
SPECTRAL MEASURE OF LARGE RANDOM HANKEL,MARKOV AND TOEPLITZ MATRICES.W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGAbstra
t. We study the limiting spe
tral measure of large symmetri
 randommatri
es of linear algebrai
 stru
ture.For Hankel and Toeplitz matri
es generated by i.i.d. random variablesfXkg of unit varian
e, and for symmetri
 Markov matri
es generated by i.i.d.random variables fXi;jgj>i of zero mean and unit varian
e, s
aling the eigen-values by pn we prove the almost sure, weak 
onvergen
e of the spe
tralmeasures to universal, non-random, symmetri
 distributions 
H , 
M , and 
Tof unbounded support. The moments of 
H and 
T are the sum of volumes ofsolids related to Eulerian numbers, whereas 
M has a bounded smooth densitygiven by the free 
onvolution of the semi-
ir
le and normal densities.For symmetri
 Markov matri
es generated by i.i.d. random variablesfXi;jgj>i of mean m and �nite varian
e, s
aling the eigenvalues by n weprove the almost sure, weak 
onvergen
e of the spe
tral measures to the atomi
measure at �m. If m = 0, and the fourth moment is �nite, we prove that thespe
tral norm of Mn s
aled by p2n log n 
onverges almost surely to one.1. Introdu
tion and main resultsFor a symmetri
 n � n matrix A, let �j(A); 1 � j � n denote the eigenvaluesof the matrix A, written in a non-in
reasing order. The spe
tral measure of A,denoted �̂(A), is the empiri
al distribution of its eigenvalues, namely�̂(A) = 1n nXj=1 Æ�j(A)(so when A is a random matrix, �̂(A) is a random measure on (R;B)).Large dimensional random matri
es are of mu
h interest in statisti
s, wherethey play a pivotal role in multivariate analysis. In his seminal paper, Wigner[Wig58℄ proved that the spe
tral measure of a wide 
lass of symmetri
 randommatri
es of dimension n 
onverges, as n ! 1, to the semi-
ir
le law (also 
alledthe Sato-Tate measure, see [Ser97℄ and the referen
es therein). Mu
h work hassin
e been done on related random matrix ensembles, either 
omposed of (nearly)independent entries, or drawn a

ording to weighted Haar measures on 
lassi
al (e.g.orthogonal, unitary, simple
ti
) groups. The limiting behavior of the spe
trum ofsu
h matri
es and their 
ompositions is of 
onsiderable interest for mathemati
alphysi
s (see [PV00℄ and the referen
es therein). In addition, su
h random matri
esplay an important role in operator algebras studies initiated by Voi
ules
u, knownnow as the free (non-
ommutative) probability theory (see, [HP00℄ and the manyDate: July 25, 2003; Revised: May 28, 2004.Resear
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2 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGreferen
es therein). The study of large random matri
es is also related to interestingquestions of 
ombinatori
s, geometry and algebra (see the review [Ful00℄, or forexample [Spe97℄). In his re
ent review paper [Bai99℄, Bai proposes the study of largerandom matrix ensembles with 
ertain additional linear stru
ture. In parti
ular,the properties of the spe
tral measures of random Hankel, Markov and Toeplitzmatri
es with independent entries are listed among the unsolved random matrixproblems posed in [Bai99, Se
tion 6℄. We shall provide here the solution for thesethree problems.We note in passing that Hankel matri
es arise for example in polynomial regres-sion, as the 
ovarian
e for the least squares parameter estimation for the modelPp�1i=0 bixi, observed at x = x1; : : : ; xn in the presen
e of additive noise (see [SS90,page 36℄). Toeplitz matri
es appear as the 
ovarian
e of stationary pro
esses, inshift-invariant linear �ltering, and in many aspe
ts of 
ombinatori
s, time seriesand harmoni
 analysis. See [GS84℄ for 
lassi
al results on deterministi
 Toeplitzmatri
es, or [Dia03℄ and the referen
es therein, for their appli
ations to 
ertain ran-dom matri
es. The in�nitesimal generators of 
ontinuous time Markov pro
esseson �nite state spa
es are given by matri
es with row-sums zero (whi
h following[Bai99℄, we 
all Markov matri
es). Su
h matri
es also play an important role ingraph theory, as the Lapla
ian matrix of ea
h graph is of this form, with its eigen-values related to numerous graph invariants, see [Moh91℄.We next spe
ify the 
orresponding three ensembles of random matri
es studiedhere. Let fXk : k = 0; 1; 2 : : :g be i.i.d. real-valued random variables. For n 2 N,de�ne a random n� n Hankel matrix Hn = [Xi+j�1℄1�i;j�n,Hn = 26666666664 X1 X2 : : : : : : Xn�1 XnX2 X3 Xn Xn+1::: . . . Xn+1 Xn+2Xn�2 Xn�1 . . . :::Xn�1 Xn X2n�3 X2n�2Xn Xn+1 : : : : : : X2n�2 X2n�1
37777777775 ;(1.1)and a random n� n Toeplitz matrix Tn = [Xji�jj℄1�i;j�n,Tn = 2666666664 X0 X1 X2 : : : Xn�2 Xn�1X1 X0 X1 Xn�2X2 X1 X0 : : : :::::: : : : X2Xn�2 X0 X1Xn�1 Xn�2 : : : X2 X1 X0
3777777775 :(1.2)Let fXij : j � i � 1g be an in�nite upper triangular array of i.i.d. randomvariables and de�ne Xji = Xij for j > i � 1. LetMn be a random n�n symmetri
matrix given by Mn = Xn �Dn ;(1.3)where Xn = [Xij ℄1�i;j�n and Dn = diag(Pnj=1 Xij)1�i�n is a diagonal matrix, soea
h of the rows of Mn has a zero sum (note that the values of Xii are irrelevantfor Mn).The limiting spe
tral distribution for a Toeplitz matrix Tn is as follows.Theorem 1.1. Let fXk : k = 0; 1; 2; : : :g be i.i.d. real-valued random variableswith Var(X) = 1. Then with probability one, �̂(Tn=pn) 
onverges weakly as n!1



