Proposition 4.3 we show that these are indeed the moments of H .3.4. Relation to Eulerian numbers. The Eulerian numbers An;m are oftende�ned by their generating funtion or by the ombinatorial desription as thenumber of permutations � of f1; : : : ; ng with �i > �i�1 for exatly m hoies ofi = 1; 2; : : : ; n (taking �0 = 0). The geometri interpretation is that An;m=n! is thevolume of a solid ut out of the ube In by the set fx1 + � � �+xn 2 [m� 1;m℄g, see[Tan73℄. Converting any m� 1 of the oordinates x to 1� x, we get that An;m=n!is the volume of a solid ut out of the ube In by the setfx1 + x2 + � � �+ xn�m � (xn�m+1 + � � �+ xn) 2 Ig :The solids we enountered in the formula for the 2k-th moments are the intersetionsof solids of this latter form, with odd values of n, eah having m = (n� 1)=2, andwith various subsets of the oordinates entering the expression.Remark 3.1. One an verify that the probabilities pT (w) and pH(w) are rationalnumbers, and hene so are m2k(T ) and m2k(H), de�ned by formulas (3.5) and(3.8) (for details, .f. [BDJ03℄).4. Proofs of Theorems 1.1, 1.2 and 1.34.1. Trunation and entering. We �rst redue Theorems 1.1, 1.2 and 1.3 tothe ase of bounded i.i.d. random variables, and in ase of Theorems 1.1 and 1.2,also allow for entering of these variables.Proposition 4.1. (i) If Theorem 1.1 holds true for all bounded independenti.i.d. sequenes fXjg with mean zero and variane 1, then it holds true forall square-integrable i.i.d. sequenes fXjg with variane 1.(ii) If Theorem 1.2 holds true for all bounded independent i.i.d. sequenes fXjgwith mean zero and variane 1, then it holds true for all square-integrablei.i.d. sequenes fXjg with variane 1.(iii) If Theorem 1.3 holds true for all bounded independent i.i.d. sequenes fXi;jgwith mean zero and variane 1, then it holds true for all square-integrablei.i.d. sequenes fXi;jg with mean zero and variane 1.Proof. Without loss of generality, we may assume that IE(X) = 0 in Theorems1.1 and 1.2. Indeed, from the rank inequality, [Bai99, Lemma 2.2℄ it follows thatsubtrating a rank 1 matrix of the means IE(X) from matries Tn and Hn doesnot a�et the asymptoti distribution of the eigenvalues.For a �xed u > 0, denote m(u) = IEXIfjXj>ug;and let �2(u) = IEX2IfjXj�ug �m2(u):Clearly, �2(u) � 1 and sine IE(X) = 0, IE(X2) = 1, we have m(u) ! 0 and�(u)! 1 as u!1.Let eX = XIfjXj>ug �m(u):



12 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGNotie that �2(u) = IE(X � eX)2, therefore the bounded random variableX 0 = X � eX�(u)has mean zero and variane 1. Denote by T0n;H0n the orresponding Toeplitz andHankel matries onstruted from the independent bounded random variablesX 0j := Xj � eXj�(u) :By the triangle inequality for dBL(�; �) and (2.16),d2BL(�̂(Tn=pn); �̂(T0n=pn))� 2d2BL(�̂(Tn=pn); �̂(�(u)T0n=pn)) + 2d2BL(�̂(T0n=pn); �̂(�(u)T0n=pn))� 2n2 tr((Tn � �(u)T0n)2) + 2n2 (1� �(u))2tr((T0n)2) :It is easy to verify that IE( eX2) = 1��2(u)� 2m(u)2 and that with probability one1n2 tr((Tn � �(u)T0n)2) = 1n eX20 + 2n nXj=1�1� jn� eX2j ! IE( eX2) ;(4.1)as n ! 1 (for example, sandwihing the oeÆients j=n between the pieewiseonstant `�1b`j=n and `�1d`j=ne allows for applying the strong Law of LargeNumbers, with the resulting non-random bounds onverging to IE( eX2) as `!1).Similarly, 1n2 tr((T0n)2) = 1n (X 00)2 + 2n nXj=1�1� jn� (X 0j)2 ! IE((X 0)2):(4.2)For large u, both m(u) and 1� �(u) are arbitrarily small. So, in view of (4.1) and(4.2), with probability one the limiting distane in the bounded Lipshitz metridBL between �̂(Tn=pn) and �̂(T0n=pn) is arbitrarily small, for all u suÆientlylarge. Thus, if the onlusion of Theorem 1.1 holds true for all sequenes of inde-pendent bounded random variables fX 0jg, with the same limiting distribution T ,then �̂(Tn=pn) must have the same weak limit with probability one.Similarly, we haved2BL(�̂(Hn=pn); �̂(H0n=pn)) � 2n2 tr((Hn � �(u)H0n)2) + 2n2 (1� �(u))2tr((H0n)2) :By the same argument as before, with probability one1n2 tr((Hn � �(u)H0n)2) = 1n 2nXj=0�1� jj � njn � eX2j ! IE( eX2) ;and n�2tr((H0n)2) ! IE((X 0)2). Therefore, with probability one the limiting dBL-distane between �̂(Hn=pn) and �̂(H0n=pn) is arbitrarily small for large enoughu. Similarly, denoting by fMn;M0n the orresponding Markov matries onstrutedfrom the independent bounded random variables eXij and X 0ij := Xij� eXij�(u) , we haved2BL(�̂(Mn=pn); �̂(M0n=pn)) � 2n2 tr(fM2n) + 2n2 (1� �(u))2tr((M0n)2) :



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 13By (2.18), with probability one n�2tr((M0n)2) ! 2 and n�2tr(fM2n) ! 2IE( eX2).Therefore, with probability one, the limiting dBL-distane between �̂(Mn=pn) and�̂(M0n=pn) is arbitrarily small for large enough u.4.2. Combinatoris for Hankel and Toeplitz ases. For k; n 2 N, onsideriruits in f1; : : : ; ng of length L(�) = k, i.e., mappings � : f0; 1; : : : ; kg !f1; 2; : : : ; ng, suh that �(0) = �(k).Let s : N2 ! N be one of the following two funtions: sT (x; y) = jx � yj, orsH(x; y) = x + y. We will use s to math (i.e. pair) the edges (�(i � 1); �(i)) of airuit �. The main property of the symmetri funtion s is that for a �xed valueof s(m;n), every initial point m of an edge determines uniquely a �nite number(here, at most 2) of the other end-points: if k;m 2 N, then#fy 2 N : s(m; y) = kg � 2:(4.3)For a �xed s as above, we will say that iruit � is s-mathed, or has self-mathed edges, if for every 1 � i � L(�) there is j 6= i suh that s(�(i� 1); �(i)) =s(�(j � 1); �(j)).We will say that a iruit � has an edge of order 3, if there are at least threedi�erent edges in � with the same s-value.The following proposition says that generially self-mathed iruits have onlypair-mathes.Proposition 4.2. Fix r 2 N. Let N denote the number of s-mathed iruits inf1; : : : ; ng of length r with at least one edge of order 3. Then there is a onstantCr suh that N � Crnb(r+1)=2:In partiular, as n!1 we have Nn1+r=2 ! 0.Proof. Either r = 2k is an even number, or r = 2k � 1 is an odd number. Inboth ases, if an s-mathed iruit has an edge of order 3, then the total numberof distint s-values fs(�(i� 1); �(i)) : 1 � i � L(�)gis at most k�1. We an think of onstruting eah suh iruit from the left to theright. First, we hoose the loations for the s-mathes along f1; : : : ; rg. This anbe done in at most r! ways. One these loations are �xed, we proeed along theiruit. There are n possible hoies for the initial point �(0). There are at mostn hoies for eah new s-value, and there are at most 2 ways to omplete the edgefor eah repeat of the already enountered s-value. Therefore there are at mostr!� n� nk�12r+1�k � Crnk suh iruits.We say that a set of iruits �1; �2; �3; �4 is mathed if eah edge of any one ofthese iruits is either self-mathed i.e., there is another edge of the same iruitwith equal s-value, or is ross-mathed, i.e., there is an edge of the other iruitwith the same s-value (or both).The following bound will be used to prove almost sure onvergene of moments.Proposition 4.3. Fix r 2 N. Let N denote the number of mathed quadruplesof iruits in f1; : : : ; ng of length r suh that none of them is self-mathed. Thenthere is a onstant Cr suh that N � Crn2r+2:



14 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGProof. First observe that there are at most 2r distint s-values in the 4r edges ofa mathed quadruples of iruits of length r. Further, the number of quadruplesof suh iruits for whih there are exatly u distint s-values is at most Cr;unu+4.Indeed, order the edges (�j(i�1); �j(i)), of suh quadruples starting at j = 1, i = 1,then i = 2; : : : ; r, followed by j = 2, i = 1 and then i = 2; : : : ; r, et. There are atmost u4r possible alloations of the distint s-values to these 4r edges, at most n4hoies for the starting points �1(0), �2(0), �3(0), and �4(0) of the iruits and atmost nu for the values of �j(i) at those (j; i) for whih (�j(i� 1); �j(i)) is the left-most ourrene of one of the distint s-values. One these hoies are made, weproeed to sequentially determine the mapping �1(i) from i = 0 to i = r, followedby the mappings �2; �3; �4, noting that by (4.3) at most 24r�u�4 quadruples anbe produed per suh hoie.Reall that the number of possible partitions P of the 4r edges of our quadrupleof iruits into jPj distint groups of s-mathing edges, with at least two edges ineah group, is independent of n. Thus, by the preeding bound it suÆes to showthat for eah partition P with jPj 2 f2r � 1; 2rg suh that eah iruit shares atleast one s-value with some other iruit, there orrespond at most Cn2r+2 mathedquadruples of iruits in f1; : : : ; ng. To this end, note that jPj = 2r implies thateah s-value is shared by exatly two edges, while when jPj = 2r � 1 we also haveeither two s-values shared by three edges eah or one s-value shared by four edges(but not both).Fixing hereafter a spei� partition P of this type, it is not hard to hek thatupon re-ordering our four iruits we have an s-value that is assigned to exatly oneedge of the iruit �1, denoted hereafter (�1(i� � 1); �1(i�)), and in ase jPj = 2r,we also have another s-value that does not appear in �1 and is assigned to exatlyone edge of �2, denoted hereafter (�2(j� � 1); �2(j�)). (Though this property maynot hold for all ordering of the four iruits, an inspetion of all possible graphs ofross-mathes shows that it must hold for some order).We are now ready to improve our ounting bound for the ase of jPj = 2r � 1,by the following dynami onstrution of �1:First hoose one of the n possible values for the initial value �1(0), and ontinue�lling in the values of �1(i), i = 1; 2; : : : ; i� � 1. Then, starting at �1(r) = �1(0),sequentially hoose the values of �1(r � 1); �1(r � 2); : : : ; �1(i�), thus ompletingthe entire iruit �1. This is done in aordane with the s-mathes determinedby P , so there are n ways to omplete an edge that has no s-math among theedges already onstruted, while by (4.3) if an edge is mathing one of the edgesalready available, then it an be ompleted in at most 2 ways. Sine this proeduredetermines uniquely the edge (�1(i�� 1); �1(i�)) and hene the s-value assigned toit, it redues the number of free s-values to 2r � 2. Consequently, the number ofquadruples of iruits orresponding to P is at most Cn2r+2.In ase jPj = 2r, we �rst onstrut �1 by the preeding dynami onstrutionwhile determining the s-value for the edge (�1(i� � 1); �1(i�)) out of the iruitondition for �1. Then, we repeat the dynami onstrution for �2, keeping itin aordane with the s-values determined already by edges of �1 and uniquelydetermining the edge (�2(j� � 1); �2(j�)) and hene the s-value assigned to it, bythe iruit ondition for �2. Thus, we have again redued the total number offree s-values to 2r � 2, and onsequently, the number of quadruples of iruitsorresponding to P is again at most Cn2r+2.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 15The next result deals only with the slope mathing funtion sT (x; y) = jx� yj.Proposition 4.4. Fix k 2 N. Let N be the number of sT -mathed iruits � inf1; : : : ; ng of length 2k with at least one pair of sT -mathed edges (�(i � 1); �(i))and (�(j�1); �(j)) suh that �(i)��(i�1)+�(j)��(j�1) 6= 0. Then, as n!1we have n�(k+1)N ! 0:Proof. By Proposition 4.2, we may and shall onsider throughout path � inf1; : : : ; ng of length 2k for whih the absolute values of the slopes �(i) � �(i � 1)take exatly k distint non-zero values and, for � to be a iruit, the sum of all2k slopes is zero. Let P denote a partition of the 2k slopes to sT -mathing pairs,indiating also whether eah slope is negative or positive, with m(P) denoting thenumber of suh pairs for whih both slopes are positive. Observe that if underP both slopes of some sT -mathing pair are negative, then neessarily m(P) � 1,for otherwise the sum of all slopes will not be zero for any path orresponding toP . Thus, it suÆes to show that at most nk iruits � orrespond to eah P withm = m(P) � 1. Indeed, �xing suh P , there are at most n ways to hoose �(0) andnk�m ways to hoose the k �m pairs of slopes for whih at least one slope in eahpair is negative. The remaining m pairs of sT -mathing positive slopes are to behosen among f1; : : : ; ng subjet to a spei�ed sum (due to the iruit ondition).Sine there are at most nm�1 ways for doing so, the proof is omplete.4.3. Moments of the average spetral measure.Proposition 4.5. Suppose fXjg are bounded i.i.d. random variables suh thatIE(X) = 0; IE(X2) = 1. Then for k 2 Nlimn!1 1nk+1 IEtr(T2kn ) = Xw:jwj=2k pT (w);(4.4)and limn!1 1nk+1=2 IEtr(T2k�1n ) = 0:(4.5)Proof. For a iruit � : f0; 1; : : : ; rg ! f1; 2; : : : ; ng writeX� = rYi=1X�(i)��(i�1):(4.6)Then IEtr(Trn) =X� IEX�;(4.7)where the sum is over all iruits in f1; : : : ; ng of length r.By H�older's inequality, for any �nite set � of iruits of length rjX�2� IEX�j � IE(jX jr)#�:(4.8)Sine jX jr is bounded, we an use the bound (4.8) to disard the \non-generi"iruits from the sum in (4.7). To this end, note that sine the random variablesfXjg are independent and have mean zero, the term IEX� vanishes for every iruit� with at least one unpaired Xj . Sine Tn is a symmetri matrix, by (4.6) pairedvariables orrespond to the slopes of the iruit � whih are equal in absolute value.



16 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGHene, the only iruits that make a non-zero ontribution to (4.7) are those withmathed absolute values of the slopes. This �ts the formalism of Setion 4.2 withthe mathing funtion sT (x; y) = jx� yj.If r = 2k � 1 > 0 is odd then eah sT -mathed iruit � of length r must havean edge of order 3. From (4.8) and Proposition 4.2 we get jIEtr(T2k�1n )j � Cnk,proving (4.5).When r = 2k is an even number, let � be the set of all iruits � :f0; 1; : : : ; 2kg ! f1; : : : ; ng with the set of slopes f�(i) � �(i � 1) : i = 1; : : : ; 2kgonsisting of k distint non-negative integers s1; : : : ; sk and their ounterparts�s1; : : : ;�sk. From (4.8) and Proposition 4.4 it follows thatlimn!1 1nk+1 jIEtr(Trn)�X�2� IEX�j = 0:Moreover, for every iruit � 2 �, if Xj enters the produt X� then it ours in itexatly twie, resulting with IEX� = 1, and onsequently with P�2� IEX� = #�.Therefore, the following lemma ompletes the proof of (4.4), and with it, that ofProposition 4.5.Lemma 4.6. limn!1 1nk+1#� =Xw pT (w);where the sum is over the �nite set of partition words w of length 2k.Proof. The iruits in � an be labeled by the partition words w of length 2k whihlist the positions of the pairs of sT -mathes along f1; : : : ; 2kg. This generates thepartition � = Sw �(w) into the orresponding equivalene lasses.To every suh partition word w we an assign nk+1 paths �(i) = xi, i = 0; : : : ; 2kobtained by solving the system of equations (3.2), with values 1; 2; : : : ; n for eah ofthe k + 1 free variables, and the remaining k values omputed from the equations(whih represent the relevant sT -mathes for any � 2 �(w)). Some of these pathswill fail to be in the admissible range f1; : : : ; ng. Let pn(w) be the fration ofthe nk+1 paths that stay within the admissible range f1; : : : ; ng, noting that byProposition 4.2, pn(w) � n�(k+1)#�(w)! 0.Interpreting the free variables xj as the disrete uniform independent randomvariables with values f1; 2; : : : ; ng, pn(w) beomes the probability that the om-puted values stay within the presribed range. As n!1, the k + 1 free variablesxj=n onverge in law to independent uniform U [0; 1℄ random variables Uj . Sinepn(w) is the probability of the (independent of n) event Aw that the solution of(3.2) starting with xj=n 2 f1=n; 2=n; : : : ; 1g has all the dependent variables in(0; 1℄, it follows that pn(w) onverges to pT (w), the probability of the event Awthat the orresponding sums of independent uniform U [0; 1℄ random variables taketheir values in the interval [0; 1℄.Next we give the Hankel version of Proposition 4.5.Proposition 4.7. Let fXjg be bounded i.i.d. random variables suh that IE(X) =0; IE(X2) = 1. For k 2 N,limn!1 1nk+1 IEtr(H2kn ) = Xw:jwj=2k pH(w);(4.9)