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 3to a non-random symmetri
 probability measure 
T whi
h does not depend on thedistribution of X, and has unbounded support.The spe
trum of non-random Toeplitz matri
es, the rows of whi
h are typi
allyabsolutely summable, is well approximated by its 
ounterpart for 
ir
ulant matri
es(
.f. [GS84, page 84℄). In 
ontrast, note that the limiting distribution 
T is notnormal as the 
al
ulation shows that the fourth moment is m4 = 8=3. This di�ersfrom the analogous results for random 
ir
ulant matri
es, see [BM02℄, a fa
t thathas been independently noti
ed also in referen
es [BCG03℄ and [HM03℄.Our next result gives the limiting spe
tral distribution for a Hankel matrix Hn.Theorem 1.2. Let fXk : k = 0; 1; 2; : : :g be i.i.d. real-valued random variableswith Var(X) = 1. Then with probability one, �̂(Hn=pn) 
onverges weakly as n !1 to a non-random symmetri
 probability measure 
H whi
h does not depend onthe distribution of X, has unbounded support, and is not unimodal.(Re
all that a symmetri
 distribution � is said to be unimodal, if the fun
tionx 7! �((�1; x℄) is 
onvex for x < 0.)Remark 1.1. Theorems 1.1 and 1.2 fall short of establishing that the limiting dis-tributions have smooth densities and that the density of 
H is bimodal. Simulationssuggest that these properties are likely to be true (see [BDJ03℄ for details).Remark 1.2. Consider the empiri
al distribution of singular values of the non-symmetri
 random n � n Toeplitz matrix Rn = [Xi�j ℄1�i;j�n. It follows fromTheorem 1.2 that as n ! 1, with probability one �̂((RnRTn )1=2=pn) ! � weakly,where �([0; x℄) = 
H([�x; x℄); x > 0. Indeed, let Jn = [1i+j=n+1℄1�i;j�n, notingthat Jn�RTn is the Hankel matrix Hn for fXk�n : k = 0; 1; : : :g to whi
h Theorem1.2 applies. Sin
e J2n = In, and both Jn and Jn � RTn are symmetri
, we haveRnRTn = (RnJn)TJnRTn = H2n. Thus the singular values of matrix Rn are theabsolute values of the (real) eigenvalues of the symmetri
 Hankel matrix Hn.We now turn to the Markov matri
es Mn. Wigner's 
lassi
al result says that�̂(Xn=pn) 
onverges weakly as n !1 to the (standard) semi-
ir
le law with thedensity p4� x2=(2�) on (�2; 2). For normal Xn and normal i.i.d. diagonal ~Dnindependent of Xn, the weak limit of �̂((Xn � ~Dn)=pn) is the free 
onvolutionof the semi-
ir
le and standard normal measures, see [PV00℄ and the referen
estherein (see also [Bia97℄ for the de�nition and properties of the free 
onvolution).This predi
ted result holds also for the Markov matrix Mn, but the problem isnon-trivial be
ause Dn strongly depends on Xn.Theorem 1.3. Let fXi;j : i > jg be a sequen
e of i.i.d. random variables withIEX = 0, and Var(X) = 1. With probability one, �̂(Mn=pn) 
onverges weaklyas n ! 1 to the free 
onvolution 
M of the semi-
ir
le and standard normalmeasures. This measure 
M is a non-random symmetri
 probability measure withsmooth bounded density, does not depend on the distribution of X, and has un-bounded support.If the mean of Xij is not zero, the following result is relevant.Theorem 1.4. Let fXi;j : i; j 2 N; i > jg be a sequen
e of i.i.d. random variableswith IEX = m and IEX2 <1. Then �̂(Mn=n) 
onverge weakly to Æ�m as n!1.



4 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGTurning to the asymptoti
 of the spe
tral norm jjjMnjjj := maxf�1(Mn);��n(Mn)gof the symmetri
 matrix Mn, that is, the largest absolute value of its eigenvalues,we have thatTheorem 1.5. Let fXi;j : i; j 2 N; i > jg be a sequen
e of i.i.d. random variableswith IEX = 0, Var(X) = 1, and IEX4 <1. Thenlimn!1 jjjMnjjjp2n logn = 1 a.s.If the mean of Xij is not zero, the following result is relevant.Corollary 1.6. Suppose IEX = m and IEX4 <1. Thenlimn!1 jjjMnjjjn = jmj a.s.Theorem 1.5 reveals a s
aling in n that di�ers from that of the spe
tral norm ofWigner's ensemble, where under the same 
onditions, almost surely,limn!1 jjjXnjjjpn = 2(1.4)(
.f. [Bai99, Theorem 2.12℄). As shown in Se
tion 2 en-route to proving Theorems1.4, 1.5 and Corollary 1.6, this is due to the domination of the diagonal terms ofMn in determining its spe
tral norm.Remark 1.3. The asymptoti
s of the spe
tral norm of random Toeplitz Tn andHankel Hn matri
es is not addressed in this work.In Se
tion 3 we introdu
e the 
ombinatorial stru
tures whi
h des
ribe the mo-ments of the limiting distributions of the Hankel, Markov, and Toeplitz matri
es,and whi
h are of some independent interest. In Se
tion 4 we use 
ombinatorialarguments and trun
ation to prove the 
onvergen
e of moments, and 
on
lude theproofs of Theorems 1.1, 1.2 and 1.3. Part of the proof that establishes propertiesof these limiting distributions is left for the Appendix.2. Proofs of Theorems 1.4, 1.5 and Corollary 1.6We need the following result, whi
h follows by Chebyshev's inequality fromSakhanenko [Sak85, Se
tion 6, Theorem 5℄, or [Sak91, Se
tion 5, Corollary 5℄.Lemma 2.1 (Sakhanenko). Let f�i; i = 1; 2; : : : g be a sequen
e of independentrandom variables with mean zero and IE�2i = �2i : If IEj�ijp < 1 for some p > 2;then there exists a 
onstant C > 0 and f�i; i = 1; 2; : : :g, a sequen
e of independentnormally distributed random variables with �i � N(0; �2i ) su
h thatIP( max1�k�n jSk � Tkj > x) � C1 + jxjp nXi=1 IEj�ijpfor any n and x > 0; where Sk =Pki=1 �i and Tk =Pki=1 �i:Proof of Theorem 1.5. Hereafter let b(n) = p2n logn denote the normalizationfun
tion for Theorem 1.5.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 5It follows from (1.3) that jjjjMnjjj�jjjDnjjjj � jjjXnjjj. So, by (1.4) and the de�nitionof Dn, it suÆ
es to show that as n!1,Wn := 1b(n) nmaxi=1 f j nXj=1 Xij j g ! 1 a:s:(2.1)We �rst show the upper bound, that is,lim supn!1 Wn � 1 a:s:(2.2)Note that fXij ; j � 1 and j 6= ig is sequen
e of i.i.d. random variables for ea
hi � 1: By Lemma 2.1 and the 
ondition that IEjX11j4 < 1; for ea
h i � 1; thereexists a sequen
e of independent standard normals fYij ; j � 1 and j 6= ig su
h thatnmaxi=1 IP� nmaxk=1 �� kXj=1(Xij � Yij)�� > x� � Cnx4(2.3)for all x > 0 and n � 1, where C is a 
onstant whi
h does not depend on n and x,and Yii = 0 for any i � 1. We 
laim thatUn := 1b(n) nmaxi=1 fj nXj=1(Xij � Yij)jg ! 0 a:s:(2.4)as n!1. First,2m+1maxk=2m Uk � 1b(2m) 2m+1maxi=1 2m+1maxk=1 fj kXj=1(Xij � Yij)jg:By (2.3), for any " > 0;IP� 2m+1maxk=2m Uk � "� � 2m+1IP� 2m+1maxk=1 j kXj=1(Xij � Yij)j � "b(2m)� � C"m2for some 
onstant C" depending only on ". Sin
e " > 0 is arbitrary, by the Borel-Cantelli lemma, max2m+1k=2m Uk ! 0 a.s. as m!1; whi
h implies (2.4). LetVn = 1b(n) nmaxi=1 j nXj=1 Yij j:By the de�nitions in (2.1) and (2.4), we have that Wn � Un + Vn, so by (2.4) weget (2.2) as soon as we show that lim supn!1 Vn � 1. To this end, �x Æ > 0 and� > 1=Æ. Then,IP� (m+1)�maxn=m� Vn � 1 + Æ� � (m+ 1)�IP� (m+1)�+1maxn=1 j nXj=1 Y1j j � (1 + Æ)b(m�)�� 2(m+ 1)�IP�j (m+1)�+1Xj=2 Y1j j � (1 + Æ)b(m�)� ;(2.5)where Levy's inequality is used in the se
ond step. Sin
e Yij 's are independentstandard normals, � := (m + 1)��=2P(m+1)�+1j=2 Y1j is a standard normal randomvariable. Thus, by the well known normal tail estimate1p2� x1 + x2 e�x2=2 � IP(� > x) � 1p2� 1xe�x2=2 for x > 0,(2.6)