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 17and limn!1 1nk+1=2 IEtr(H2k�1n ) = 0:(4.10)Proof. We mimi the proedure for the Toeplitz ase. For a iruit � :f0; 1; : : : ; rg ! f1; 2; : : : ; ng writeX� = rYi=1X�(i)+�(i�1):(4.11)As previously, IEtr(Hrn) =X� IEX� ;(4.12)where the sum is over all iruits in f1; : : : ; ng of length r, and by H�older's inequal-ity, we again have the bound (4.8), whih for bounded jX jr we use to disard the\non-generi" iruits from the sum in (4.12). To this end, with the random vari-ables Xj independent and of mean zero, the term IEX� vanishes for every iruit� with at least one unpaired Xj . By (4.11), in the urrent setting paired variablesorrespond to an sH -mathing in the iruit �. Hene, only sH -mathed iruits(in the formalism of Setion 4.2) an make a non-zero ontribution to (4.12).If r = 2k � 1 > 0 is odd then eah sH-mathed iruit � of length r must havean edge of order 3. From (4.8) and Proposition 4.2 we get jIEtr(H2k�1n )j � Cnk,proving (4.10).When r = 2k is an even number, let � be the set of all iruits � :f0; 1; : : : ; 2kg ! f1; : : : ; ng with the sH -values onsisting of k distint numbers.Reall that IEX� = 1 for any � 2 � (see (4.11)). Further, with any sH -mathediruit not in � having an edge of order 3, it follows from (4.8) and Proposition 4.2that limn!1 1nk+1 jIEtr(Hrn)�#�j = 0:Therefore, the following lemma ompletes the proof of (4.9), and with it, that ofProposition 4.7.Lemma 4.8. limn!1 1nk+1#� = Xw:jwj=2k pH(w):Proof. Similarly to the proof of Lemma 4.6, label the iruits in � by the partitionwords w whih list the positions of the pairs of sH -mathes along f1; : : : ; 2kg, withthe orresponding partition � = Sw �(w) into equivalene lasses. To every suhpartition word w we an assign nk+1 paths �(i) = xi; i = 0; : : : ; 2k obtained bysolving the system of equations (3.6), with values 1; 2; : : : ; n for eah of the k + 1free variables, and the remaining k values omputed from the equations. Some ofthese paths will fail to be a iruit, and some will fail to stay in the admissible rangef1; : : : ; ng. Let pn(w) denote the fration of the paths that stay within the admis-sible range f1; : : : ; ng and are iruits, noting that pn(w)� n�(k+1)#�(w) ! 0 byProposition 4.2. Thus, pn(w) is the probability of the event Aw that the solutionof (3.6) starting with the free variables xj that are independent disrete uniformrandom variables on the set f1=n; 2=n; : : : ; 1g, stays within (0; 1℄ and satis�es theadditional ondition x0 = x2k . It follows that as n ! 1, the probabilities pn(w)



18 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGonverge to pH(w), the probability of the event Aw with the free variables nowbeing independent and uniformly distributed on [0; 1℄.4.4. Conentration of moments of the spetral measure.Proposition 4.9. Let fXjg be bounded i.i.d. random variables suh that IE(X) =0 and IE(X2) = 1. Fix r 2 N. Then there is Cr < 1 suh that for all n 2 N wehaveIE[(tr(Trn)� IEtr(Trn))4℄ � Crn2r+2 and IE[(tr(Hrn)� IEtr(Hrn))4℄ � Crn2r+2.Proof. The argument again relies on the enumeration of paths. Sine both proofsare very similar, we analyze only the Hankel ase.Using the iruit notation of (4.11) we have thatIE[(tr(Hrn)� IEtr(Hrn))4℄ = X�1;�2;�3;�4 IE[ 4Yj=1(X�j � IE(X�j ))℄;(4.13)where the sum is taken over all iruits �j , j = 1; : : : ; 4 on f1; : : : ; ng of length reah. With the random variables Xj independent and of mean zero, any iruit �kwhih is not mathed together with the remaining three iruits has IE(X�k ) = 0and IE[ 4Yj=1(X�j � IE(X�j ))℄ = IE[X�k Yj 6=k �X�j � IE(X�j )�℄ = 0:Further, if one of the iruits, say �1, is only self-mathed, i.e., has no ross-mathededge, then obviouslyIE[ 4Yj=1(X�j � IE(X�j ))℄ = IE[X�1 � IE(X�j )℄IE[ 4Yj=2 �X�j � IE(X�j )�℄ = 0:Therefore, it suÆes to take the sum in (4.13) over all sH -mathed quadruples ofiruits on f1; : : : ; ng, suh that none of them is self-mathed. By Proposition 4.3,there are at most Crn2r+2 suh quadruples of iruits, and with jX j (hene jX�j)bounded, this ompletes the proof.4.5. Proofs of the Hankel and Toeplitz ases.Proof of Theorem 1.1. Proposition 4.1(i) implies that without loss of generality wemay assume that the random variables fXjg are entered and bounded.By Proposition 4.5 the odd moments of the average measure IE(�̂(Tn=pn))onverge to 0, and the even moments onverge to m2k of (3.5). Sine m2k is at mostthe number (2k� 1)!! of words of length 2k, these moments determine the limitingdistribution T uniquely. By Chebyshev's inequality we have from Proposition 4.9that for any Æ > 0 and k; n 2 N,IPh�� Z xkd�̂(Tn=pn)� Z xkdIE(�̂(Tn=pn))�� > Æi � CkÆ�4n�2 :Thus, by the Borel-Cantelli lemma, with probability one R xkd�̂(Tn=pn) !R xkdT as n ! 1, for every k 2 N. In partiular, with probability one, therandom measures f�̂(Tn=pn)g are tight, and sine the moments determine Tuniquely, we have the weak onvergene of �̂(Tn=pn) to T .Sine the moments do not depend on the distribution of the i.i.d. sequene fXjg,the limiting distribution T does not depend on the distribution of X either, and is



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 19symmetri as all its odd moments are zero. By Proposition A.1, it has unboundedsupport.Proof of Theorem 1.2. We follow the same line of reasoning as in the proof of The-orem 1.1, starting by assuming without loss of generality that fXjg are enteredand bounded, in view of Proposition 4.1(ii). Then, by Proposition 4.7, as n ! 1the odd moments of the average measure IE(�̂(Hn=pn)) onverge to 0, and theeven moments onverge to m2k of (3.8), whereas from Proposition 4.9 we onludethat with probability one the same applies to the moments of �̂(Hn=pn). Sinem2k � (2k � 1)!!, these moments determine the limiting distribution H uniquely.The almost surely onvergene R xkd�̂(Hn=pn) ! R xkdH as n ! 1, for allk 2 N, implies tightness of �̂(Hn=pn) and its weak onvergene to the non-randommeasure H . Sine its moments do not depend on the distribution of the i.i.d.sequene fXjg, so does the limiting distribution H , whih is symmetri sine allits odd moments are zero. By Proposition A.2 it has unbounded support, and isnot unimodal.4.6. Markov matries with entered entries. In view of Proposition 4.1(iii) wemay and shall assume hereafter without loss of generality that the random variablesXij are bounded. Our proof of Theorem 1.3 follows a similar outline as that usedin proving Theorems 1.1 and 1.2, where the ombinatorial arguments used here relyon matrix deomposition.Starting with some notation we shall use throughout the proof, let �n be a graphwhose verties are two-element subsets of f1; : : : ; ng with the edges between vertiesa and b if the sets overlap, a \ b 6= ;. We indiate that (a; b) is an edge of �n bywriting a � b, and for a 2 �n let a = fa�; a+g with 1 � a� < a+ � n.The main tool in the Markov ase is the following deompositionMn = Xa2�nXaQa;a;where Xa := Xa+;a� and Qa;b is the n�n matrix de�ned for verties a; b of �n byQa;b[i; j℄ = 8<: �1 if i = a+; j = b+, or i = a�; j = b�;1 if i = a+; j = b�, or i = a�; j = b+;0 otherwise.Let ta;b = tr(Qa;b): It is straightforward to hek thatta;b = 8>><>>: �2 if a = b;�1 if a 6= b and a� = b� or a+ = b+;1 if a� = b+ or a+ = b�;0 otherwise.From this, we see that ta;b = tb;a. Sine it is easy to hek that Qa;b � Q;d =tb;Qa;d, we get tr (Qa1;a1 �Qa2;a2 � � � � �Qar;ar) = rYj=1 taj ;aj+1 ;(4.14)where for onveniene we identi�ed ar+1 with a1.