6 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGwe see that IP�j�j � (1 + Æ)(m+ 1)��=2b(m�)� � bCÆm��(1+Æ)for some 
onstant bCÆ > 0. Consequently, for some C 0Æ > 0 and all m, by (2.5),IP� (m+1)�maxn=m� Vn � 1 + Æ� � C 0Æm��Æ :With �Æ > 1, we have by the Borel-Cantelli lemma that,lim supm!1 n (m+1)�maxn=m� Vno � 1 + Æ a:s:It follows that lim supn!1 Vn � 1 + Æ a.s. and taking Æ # 0 we obtain (2.2).We next prove that lim infn!1 Wn � 1 a:s:(2.7)To this end, �xing 1=3 > " > Æ > 0, let n" := [n1�"℄ + 1. Then,Wn � 1b(n) n"maxi=1 j nXj=1 Xij j� 1b(n) n"maxi=1 j nXj=n"+1Xij j � 1b(n) n"maxi=1 j n"Xj=1 Xij j := Vn;1 � Vn;2 :(2.8)By (2.2), lim supn!1Wn" � 1 a:s: Thus, with b(n")=b(n)! 0 as n!1, we havethat Vn;2 =Wn" b(n")b(n) ! 0 a:s:(2.9)Sin
e fXij ; 1 � i � n"; n" < j � ng are i.i.d. for any n � 1, it follows thatIP(Vn;1 � 1� 3Æ) = IP�j n�n"+1Xj=2 X1j j � (1� 3Æ)b(n)�n" :(2.10)With b(n) � pn, by Lemma 2.1 there exists a sequen
e of independent standardnormals fYjg su
h that for some C = C(Æ) <1 and all nIP�j n�n"+1Xj=2 X1j � n�n"Xj=1 Yj j � Æb(n)� � Cn�1 :(2.11)Further, by the left inequality of (2.6) we have that for all n suÆ
iently large,IP�j n�n"Xj=1 Yj j � (1� 2Æ)b(n)� � IP(jY1j � (1� Æ)p2 logn) � 1� 2n�(1�Æ) :Combining this bound with (2.11) and (2.10) we get that for all n large enoughIP(Vn;1 � 1� 3Æ) � �1� 2n�(1�Æ) + Cn�1�n" � �1� n�(1�Æ)�n1�" � e�n"�Æ :Re
all that " > Æ, implying thatPn�1 IP(Vn;1 � 1�3Æ) <1. By the Borel-Cantellilemma, lim infn!1 Vn;1 � 1� 3Æ a:s:This together with (2.8) and (2.9) implies that almost surely lim infn!1Wn �1� 3Æ, and the lower bound (2.7) follows by taking Æ # 0.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 7Proof of Corollary 1.6. Let fMn denote the Markov matrix obtained when eXij =Xij � IEXij repla
e Xij in (1.3). Obviously,Mn = fMn +Yn;(2.12)where Yn = [Yij ℄ is the n�n matrix with Yij = m�nm1i=j . Clearly, �1(Yn) = 0,�2(Yn) = � � � = �n(Yn) = �nm, so jjjYnjjj = njmj. By (2.12) and Theorem 1.5, wehave that ���� jjjMnjjjn � jjjYnjjjn ���� � jjjfMnjjjn ! 0as n!1: This implies that jjjMnjjj=n! jmj a.s.In the 
ontext of this paper, the next lemma is very handy for trun
ation pur-poses.Lemma 2.2. Let fXij : j > i � 1g be an in�nite triangular array of i.i.d. randomvariables with IEX11 = 0 and Var(X11) = �2. Let Xji = Xij for i < j and Xii = 0for all i � 1: Then 1n2 nXi=1( nXj=1 Xij)2 ! �2 a:s:as n!1:Proof. De�ne Un := nXi=1 X1�j<k�nXijXik:(2.13)Then 1n2 nXi=1( nXj=1 Xij)2 = 1n2 nXi=1 nXj=1 X2ij + 2n2Un:By the strong Law of Large Numbers, the �rst term on the right hand side 
onvergesalmost surely to �2, so it suÆ
es to show thatUnn2 ! 0 a:s:(2.14)To this end, denote by Fk the �-algebra generated by the random variablesfXij ; 1 � i; j � kg. Noting thatUn+1 � Un = X1�j<k�nX(n+1)jX(n+1)k + nXi=1 nXj=1 XijXi(n+1);it is easy to verify that fUn : n � 1g is a martingale for the �ltration fFn : n � 1g.Further, the n2(n� 1)=2 terms in the sum (2.13) are un
orrelated. Indeed, if i 6= i0and j < k, j0 < k0 then IE(XijXikXi0j0Xi0k0) = 0 as at least one of the four variablesin this produ
t must be independent of the others. Thus, IE(U2n) � �4n2(n� 1)=2for any n � 2, and by Doob's sub-martingale inequalityIP( max1�i�m2 jUij � m4") � IE(U2m2)m8"2 � �4m2"2 :It follows by the Borel-Cantelli Lemma, that almost surelyZm := m�4 max1�i�m2 jUij ! 0;



8 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGas m ! 1. Sin
e n�2jUnj � (m=(m � 1))4Zm whenever (m � 1)2 � n � m2,m � 2, we thus get (2.14).Let dBL denote the bounded Lips
hitz metri
 for the weak 
onvergen
e of mea-sures, dBL(�; �) = supfZ fd�� Z fd� : kfk1 + kfkL � 1g;(2.15)see [Dud02, Se
tion 11.3℄. For the spe
tral measures of n�n symmetri
 real matri
esA;B we havedBL(�̂(A); �̂(B)) � supf 1n nXj=1 jf(�j(A)) � f(�j(B))j : kfkL � 1g� 1n nXj=1 j�j(A)� �j(B)j:By Lidskii's theorem [Lid50℄, see also [Bai99, Lemma 2.3℄,nXj=1 j�j(A)� �j(B)j2 � tr((B�A)2);so d2BL(�̂(A); �̂(B)) � 1n tr((B�A)2):(2.16)Proof of Theorem 1.4. We use the notation from the proof of Corollary 1.6 andwrite �2 = Var(X11). By (2.12) and (2.16) the bounded Lips
hitz metri
 (2.15)satis�es dBL(�̂(Mn=n); �̂(Yn=n)) � �n�3tr(fM2n)�1=2 :(2.17)Note that f eXij ; 1 � i < jg are i.i.d. random variables with mean zero and �nitevarian
e. By the 
lassi
al strong Law of Large Numbers and Lemma 2.2n�2tr(fM2n) = 0� 2n2 X1�i<j�n eX2ij + 1n2 nXi=1( nXj=1 eXij)21A! 2�2 a:s:(2.18)as n ! 1. Re
all that all but one of the eigenvalues of Yn are �nm, hen
e�̂(Yn=n) 
onverges weakly to Æ�m. Combining this with (2.17) and (2.18), we havethat almost surely, �̂(Mn=n) 
onverges weakly to Æ�m.3. The limiting distributions 
H , 
M , and 
T3.1. Moments. The probability measures 
H , 
M , and 
T will be determined fromtheir moments. It turns out that the odd moments are zero, and the even momentsare the sums of numbers labeled by the pair partitions of f1; : : : ; 2kg.It is 
onvenient to index the pair partitions by the partition words w; these arewords of length jwj = 2k with k pairs of letters su
h that the �rst o

urren
es ofea
h of the k letters are in alphabeti
 order. In the 
ase k = 2 we have 1� 3 su
hpartition words aabb abba abab;