20 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGFor a iruit � = (a1 � � � � � ar � a1) of length r in �n letX� = rYj=1 taj ;aj+1 rYj=1Xaj :(4.15)It follows from (4.14) and (4.15) thattr(Mrn) =X� X� ;(4.16)where the sum is over all iruits of length r in �n, leading to the Markov analogof the path expansion (4.7), IEtr(Mrn) =X� IEX�:(4.17)We say that a iruit � = (a1 � � � � � ar � a1) of length r in �n is vertex-mathed if for eah i = 1; : : : ; r there exists some j 6= i suh that ai = aj , andthat it has a math of order 3 if some value is repeated at least three times among(aj ; j = 1; : : : ; r). Note that the only non-vanishing terms in (4.17) ome fromvertex-mathed iruits.In analogy with Proposition 4.2, we show next that generially vertex-mathed iruits have only double repeats, and onsequently, the odd momentsof IE�̂(Mn=pn) onverge to zero as n!1.Proposition 4.10. Fix r 2 N. Let N denote the number of vertex-mathed iruitsin �n with r verties whih have at least one math of order 3. Then there is aonstant Cr suh that for all n 2 NN � Crnb(r+1)=2:Proof. Either r = 2k is even, or r = 2k � 1 is odd. In both ases, the totalnumber of di�erent verties per path is at most k � 1. Sine a1 � a2 � � � � � ar,there are at most n2=2 hoies for a1, and then at most 4n hoies for eah of theremaining k � 2 distint values of aj , and 1 hoie for eah repeated value. ThusN � 4rn2 � nk�2 = Cnk.Corollary 4.11. Suppose fXij ; j > i � 1g are bounded i.i.d. random variablessuh that IE(X) = 0; IE(X2) = 1. Then,limn!1 1nk+1=2 IEtr(M2k�1n ) = 0:(4.18)Proof. If IEX� is non-zero, then all the verties of the path a1 � a2 � � � � � a2k�1must be repeated at least twie. So for an odd number of verties, there must bea vertex whih is repeated at least 3 times. Thus, by Proposition 4.10 and theboundedness of jXij j and of ta;b,��IEtr(M2k�1n )�� � Cknk;and (4.18) follows.Let Wn = n1=2Zn + Xn + �In, where Xn is a symmetri n � n matrix withi.i.d. standard normal random variables (exept for the symmetry onstraint),Zn = diag(Zii)1�i�n, with i.i.d. standard normal variables Zii that are indepen-dent of Xn and � is a standard normal, independent of all other variables. Adiret ombinatorial evaluation of the even moments of IE�̂(Mn=pn) is providedin [BDJ03℄. We follow here an alternative, shorter proof, proposed to us by O.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 21Zeitouni. The key step, provided by our next lemma, replaes the even momentsby those of the better understood matrix ensemble Wn.Lemma 4.12. Suppose fXij ; j > i � 1g are bounded i.i.d. random variables suhthat IE(X) = 0; IE(X2) = 1. Then, for every k 2 N,limn!1n�(k+1)[IEtr(M2kn )� IEtr(W2kn )℄ = 0 :(4.19)Proof. First observe that by Proposition 4.10, we may and shall assume withoutloss of generality that fXijg are i.i.d standard normal random variables, subjetto the symmetry onstraint Xij = Xji (as suh a hange a�ets n�(k+1)IEtr(M2kn )by at most Ckn�1). Reall the representation Mn = Xn � Dn of (1.3) and letfMn = Xn� eD(n)n+1 where eD(n)n+1 is obtained by omitting the last row and olumn ofthe diagonal matrix eDn+1 whih is an independent opy ofDn+1 that is independentofXn. Observe that the diagonal entries of� eD(n)n+1 are jointly normal, of zero mean,variane n+1 and suh that the ovariane of eah pair is 1. Therefore, with � eD(n)n+1independent of Xn, for eah n, the distribution of fMn is exatly the same as thatof Wn. Consequently, (4.19) is equivalent tolimn!1 n�(k+1)IE[tr(M2kn )� tr(fM2kn )℄ = 0 :(4.20)The �rst step in proving (4.20) is to note that by a path expansion similar to (4.17)we have that IE[tr(M2kn )� tr(fM2kn )℄ =X� [IEM� � IEfM�℄ ;(4.21)where now the sum is over all iruits � : f0; : : : ; 2kg ! f1; : : : ; ng, andM� = 2kYi=1M�(i�1);�(i)with the orresponding expression for fM�. Set eah word w of length 2k to bea iruit by assigning w[0℄ = w[2k℄ and let �(w) denote the olletion of iruits� suh that the distint letters of w are in a one to one orrespondene with thedistint values of �. Let v = v(w) be the number of distint letters in the wordw, noting that #�(w) � nv(w) and that IEM� � IEfM� = fn(w) is independentof the spei� hoie of � 2 �(w). Hene, taking the letters of w to be from theset of numbers f1; 2; : : : ; 2kg with the onvention that w(i) = w[i℄, we identify was a representative of � 2 �(w) (reall w[0℄ = w[2k℄). For example, w = abbof v(w) = 3 distint letters beomes w = 1223 whih we identify with the iruit� 2 �(w) of length 4 onsisting of the edges f1; 2g, f2; 2g, f2; 3g and f3; 1g. Inview of (4.21), we thus establish (4.20) by showing that for any w, some Cw < 1and all n, jfn(w)j = jIEMw � IEfMwj � Cwnk�v(w)+1=2 :(4.22)Let q = q(w) be the number of indies 1 � i � 2k for whih w[i℄ = w[i � 1℄(for example, q(1223) = 1). It is lear from the de�nition of Mn and fMn thatfn(w) 6= 0 only if q(w) � 1. Let u = u(w) ount the number of edges of distintendpoints in w, namely, with fw[i�1℄; w[i℄g 2 �n, whih appear exatly one alongthe iruit w (for example, u(1223) = 3). Then, by independene and entering wehave that IEfMw = 0 as soon as u(w) � 1, whereas it is not hard to hek that if



22 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGu(w) > q(w) then also IEMw = 0. Thus, suÆes to onsider in (4.22) only iruitsw with q(w) � u(w).It is not hard to hek that exluding the q loop-edges (eah onneting somevertex to itself), there are at most k+b(u�q)=2 distint edges in w. These distintedges form a onneted path through v(w) verties, whih for u � 1 must also bea iruit. Consequently, for any of the words w we are to onsider,v(w) � k + 1u(w)=0 + b(u(w)� q(w))=2 � k :(4.23)Proeeding to bound jfn(w)j, note that any ontribution whih grows with nmust ome from the q diagonal entries of Mn and fMn whih are enounteredaording to the iruit w. Suppose �rst that u � 1, in whih ase fn(w) = IEMw.Computing the latter, upon expanding the sums in the q relevant diagonal entries ofDn = diag(Pnj=1 Xij), we must assign spei� hoies to at least u of the resultingfree indies j1; : : : ; jq 2 f1; : : : ; ng in order to math all u un-mathed edges of w ofthe form fw[i� 1℄; w[i℄g 2 �n. Indeed, by independene and entering, every otherterm of this expansion has zero expetation. After doing so, as eah diagonal entryof Dn is normal of mean zero and variane n, we onlude by H�older's inequalitythat jfn(w)j � Cwn(q�u)=2. By our bound (4.23) on v(w), this implies that (4.22)holds.Consider next words w for whih u(w) = 0 and let a1; : : : ; aq be the q vertiesfor whih fai; aig is an edge of the iruit w. Let Mii = Qi�Si and fMii = eQi� eSi,for i = 1; : : : ; 2k, where Qi = Xii �P2kj=1 Xij , eQi = Xii � eXi;n+1 �P2kj=1 eXij , andeSi = Pnj=2k+1 eXij with the orresponding expressions for Si. Note that we mayand shall replae eah Si by eSi without altering IEMw, and sine the o�-diagonalentries of Mn and fMn are the same, we have thatfn(w) = IEhLw� qYi=1(Qai � eSai)� qYi=1( eQai � eSai)�i= qXi=1 IEhLw(Qai � eQai) i�1Yj=1Maj ;aj qYj=i+1 fMaj;aji ;where Lw is the produt of the (2k� q) o�-diagonal entries of Mn that orrespondto the edges of w that are in �n. Sine the distribution of (Lw; fQig; f eQig) isindependent of n > 2k, while Mii and fMii are normal of mean zero and variane atmost n + 2, it follows by H�older's inequality that jfn(w)j � Cwn(q(w)�1)=2, whihby (4.23) results with (4.22).As already seen, (4.22) implies that (4.20) holds and hene the proof of thelemma is omplete.Let 0(dx) = dx2�p4� x21jxj�2 denote the semi-irle distribution, 1(dx) =dxp2� exp(�x2=2) denote the standard normal distribution and let M = 0 � 1 bethe orresponding free onvolution. In view of Lemma 4.12, our next result showsthat the even moments of IE�̂(Mn=pn) onverge as n!1 to those of M .Proposition 4.13. For every k 2 N,limn!1n�(k+1)IEtr(W2kn ) = Z x2kdM :(4.24)