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 9whi
h 
orrespond to the pair partitionsf1; 2g [ f3; 4g f1; 4g [ f2; 3g f1; 3g [ f2; 4gof f1; 2; 3; 4g. Re
all that the number of pair partitions of f1; : : : ; 2kg is 1 � 3 �� � � � (2k � 1).De�nition 3.1. For a partition word w, we de�ne its height h(w) as the numberof en
apsulated partition sub-words, i. e., substrings of the form xw1x, where x is asingle letter, and w1 is either a partition word, or the empty word.For example, h(ab
ab
) = 0, h(ab
b
a) = h(ab

ab) = 1, while h(aabb

) =h(ab

ba) = 3 (the en
apsulating pairs of letters are underlined).In the terminology of [BS96℄, h assigns to a pair partition the number of 
on-ne
ted blo
ks whi
h are of 
ardinality 2. These 
onne
ted blo
ks of 
ardinality 2are the pairs of letters underlined in the previous examples.See [BDJ03, Proposition B.2 and Corollary B.4℄ for a (dire
t) proof that theeven moments of 
M are given bym2k(
M ) = Xw:jwj=2k 2h(w) :(3.1)For the Toeplitz and Hankel 
ase, with ea
h partition word w we asso
iate asystem of linear equation whi
h determine the 
ross-se
tion of the unit hyper
ube,and de�ne the 
orresponding volume p(w). We have to 
onsider these two 
asesseparately.3.2. Toeplitz volumes. Let w[j℄ denote the letter in position j of the word w.For example, if w = abab then w[1℄ = a; w[2℄ = b; w[3℄ = a; w[4℄ = b.To every partition word w we asso
iate the following system of equations inunknowns x0; x1; : : : ; x2k .8>>>>>>>><>>>>>>>>:
x1 � x0 + xm1 � xm1�1 = 0 if m1 > 1 is su
h that w[1℄ = w[m1℄x2 � x1 + xm2 � xm2�1 = 0 if there is m2 > 2 su
h that w[2℄ = w[m2℄:::xi � xi�1 + xmi � xmi�1 = 0 if there is mi > i su
h that w[i℄ = w[mi℄:::x2k�1 � x2k�2 + x2k � x2k�1 = 0 if w[2k � 1℄ = w[2k℄.

(3.2)
Although we list 2k � 1 equations, in fa
t k � 1 of them are empty. Informally,the left hand-sides of the equations are formed by adding the di�eren
es over thesame letter when the variables are written in the spa
e \between the letters". Forexample, writing the variables between the letters of the word w = abab
::
:: we getx0ax1bx2ax3bx4
x5 : : :xn 
xn+1 : : : :(3.3)The 
orresponding system of equations is8>>><>>>: x1 � x0 + x3 � x2 = 0x2 � x1 + x4 � x3 = 0x5 � x4 + xn+1 � xn = 0::: :(3.4)



10 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGSin
e in every partition word w of length 2k there are exa
tly k distin
t letters,this is the system of k equations in 2k + 1 unknowns. We solve it for the variablesthat follow the last o

urren
e of a letter, leaving us with k + 1 free variables: x0,and the k variables that follow the �rst o

urren
e of ea
h letter.We then require that the dependent variables lie in the interval I = [0; 1℄. Thisdetermines a 
ross-se
tion of the 
ube Ik+1 in the remaining free k+1 
oordinates,the volume of whi
h we denote by pT (w). For example, if w = abab, solving the�rst pair of equations (3.4) for x3 = x0 � x1 + x2, x4 = x0, de�nes the solidfx0 � x1 + x2 2 Ig \ fx0 2 Ig � I3;whi
h has the (Eulerian) volume pT (abab) = 4=3! = 2=3.We de�ne m2k(
T ) = Xw:jwj=2k pT (w):(3.5)Proposition 4.2 below shows that these are indeed the even moments of 
T .3.3. Hankel volumes. We pro
eed similarly to the Toeplitz 
ase. With ea
hpartition word w we asso
iate the following system of equations in unknownsx0; x1; : : : ; x2k .8>>>>>>>><>>>>>>>>:
x1 + x0 = xm1 + xm1�1 if m1 > 1 is su
h that w[1℄ = w[m1℄x2 + x1 = xm2 + xm2�1 if there is m2 > 2 su
h that w[2℄ = w[m2℄:::xi + xi�1 = xmi + xmi�1 if there is mi > i su
h that w[i℄ = w[mj ℄:::x2k�1 + x2k�2 = x2k + x2k�1 if w[2k � 1℄ = w[2k℄.