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 23Proof. Let An = Zn + n�1=2�In, so n�1=2Wn = An + n�1=2Xn. By the strongLLN, with probability one �̂(An)! 1 weakly. Further, supn IE R jxjd�̂(An) <1,and IE R jxjd�̂(n�1=2Xn) � n�1pIEtr(X2n) = 1, implying by [PV00, Theorem 2.1and p. 280℄ that �̂(Wn=pn) onverges weakly to M , in probability. It follows thatfor any k 2 N and all r <1,limn!1 IE Z hr(x)d�̂(Wn=pn) = Z hr(x)dM(4.25)where hr(x) = (min(jxj; r))2k . Reall that all moments of M are �nite (.f. Propo-sition A.3), so as r !1 the right-hand side of (4.25) onverges to R x2kdM . It isnot hard to hek that for any k 2 N,IE Z x2kd�̂(Wn=pn) = n�(k+1)IEtr(W2kn ) ;is bounded in n by some Ck <1. Hene, for all n,jn�(k+1)IEtr(W2kn )� IEZ hr(x)d�̂(Wn=pn)j � Ck+1r�2 ;and (4.24) follows by onsidering r !1 in (4.25).We next derive the analog of Proposition 4.3 and similarly to Proposition4.9, get as a result the onentration of moments of �̂(Mn=pn) around those ofIE(�̂(Mn=pn)).Proposition 4.14. Fix r 2 N. Let N denote the number of vertex-mathed quadru-ples of iruits in �n with r verties eah, suh that none of them is self-mathed.Then there is a onstant Cr suh thatN � Crn2r+2:Proof. Let P denote the partition of the 4r verties of the iruits �1; : : : ; �4 in�n to jPj � 2r distint groups of mathing verties, with at least two elements ineah group, while having eah iruit ross-mathed to at least one of the otheriruits. As part of P we speify also whih of the four types of edges to use ineah onnetion along the iruits. For i = 1; 2; 3; 4, let ui = ui(P) be the numberof distint verties in �i that do not appear in any �j , j < i. There are at mostn1+u1 ways to hoose the iruit �1 in agreement with P , that is, n2=2 ways tohoose the vertex a1 of �1 and at most n ways for eah of the remaining u1 � 1distint verties of �1. For i = 2; 3; 4, per given �j , j < i, the same proedureshows that there are at most n1+ui ways to omplete the iruit �i. Further, if �i isross-mathed to �j for some j < i, then starting the ompletion of �i at a vertexthat we already determined by suh a ross-math, we have that there are only nuiways to omplete �i. The latter improved bound always applies for i = 4, and itis not hard to hek that upon re-ordering the four iruits, we an assure that itapplies also for i = 3. We thus get at most nu+2 quadruples of iruits per hoieof P , where u =Pi ui = jPj � 2r, yielding the stated bound.Proposition 4.15. Suppose fXij ; j > i � 1g are bounded i.i.d. random variablessuh that IE(X) = 0 and IE(X2) = 1. For any r 2 N, there exists Cr < 1 suhthat IE[(tr(Mrn)� IEtr(Mrn))4℄ � Crn2r+2 for all n 2 N.
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26 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGProof. It suÆes to show that (m2k)1=k !1. Let w be a partition word of length2k. Denoting Si =Pj ni;jUj � 12 ; i = 1; 2; : : : ; k, we havepT (w) = IP k\i=1njSij < 12o! :(A.2)Sine the oeÆients ni;j in (A.1) take values 0;�1 only, and Pj ni;j = 1, eahof the sums Si in (A.2) has the following formS = (U� � 1=2) + LXj=1(U�(j) � U(j));(A.3)where �; �(j); (j); j = 1; : : : ; L are all di�erent. Let Li denote the number ofindependent random variables U in this representation for Si. Clearly, 1 � Li �k + 1.Fixing " > 0 let Uj = 1=2 + Vj=("(k + 1)) for j = 0; : : : ; k. For k > 1=" de�nethe event A = k\j=0�jUj � 1=2j < 12"(k + 1)� ;noting that onditionally on A, the random variables V0; : : : ; Vk are independent,eah uniformly distributed on [�1=2; 1=2℄. As under this onditioning the i.i.d.random variables fVjg have symmetri laws, it is easy to hek that for i = 1; : : : ; k,the form (A.3) of Si implies thatIP(jSij > 12 jA) = IP(j LiXj=1 Vj j > "(k + 1)=2) = 2IP( LiXj=1 Vj > "(k + 1)=2) ;whih by Markov's inequality is bounded above by2e�"2(k+1)=2(IEe"V )Li = e�"2(k+1)=2 �e"=2 � e�"=2" �Li :Sine ex�e�x2x � ex2=2 for x > 0, and Li � k + 1, we dedue thatIP�jSij > 12 ����A� � 2 exp ��"2(k + 1)=2 + "2Li=4� � 2e�"2(k+1)=4 ;(A.4)for i = 1; : : : ; k. As 2ke�"2(k+1)=4 � 1=2 for some k0 = k0(") < 1 and all k � k0,it follows from (A.2) and (A.4) that for all k � k0 and any word w of length 2k,pT (w) � 12IP(A) = 12("(k + 1))�(k+1):(A.5)Sine there are more than k! partition words w of length 2k, this shows that for alllarge enough k we havem2k � 12k!("(k + 1))�(k+1) � (3")�k:Hene, lim supk!1m1=k2k � 1=(3"). As " > 0 is arbitrarily small, this ompletes theproof.Proposition A.2. A symmetri measure H with even moments given by (3.8) isnot unimodal and has unbounded support.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 27Proof. Suppose that the symmetri distribution H is unimodal. Sine all mo-ments of H are �nite, from Khinhin's Theorem, see [Luk70, Theorem 4.5.1℄, itfollows that if �(t) = R eitxH(dx) denotes the harateristi funtion of H , theng(t) = �(t) + t�0(t) must be a harateristi funtion, too. The even moments or-responding to g(t) are (2k + 1)m2k(H), and must be a positive de�nite sequene,that is, the Hankel matries with entries [(2(i+j)�3)m2(i+j�2)(H )℄1�i;j�n shouldall be non-negative de�nite. However, with m4 = 2, m6 = 11=2 and m8 = 281=15,for n = 3 the determinantdet24 1 3m2 5m43m2 5m4 7m65m4 7m6 9m8 35 = det24 1 3 103 10 77=210 77=2 843=5 35 = �73=20is negative. Thus, H is not unimodal.To show that the support of H is unbounded we proeed like in the Toeplitzase. The main tehnial obstale is that some partition words ontribute zerovolume. We will therefore have to �nd enough partition words that ontribute anon-zero volume, and then give a lower bound for this ontribution.We onsider only moments of order 4k � 2, k � 2, and �nd the ontribution ofthe partition words whih have no repeated letters in the �rst half, i. e.,w[1℄ 6= w[2℄ 6= � � � 6= w[2k � 1℄:That is, we onsider the set of partition words w of length 4k � 2 of the formw = ab::: with the �rst 2k � 1 letters written in the �xed (alphabeti) order,followed by the repeated letters a; b; ; : : : at positions 2k; : : : ; 4k � 2. We alsorequire that the repeats are plaed at odd distane from the original mathingletter. Formally, we onsider the set of partition words w of length 4k � 2 whihsatisfy the following ondition.If w[�℄ = w[�℄ and � < � then � 6� � mod 2, � � 2k � 1, and � � 2k.Sine we an permute all letters at loations 2k; 2k+2; : : : ; 4k� 2 and all letters atloations 2k+1; 2k+3; : : : ; 4k�3, learly there are k!(k�1)! suh partition words.To show that all suh partition words ontribute a non-zero volume, we needto arefully analyze the matrix of the resulting system of equations (3.6). This isa (2k � 1) � (4k � 1) matrix with entries 0;�1 only. The �rst 2k � 1 olumns ofthe matrix are �lled in with the pattern of sliding pairs 1; 1 orresponding to �rstourrenes of every letter, i.e. the left hand sides of equations (3.6) are simply8>>><>>>: x0 + x1 = : : :x1 + x2 = : : ::::x2k�2 + x2k�1 = : : : :So the �rst 2k olumns of the matrix are as follows, with the star denoting as yetunspei�ed entries of the 2k-th olumn.1100..00*0110..00*0011..00*...0000..11*0000..011



28 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGThe remaining olumns are as follows. In every even row of the seond half we havea disjoint (non-overlapping) pairs (�1;�1), inluding the site adjaent to the "lastletter", that has entry 1 in the last row, and entry �1 in one of the odd rows. Noneof these �1;�1 are in the last olumn, a oeÆient of x4k�2.In the odd rows we have pairs of onseutive (�1;�1) whih overlap entries fromthe even rows, but not themselves, inluding a single (�1;�1) pair whih �lls inone spot in the last olumn, the oeÆients of x4k�2.For example, the word w = ab : : : ab : : : , where all 2k � 1 letters a; b; ; : : : arerepeated alphabetially twie, is in the lass of the partition words under onsider-ation. The orresponding system of equations is8>>>>>><>>>>>>: x0 + x1 = x2k�1 + x2k:::xi + xi+1 = x2k+i�1 + x2k+i; i = 1; 2; : : : ; 2k � 3:::x2k�2 + x2k�1 = x4k�3 + x4k�2 ;and its matrix is1100..00-1-1 0 ... 0 00110..00 0-1-1 ... 0 00011..00 0 0-1 ... 0 0...0000..11 0 0 0 ...-1 00000..01 1 0 0 ...-1-1All other partition words in our lass are obtained from permuting lettersw[2k℄; w[2k + 2℄; : : : ; w[4k � 2℄, and then permuting letters w[2k + 1℄; w[2k +3℄; : : : ; w[4k�3℄ of w = ab : : : ab. Thus all other systems of equations are obtainedfrom the above one by permuting even rows in olumns 2k + 1; 2k + 2; : : : ; 4k � 2and odd rows in olumns 2k; 2k+1; : : : ; 4k� 1 (apart from the 1 at olumn 2k androw 2k � 1 whih is never permuted, but get eliminated if the �rst row permutesto beome the last one). For eah of these words the sum of all odd rows in thesystem minus the sum of all even rows is [1; 0; : : : ; 0;�1℄, implying that for suh wthe additional onstraint x0 = x4k�2 we require when omputing pH(w) is merelya onsequene of (3.6).The solutions of equations (3.6) for suh partition words w are easy to analyzedue to parity onsiderations. Gaussian elimination onsists here of subtrationsof the given row from the row diretly above it, starting with the subtration ofthe (2k � 1) row and ending with the subtration of the seond row from the �rstrow, at whih point the �rst 2k � 1 olumns beome the identity matrix. Duringthese subtrations, a �1 entry in eah olumn of the original system an meet anon-zero entry only from a row positioned at an odd distane above it, in whihase they anel eah other. So as we keep subtrating, all oeÆients take values0;�1 only. Further, for eah row the sum of the entries in olumns 2k; : : : ; 4k � 1is �2, exept for the last row for whih it is �1. Thus, after all subtrations havebeen made, these sums are �1 at eah of the rows. We an now set the 2k freevariables to i.i.d. U [0; 1℄ random variables, x2k�1 = U0; : : : ; x4k�2 = U2k�1, andsolve the 2k� 1 equations for the dependent variables x0; : : : ; x2k�2. By the aboveonsiderations we know that eah of these dependent random variables is expressed



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 29as an alternating sums of independent uniform U[0,1℄ random variables of the form(A.3).The argument we used for deriving (A.5) thus gives the bound pH(w) �12 (2k")�2k for eah of these k!(k � 1)! partition words, and hene for all k largeenough, we have m4k�2(H ) � 12k!(k � 1)!(2"k)�2k � (6")�2k:Thus m1=k4k�2 !1, whih implies that the support of H is unbounded.Proposition A.3. The free onvolution M = 0 � 1 of the standard semi-irledistribution 0 and the standard normal 1 is a symmetri measure, determined bymoments, has unbounded support and a smooth bounded density.Proof. By [Bia97, Corollary 2℄, M has a density, by [Bia97, Corollary 4℄ the densityis smooth, and by [Bia97, Proposition 5℄ it is bounded.We now verify that M is determined by moments and has unbounded support.We need the following observation: a probability measure � has odd moments van-ishing i� the odd free umulants k2r+1(�) of � vanish. This an be easily read from[Spe97, formula (72)℄.Sine free umulants linearize free onvolution, kr(M ) = kr(0) + kr(1). Thisshows that the odd moments of M vanish. Reall that the free umulants kn(�)and the moments mn(�) of a probability measure � are related by [Spe97, formula(72)℄. In partiular, for � with vanishing odd moments, the even umulants k2r(�)are related to the moments by the equationsm2n(�) = nXr=1 k2r(�) Xi1+���+i2r=2n�2r 2rYj=1mij (�) ; n = 1; 2; : : : :(A.6)By symmetry, the odd umulants of 1 vanish, and k2r(1) are non-negative;(k2r(1) ount all irreduible pair partitions of f1; : : : ; 2rg, see [BS96, page 152℄).Sine k2(0) = 1, and all higher free umulants of 0 vanish (see [HP00, Example2.4.6℄), we have k2r(1) � k2r(M ) � 2k2r(1)Together with (A.6) this implies by indution thatm2r(1) � m2r(M ) � 4rm2r(1)In partiular, M has unbounded support and is uniquely determined by moments.Sine its odd umulants vanish, the odd moments vanish and M is symmetri.Additional material for expanded version onlyProof of Remark 3.1. This holds true beause the probabilities p(w) are rational.In fat, one an verify by indution on the number of variables M that the jointdensity fM of fPMj=1 ni;jUjgi=1;:::;k on Rk is a piee-wise polynomial expression:there are polynomials P (M)i1;:::;ik indexed by i1; : : : ; ik 2 Z suh thatfM (x1; x2; : : : ; xk) = P (M)[x1=N ℄;[x2=N ℄;:::;[xk=N ℄(x1; x2; : : : ; xk);(A.7)



30 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGwhere N = Qi;j ni;j . Indeed, f0 = 1. Suppose that formula (A.7) holds true forsome M with N = Qi;j ni;j . Let N 0 = NQki=1 ni;M . Sine N jN 0, we an writedeomposition (A.7) with N 0 instead of N . This givesfM+1(x1; : : : ; xk) = Z 10 fM (x1 � n1;Mu; x2 � n2;Mu; : : : ; xd � nk;Mu)du= Z 10 P (M)[(x1�n1;Mu)=N 0℄;:::;[(xk�nd;M )=N 0℄(x1 �n1;Mu; x2 �n2;Mu; : : : ; xk �nk;Mu)du:Notie that if i� := [x�=N 0℄ then for n � N 0 and 0 < u < 1 we have[(x� � nu)=N 0℄ = ( i� if 0 < u < x��i�N 0ni� � 1 if x��i�N 0n � u < 1 :Ordering the numbers�x1 � i1N 0n1;M ; x2 � i2N 0n2;M ; : : : ; xk � ikN 0nk;M �in inreasing order, and splitting the integral R 10 fMdu into the appropriate rangeswe therefore get a pieewise polynomial expression for fM+1.From (A.7) it follows that p(w) = RIk fM (x1; : : : ; xk) dx1 : : : dxk is a �nitesum of rational numbers, obtained by integrating the polynomials P (M)i1;:::;ik over theintervals with rational end-points of the form [ i�1N ; iN ℄; i = 1; 2; : : : ; N .Appendix B. Combinatorial arguments for Markov MatrixB.1. Moments of free onvolution. In this setion we identify moments of thefree onvolution 0 � 1. The result and the method of proof were suggested by[BS96℄, who give a ombinatorial expression for the moments of free onvolutionsof normal densities.Denote byW the set of all partition words. Reall that a (partition) sub-word ofa word w is a partition word w1 suh that w = a:::w1d::z. Let W0 be the set of allirreduible partition words, i. e., words that have no proper (non-empty) partitionsub-words.De�nition B.1 ([BS96℄). We say that p :W ! R is pyramidally multipliative, iffor every w 2 W of the form w = a:::w1d::z, we have p(w) = p(w1)p(a:::d::z).Lemma B.1 ([BS96, page 152℄). Suppose that the moments are given bym2n = Xw2W;jwj=2np(w);(B.1)and m2n�1 = 0, n = 1; 2; : : : . If the weights p(w) are pyramidally multipliative,then the free umulants are k2n = Xw2W0;jwj=2n p(w):Proposition B.2. A symmetri measure M with the even moments given by (3.1)is given by the free onvolution M = 0 � 1.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 31Proof. We apply Lemma B.1 to measures M , 0, and 1. If w = ::w1:: thenh(w) = h(w1) + h(w nw1), so the Markov weights pM (w) := 2h(w) are pyramidallymultipliative. It is well known that the moments of the normal distribution aregiven by (B.1) with p1(w) = 1, whih is (trivially) multipliative. The momentsof the semi-irle distribution are given by (B.1) with p0(w) = 1 for the so allednon-rossing words, and p0(w) = 0 otherwise. (A partition word is non-rossing, ifit an be redued to the empty word by removing pairs of onseutive double lettersxx, one at a time.) It is well known that this weight is pyramidally multipliative,too.We now use Lemma B.1 to ompare the free umulants of the semi-irle, normaland Markov distributions. Let w 2 W0. If jwj = 2 then pM (w) = 2, and otherwisepM (w) = 20 = 1 as an irreduible word has no proper sub-words, and hene noenapsulated sub-words. Thus k2(M ) = 2, and for n � 2k2n(M ) = #fw 2 W0; jwj = 2ng:If jwj = 2 then p0(aa) = 1, and otherwise p0(w) = 0 as an irreduible word oflength 4 or more annot be non-rossing. Thus k2(0) = 1, and for n � 2k2n(0) = 0:From p1(w) = 1 we get k2n(1) = #fw 2 W0; jwj = 2ngfor n � 1; in partiular, k2(1) = 1. Thus, for n � 1k2n(M ) = k2n(0) + k2n(1);whih proves that M = 0 � 1.B.2. Even moments. The purpose of this setion is to provide a ombinatorialproof of the onvergene of even moments of the measure IE�̂(Mn=pn), when theo�-diagonal entries ofMn are bounded entered random variables of unit variane.By Proposition 4.10 without loss of generality we may assume that the sum in (4.17)is taken over all partition words w = a1a2 : : : a2k, i.e. words of length 2k whihonsist of pairs of letters, and over all iruit-representations of these letters a1 �a2 � � � � � a2k � a1 in �n. To put it di�erently, for a path a1 � a2 � � � � � a2k � a1in �n, we de�ne its word w by w[i℄ = w[j℄ when ai = aj , 0 � i < j � jwj, withthe letters entering the expression in alphabeti order. Note that IEQrj=1 Xaj = 1for eah of these a1a2 : : : ar. Hene, the main ontribution term to the limit of the2k-th moment of IE(�̂(Mn=pn)) omes from the sum over the partition words w ofemn(w) = 1nk+1 X 2kYj=1 taj ;aj+1 ;(B.2)where the sum in (B.2) is taken over the setf(a1; : : : ; a2k) 2 �2kn : a1 � a2 � � � � � a2k � a1; [a1 : : : a2k℄ = wg:The main task of this setion is to identify the limit of emn(w) by proving thefollowing proposition.Proposition B.3. For any partition word w, we have that emn(w) ! 2h(w) asn!1, where h(�) is given by De�nition 3.1.In view of Proposition 4.10, an immediate onsequene of Proposition B.3 is:



32 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGCorollary B.4. Suppose fXij ; j > i � 1g are bounded i.i.d. random variablessuh that IE(X) = 0 and IE(X2) = 1. Then, for any k 2 N,limn!1 1nk+1 IEtr(M2kn ) = Xw:jwj=2k 2h(w):We devote the rest of this setion to ombinatorial lemmas and the proof ofProposition B.3. To this end, note that if a sequene a1; : : : ; a2k 2 �n onsists ofk di�erent verties with the non-empty intersetions aj \ aj+1, j = 1; : : : ; 2k, thenwe have # (a1 [ a2 [ � � � [ a2k) � k + 1.De�nition B.2. We will say that a1 � � � � � a2k � a1 is a typial iruit, if# (a1 [ a2 [ � � � [ a2k) = k + 1.Sine the non-typial iruits satisfy # (a1 [ a2 [ � � � [ a2k) � k, and there areat most (2n)k possible hoies for k di�erent elements in the sum a1[a2[� � �[a2k,trivially, we haveLemma B.5. For every partition word w there are at most Cnk non-typial ir-uits.So it is lear that the dominant ontribution in (B.2) omes from the typialiruits. It turns out that these iruits are in the one-to-one orrespondene withthe iruits on a sub-lattie of Z2. Denote by e�n the n�n square with the diagonalremoved, e�n = f(i; j) : 1 � i; j � n; i 6= jg;and equip e�n with the graph struture by de�ning its edges as the pairs of points(~a;~b) suh that either the �rst or the seond oordinates of ~a;~b oinide; that is, if~a = (xa; ya) and ~b = (xb; yb) then we will write ~a � ~b if either xa = xb or ya = yb.
1 2 3sss sss sss sss~a1~a2~a3 ~a4~a5 ~a6 -

6j
iFigure 1. A sample iruit ~a1 � � � � � ~a6 in e�4 with turnsat every vertex. For ease of drawing, this iruit orresponds to anon-partition word w = abdef . Sample mathed iruits of length12 on these verties are ~a1 � ~a1 � � � � ~a6 � ~a6 (w = aabbddeeff ,no turns!), or ~a1 � � � � � ~a6 � ~a1 � � � � � ~a6 (w = abdefabdef ,with turns at every vertex).The natural graph homomorphism ' : e�n ! �n is given by '(i; j) = fi; jg 2 �n.De�nition B.3. We will say that a iruit ~a1 � � � � � ~a2k � ~a1 in e�n is a liftingof a �n-iruit a1 � � � � � a2k � a1 , if the following two onditions hold:



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 33(i) '(~aj) = aj for j = 1; : : : ; 2k.(ii) If ai = aj then ~ai = ~aj .Notie that although every vertex of �n an be lifted in two di�erent ways,ondition (ii) ensures that the lifting of a iruit is uniquely de�ned by the mappingof the k distint verties a1; a�1 ; : : : ; a�k of the iruit a1 � � � � � a2k � a1 to e�n.De�nition B.4. We will say that a path ~a1 � : : : ~aj�1 � ~aj � ~aj+1 � � � � � ~a2k ine�n turns at vertex ~aj if ~aj�1 6= ~aj 6= ~aj+1, and the edges (~aj�1; ~aj) and (~aj ; ~aj+1)are perpendiular.We will say that a path a1 � a2 � � � � � as�1 � as � as+1 � � � � � a2k in �nturns at vertex as, if as�1 \ as \ as+1 = ;.Proposition B.6. Let w be a �xed partition word.(i) Every typial iruit based on w an be lifted to a iruit in e�.(ii) The lifting is a one-to-two mapping, and beomes unique one we speify the�rst vertex ~a1 as a point in the lower triangle f(i; j) : 1 � j < i � ng � e�n.(iii) The lifted paths may turn only at the verties that orrespond to the pairsof letters of w whih enapsulate a omplete partition sub-word w0 of length2 � jw0j � 2k � 2.We will need the following simple ounting result.Lemma B.7. Suppose that a1 � a2 � : : : a2k � a1 is a typial iruit. Supposethat the set faj+1; : : : ; aj+rg of r onseutive verties of the iruit onsists of sdistint verties. Then#(aj+1 [ aj+2 [ � � � [ aj+r) = s+ 1:(B.3)Proof. Suppose that (B.3) fails for some j; r. Let r be the length of the longestsequene that fails (B.3). (Here we use the irular symmetry, i. e., we identifya2k+1 = a1; a2k+2 = a2; : : : .) Sine the full iruit is typial, we must have r < 2k.By irular symmetry, without loss of generality we may assume that j = 0 so that# (a1 [ aj+2 [ � � � [ ar) � s. Sine r is maximal, ar+1 must be a new vertex, orelse we ould have inluded it in the sequene without a�eting the union. But# (a1 [ a2 [ � � � [ ar+1) = # (a1 [ a2 [ � � � [ ar) + 2�#((a1 [ a2 [ � � � [ ar) \ ar+1) � s+ 2� 1 � s+ 1:Sine there are s+1 distint verties in the sequene a1; a2; : : : ar+1, this shows that(B.3) fails for a sequene of length r + 1, ontraditing the maximality of r.Notie sine all verties are mathed, by irular symmetry, if a iruit of length2k turns at vertex as and i = as�1 \ as, then there is t > s+ 1 suh that i 2 at.We now show that the �rst re-ourrene of suh i is at the repeated vertex.Lemma B.8. If a typial iruit a1 � a2 � : : : a2k � a1 turns at vertex as = fi; jg,i = as�1 \ as, and t is the �rst vertex after as+1 that ontains i, then at = fi; jg.Proof. Suppose at = fi; lg with l 6= j. Let r be the number of distint verties inthe sequene as+1; as+2; : : : ; at. By Lemma B.7, we have# (as+1 [ as+2 [ � � � [ at) = r + 1:



34 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGSine as 3 i, and the remaining verties before at do not ontain i, thereforevertex as di�ers from as+1; : : : at�1. Sine l 6= j, we get as 6= at. So the sequeneas; as+1; as+2; : : : ; at has r + 1 distint verties. By Lemma B.7# (as [ as+1 [ as+2 [ � � � [ at) = r + 2:But # (as [ as+1 [ as+2 [ � � � [ at)= # (as+1 [ as+2 [ � � � [ at) + 2�#(as \ (as+1 [ as+2 [ � � � [ at)) :Notiing that as\ (at[as+1) = fi; jg, we see that # (as [ as+1 [ as+2 [ � � � [ at) =r + 1 < r + 2, a ontradition. This shows that at = as.Remark B.1. Suppose that a iruit turns at as = fi; jg and as�1 \ as = fig.Let at be the seond ourrene of the vertex fi; jg. From Lemma B.8 it follows byirular symmetry that, starting the iruit at as, the iruit an be written asfi,jg � fj; lg � � � � � fi,jg � fi;mg � � � � � fi; ng;and i does not appear in any of the verties between the two boxed ourrenesof as and at. Likewise, reversing the roles of j; i we see that j does not appearoutside of the sequene enapsulated between the onseutive appearanes of thevertex fi; jg 2 �n. Hene the seond appearane of fi; jg must be a turn, too.In fat, these onseutive appearanes of a turn-vertex enapsulate a ompletelymathed sub-iruit, and the orresponding word has an enapsulated partitionsub-word.Lemma B.9. If a typial iruit a1 � a2 � : : : a2m � a1 turns at vertex as = fi; jg,i = as�1 \ as, and at = fi; jg is the seond ourrene of the same vertex, then thesegment as+1 � as+2 � � � � � at�1 is a typial iruit with verties mathed withinthis sequenes.Proof. Of ourse the turn ondition requires at 6= as+1 so that t > s + 1, so thereis at least one vertex between as and at.We �rst prove that all the verties of the sequene as+1; as+2; : : : ; at�1 are pairedwithin this sub-sequene.Suppose that this is not true. Then there is at least one vertex that is not pairedwithin the enapsulated subsequene. Then this vertex must be mathed outsideof the enapsulated sequene. Let ar1 = fm;ng = ar2 , where 1 � s < r1 < t <r2 � 2k be suh pair at maximal distane r2� r1 apart. Without loss of generality,we may assume that ar1�1 \ ar1 = fmg.Sine ar2 is outside of the segment asas+1 : : : at, by Remark B.1 both m 6= j andn 6= j. Therefore, the iruit must turn at some vertex fm; lg positioned betweenas+1 and ar1 . Suppose that the turning vertex fm; lg 6= fm;ng. Then by RemarkB.1, all m's must be enlosed between the two ourrenes of the vertex fm; lg.In partiular, the seond ourrene must be to the right of ar2 , reating a moredistant pair of verties whih are not paired within the enapsulated subsequene.By maximality of ar1 ; ar2 , there annot be a turn between as and ar1 . This meansthat as\as+1\� � �\ar1 = fjg, and hene eitherm or nmust equal j, a ontradition.Thus all the verties of as+1 � as+2 � � � � � at�1 are paired within this sub-sequene.Now we verify the iruit ondition. Sine t > s � 1, by the previous part ofthe proof, t � 1 > s + 1. Sine the iruit turns at both verties as; at and the