(3.6)
Informally, the equations are formed by equating the sums of the variables atthe same letter. For example, the word abab with the variables written as in (3.3)gives rise to the system of equations� x1 + x0 = x3 + x2x2 + x1 = x4 + x3 :(3.7)As in the Toeplitz 
ase, sin
e there are exa
tly k distin
t letters in the word,this is the system of k equations in 2k + 1 unknowns. We solve it for the vari-ables that pre
ede the �rst o

urren
e of a letter, leaving us with k free variables: : : ; x�1 ; : : : ; x�k = x2k�1 that pre
ede the se
ond o

urren
e of ea
h letter, andwith the (k + 1)-th free variable x2k. We add to the system (3.6) one more equa-tion: x0 = x2k :As previously, we require that the dependent variables are in the interval I =[0; 1℄. This determines a 
ross-se
tion of the 
ube Ik+1 in the remaining k + 1
oordinates with the volume whi
h we denote by pH(w).Due to the additional 
onstraint x2k = x0, this volume might be zero. Forexample, equations (3.7) have solutions x0 = 2x2 � x4; x1 = x3 � x2 + x4 with freevariables x2; x3; x4. Equation x0 = x4 gives additional relation x4 = x2, and redu
esthe dimension of the solid f2x2 � x4 2 Ig \ fx3 � x2 + x4 2 Ig \ fx4 = x2g � I3to 2. Thus the 
orresponding volume is pH(abab) = 0.
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H) = Xw:jwj=2k pH(w):(3.8)In Proposition 4.3 we show that these are indeed the moments of 
H .3.4. Relation to Eulerian numbers. The Eulerian numbers An;m are oftende�ned by their generating fun
tion or by the 
ombinatorial des
ription as thenumber of permutations � of f1; : : : ; ng with �i > �i�1 for exa
tly m 
hoi
es ofi = 1; 2; : : : ; n (taking �0 = 0). The geometri
 interpretation is that An;m=n! is thevolume of a solid 
ut out of the 
ube In by the set fx1 + � � �+xn 2 [m� 1;m℄g, see[Tan73℄. Converting any m� 1 of the 
oordinates x to 1� x, we get that An;m=n!is the volume of a solid 
ut out of the 
ube In by the setfx1 + x2 + � � �+ xn�m � (xn�m+1 + � � �+ xn) 2 Ig :The solids we en
ountered in the formula for the 2k-th moments are the interse
tionsof solids of this latter form, with odd values of n, ea
h having m = (n� 1)=2, andwith various subsets of the 
oordinates entering the expression.Remark 3.1. One 
an verify that the probabilities pT (w) and pH(w) are rationalnumbers, and hen
e so are m2k(
T ) and m2k(
H), de�ned by formulas (3.5) and(3.8) (for details, 
.f. [BDJ03℄).4. Proofs of Theorems 1.1, 1.2 and 1.34.1. Trun
ation and 
entering. We �rst redu
e Theorems 1.1, 1.2 and 1.3 tothe 
ase of bounded i.i.d. random variables, and in 
ase of Theorems 1.1 and 1.2,also allow for 
entering of these variables.Proposition 4.1. (i) If Theorem 1.1 holds true for all bounded independenti.i.d. sequen
es fXjg with mean zero and varian
e 1, then it holds true forall square-integrable i.i.d. sequen
es fXjg with varian
e 1.(ii) If Theorem 1.2 holds true for all bounded independent i.i.d. sequen
es fXjgwith mean zero and varian
e 1, then it holds true for all square-integrablei.i.d. sequen
es fXjg with varian
e 1.(iii) If Theorem 1.3 holds true for all bounded independent i.i.d. sequen
es fXi;jgwith mean zero and varian
e 1, then it holds true for all square-integrablei.i.d. sequen
es fXi;jg with mean zero and varian
e 1.Proof. Without loss of generality, we may assume that IE(X) = 0 in Theorems1.1 and 1.2. Indeed, from the rank inequality, [Bai99, Lemma 2.2℄ it follows thatsubtra
ting a rank 1 matrix of the means IE(X) from matri
es Tn and Hn doesnot a�e
t the asymptoti
 distribution of the eigenvalues.For a �xed u > 0, denote m(u) = IEXIfjXj>ug;and let �2(u) = IEX2IfjXj�ug �m2(u):Clearly, �2(u) � 1 and sin
e IE(X) = 0, IE(X2) = 1, we have m(u) ! 0 and�(u)! 1 as u!1.Let eX = XIfjXj>ug �m(u):