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 35element j does not appear outside the segment as � as+1 � � � � � at, we must haveas \ as+1 = fjg and at�1 \ at = fjg. Thus as+1 \ at�1 = fjg, showing that theiruit ondition holds for the segment as+1 � as+2 � � � � � at�1.Sine by Lemma B.7, every sub-iruit of a typial iruit, it typial, this endsthe proof.Proof of Proposition B.6. We prove (i)-(iii) simultaneously by indution on thenumber of letters k in word w. Clearly, all iruits orresponding to w = aaan be lifted in exatly two ways, and have no turns.Given a typial iruit a1 � a2 � � � � � a2k � a1, one of the following three asesmust our:(i) a1 \ a2 \ � � � \ a2k 6= ;,(ii) the iruit turns at some vertex,(iii) a1 \ a2 \ � � � \ a2k = ; but there are no turns.In the �rst ase, assuming that the intersetion is fig, we an lift a1 to one of thetwo points ~a1 = (i; �) or ~a1 = (�; i) in e�n. Then we lift the remaining verties aseither a horizontal (�; i) or a vertial (i; �) iruit in e�n.In the seond ase, denoting by as the �rst turn and by at the seond ourreneof this vertex, by Lemma B.9 as+1 � � � � � at�1 is a typial non-zero iruit oflength at most jwj � 2. By indution assumption, this iruit an be lifted to~as+1 � � � � � ~at�1 in e�n in two ways. The remaining letters also form a iruit,whih by irular symmetry we an write as at � at+1 � � � � � ar�1 � as = at.This iruit an be lifted to e�n in two ways by swapping the oordinates of at.One of this two swaps will math ~as with ~as+1, lifting the entire iruit. The liftediruit will turn at ~as, and the letters as : : : at enapsulate a partition sub-wordas+1 : : : at�1 of positive length.In the third ase, let s be the largest value suh that a1\a2\� � �\as 6= ;. Writea1\a2\� � �\as = fig and as = fi; jg. Clearly, 1 < s < 2k. Then as�1\as\as+1 = ;.Sine as is not a turn vertex, we must have as�1 = as and as \ as+1 = fjg. Byirular symmetry, we may assume that s = 2. Then the sequene a3; : : : ; a2k hask � 1 distint verties and by Lemma B.7 #(a3 [ � � � [ a2k) = k, and#(a2 [ � � � [ a2k) = 2 +#(a3 [ � � � [ a2k)�#(a2 \ (a3 [ � � � [ a2k))� k + 2�#(a2 \ (a3 [ a2k)) :However, a2 \ (a3 [ a2k) = (a2 \ a3)[ (a2 \ a2k) = fig[ fjg, so #(a2 [ � � � [ a2k) =k < k + 1. Thus the third ase annot our, as a1 � a2 � � � � � a2k � a1 is not atypial iruit.Proof of Proposition B.3. Let w = a1a2 : : : a2k be a word with m0 enapsulatedsub-words of lengths zero or 2k � 2; thus m0 is the number of repeated pairs ofonseutive letters aa when the letters of w are arranged on the irle. Let m1 bethe number of enapsulated words of positive length (maxed at 2k � 4), so thath(w) = m0 +m1.By Lemma B.5 to �nd the asymptoti of emn(w) we may restrit the sum under(B.2) to typial iruits.Notie that if a1 � : : : a2k � a1 is a typial iruit, then the orrespondingprodut Q taj ;aj+1 is positive. Indeed, after lifting it to ~a1 � : : : ~a2k � ~a1 it is easyto see that ta;b > 0 when the edge (~a;~b) rosses the diagonal line y = x in e�n. Sinethe lifted iruit ~a1 � : : : ~a2k � ~a1 an be drawn as a ontinuous urve, it rosses



36 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGthe line y = x an even number of times. Sine for the edges in �n we have ta;b 6= 0,there remains an even number of fators ta;b < 0, and their produt is positive.This shows that for a typial iruit a1 � : : : a2k � a1, the produt in (B.2) is2kYj=1 taj ;aj+1 = 2m0 :The number of the typial iruits based on the partition word w is easy toevaluate by ounting their liftings to e�n. Let a1 � : : : a2k � a1 be a iruit orre-sponding to w, so that ai = aj i� w[i℄ = w[j℄. We proeed by lifting one vertex ofthe iruit at a time. There are n(n� 1)=2 possible hoies for the initial vertex inthe lower triangle i > j, and there are two possible diretions to follow to any newvertex: either horizontal or vertial. One the horizontal or vertial diretion washosen, we an keep �lling in the onseutive edges as follows. There is 1 hoie forthe seond ourrene of a vertex already on the path. If a new vertex ar is notyet a repeat of a vertex already on the previous portion of the path, and ar is notthe beginning of an enapsulated word, then by Lemma B.8 its lifting must followthe previous diretion. So there are between n � k and n hoies for the \free"omponent of ~ar. If ar is the �rst vertex of an enapsulated sub-word, and r > 1,then the iruit is allowed to turn. So there are between 2n � 2k and 2n hoiesfor its lifting ~ar to ontinue either as a vertial or a horizontal path (Note that weexlude a2 from this ount, sine we already ounted the fator of 2 for the initialhoie of an edge from ~a1 to ~a2, and there are no additional possibilities if a2 is aturn.)Sine we have k � 1 new verties to add to the iruit, the total number N ofsuh iruits is between2n(n� 1)2 (2n� 2k)m1(n� k)k�1�m1 � N � 2n(n� 1)2 (2n)m1nk�1�m1 :Thus �1� kn�k�1 2m0+m1 � emn(w) � 2m0+m1 ;and emn(w)! 2m0+m1 = 2h(w).Appendix C. Calulation of low order momentsThe following tables list partition words, orresponding solids, and their volumes.For Hankel matrix, we needed 8-th moments to establish that the distribution isnot unimodal. Table 1. Toeplitz m4(T ) = 8=3Word Solid Volumeabba I3 1abab U0 � U1 + U2 2 I 2/3aabb I3 1



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 37Table 2. Toeplitz m6(T ) = 11Word Solid Volumeabba I4 1abab U0 � U1 + U2 2 I 2/3abba U1 � U2 + U3 2 I 2/3abba � U1 � U2 + U3 2 IU0 � U2 + U3 2 I � 1/2abab � U0 � U1 + U3 2 IU0 � U1 + U2 2 I � 1/2abab � U0 � U1 + U3 2 IU0 � U2 + U3 2 I � 1/2abba I4 1abba U0 � U1 + U3 2 I 2/3abba I4 1abab U0 � U1 + U2 2 I 2/3abab � U0 � U1 + U2 2 IU1 � U2 + U3 2 I � 1/2abab U0 � U1 + U2 2 I 2/3aabb I4 1aabb U0 � U2 + U3 2 I 2/3aabb I4 1Table 3. Hankel m4(H ) = 2Word Volumeabba 1abab 0aabb 1Table 4. Hankel m6(H) = 11=2Word Solid Volumeaabb I4 1abba I4 1abba I4 1abab � U0 + U1 � U3 2 I�U0 + U2 + U3 2 I 1/2aabb I4 1abba I4 1



38 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGTable 5. Hankel m8(H) = 281=15Word Solid Volumeaabbdd: I5 1abbadd: I5 1abbadd: I5 1abbdda: I5 1ababdd: � U0 + U1 � U3 2 IU2 � U0 + U3 2 I 1/2aabbdd: I5 1abbadd: I5 1abbdda: I5 1abdabd: � U0 + U1 � U4 2 I�U0 + U2 + U4 2 I 1/2aabddb: I5 1abddba: I5 1abbdad: � U0 + U1 � U4 2 I�U0 + U3 + U4 2 I � 1/2aabdbd: � U0 + U2 � U4 2 I�U0 + U3 + U4 2 I � 1/2abdbda: � U1 + U2 � U4 2 I�U1 + U3 + U4 2 I � 1/2abadbd: 8<: U0 + U1 � U3 2 IU2 + U3 � U4 2 IU1 � U3 + U4 2 I 9=; 11/30aabbdd: I5 1abbadd: I5 1abbdda: I5 1ababdd: � U0 + U1 � U3 2 I�U0 + U2 + U3 2 II � 1/2abdbad: 8<: U1 + U2 � U4 2 IU0 � U2 + U4 2 I�U0 + U2 + U3 2 I 9=; 11/30abaddb: � U0 + U1 � U3 2 I�U0 + U2 + U3 2 I � 1/2abddab: � U0 + U1 � U3 2 I�U0 + U2 + U3 2 I � 1/2aabddb: I5 1abddba: I5 1
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Figure 2. Histogram of the empirial distribution �̂(Hn=pn) ofeigenvalues of 10 realizations of a 500 � 500 Hankel matrix withstandardized triangular U � U 0 entries.
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Figure 3. Histogram of the empirial distribution �̂(Tn=pn) ofeigenvalues of 10 realizations of a 500� 500 Toeplitz matrix withstandardized triangular U � U 0 entries.
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Figure 4. Histogram of the empirial distribution �̂(Mn=pn)of eigenvalues of 10 realizations of a 500�500 Markov matrix withstandardized triangular U � U 0 entries.
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