12 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGNoti
e that �2(u) = IE(X � eX)2, therefore the bounded random variableX 0 = X � eX�(u)has mean zero and varian
e 1. Denote by T0n;H0n the 
orresponding Toeplitz andHankel matri
es 
onstru
ted from the independent bounded random variablesX 0j := Xj � eXj�(u) :By the triangle inequality for dBL(�; �) and (2.16),d2BL(�̂(Tn=pn); �̂(T0n=pn))� 2d2BL(�̂(Tn=pn); �̂(�(u)T0n=pn)) + 2d2BL(�̂(T0n=pn); �̂(�(u)T0n=pn))� 2n2 tr((Tn � �(u)T0n)2) + 2n2 (1� �(u))2tr((T0n)2) :It is easy to verify that IE( eX2) = 1��2(u)� 2m(u)2 and that with probability one1n2 tr((Tn � �(u)T0n)2) = 1n eX20 + 2n nXj=1�1� jn� eX2j ! IE( eX2) ;(4.1)as n ! 1 (for example, sandwi
hing the 
oeÆ
ients j=n between the pie
ewise
onstant `�1b`j=n
 and `�1d`j=ne allows for applying the strong Law of LargeNumbers, with the resulting non-random bounds 
onverging to IE( eX2) as `!1).Similarly, 1n2 tr((T0n)2) = 1n (X 00)2 + 2n nXj=1�1� jn� (X 0j)2 ! IE((X 0)2):(4.2)For large u, both m(u) and 1� �(u) are arbitrarily small. So, in view of (4.1) and(4.2), with probability one the limiting distan
e in the bounded Lips
hitz metri
dBL between �̂(Tn=pn) and �̂(T0n=pn) is arbitrarily small, for all u suÆ
ientlylarge. Thus, if the 
on
lusion of Theorem 1.1 holds true for all sequen
es of inde-pendent bounded random variables fX 0jg, with the same limiting distribution 
T ,then �̂(Tn=pn) must have the same weak limit with probability one.Similarly, we haved2BL(�̂(Hn=pn); �̂(H0n=pn)) � 2n2 tr((Hn � �(u)H0n)2) + 2n2 (1� �(u))2tr((H0n)2) :By the same argument as before, with probability one1n2 tr((Hn � �(u)H0n)2) = 1n 2nXj=0�1� jj � njn � eX2j ! IE( eX2) ;and n�2tr((H0n)2) ! IE((X 0)2). Therefore, with probability one the limiting dBL-distan
e between �̂(Hn=pn) and �̂(H0n=pn) is arbitrarily small for large enoughu. Similarly, denoting by fMn;M0n the 
orresponding Markov matri
es 
onstru
tedfrom the independent bounded random variables eXij and X 0ij := Xij� eXij�(u) , we haved2BL(�̂(Mn=pn); �̂(M0n=pn)) � 2n2 tr(fM2n) + 2n2 (1� �(u))2tr((M0n)2) :



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 13By (2.18), with probability one n�2tr((M0n)2) ! 2 and n�2tr(fM2n) ! 2IE( eX2).Therefore, with probability one, the limiting dBL-distan
e between �̂(Mn=pn) and�̂(M0n=pn) is arbitrarily small for large enough u.4.2. Combinatori
s for Hankel and Toeplitz 
ases. For k; n 2 N, 
onsider
ir
uits in f1; : : : ; ng of length L(�) = k, i.e., mappings � : f0; 1; : : : ; kg !f1; 2; : : : ; ng, su
h that �(0) = �(k).Let s : N2 ! N be one of the following two fun
tions: sT (x; y) = jx � yj, orsH(x; y) = x + y. We will use s to mat
h (i.e. pair) the edges (�(i � 1); �(i)) of a
ir
uit �. The main property of the symmetri
 fun
tion s is that for a �xed valueof s(m;n), every initial point m of an edge determines uniquely a �nite number(here, at most 2) of the other end-points: if k;m 2 N, then#fy 2 N : s(m; y) = kg � 2:(4.3)For a �xed s as above, we will say that 
ir
uit � is s-mat
hed, or has self-mat
hed edges, if for every 1 � i � L(�) there is j 6= i su
h that s(�(i� 1); �(i)) =s(�(j � 1); �(j)).We will say that a 
ir
uit � has an edge of order 3, if there are at least threedi�erent edges in � with the same s-value.The following proposition says that generi
ally self-mat
hed 
ir
uits have onlypair-mat
hes.Proposition 4.2. Fix r 2 N. Let N denote the number of s-mat
hed 
ir
uits inf1; : : : ; ng of length r with at least one edge of order 3. Then there is a 
onstantCr su
h that N � Crnb(r+1)=2
:In parti
ular, as n!1 we have Nn1+r=2 ! 0.Proof. Either r = 2k is an even number, or r = 2k � 1 is an odd number. Inboth 
ases, if an s-mat
hed 
ir
uit has an edge of order 3, then the total numberof distin
t s-values fs(�(i� 1); �(i)) : 1 � i � L(�)gis at most k�1. We 
an think of 
onstru
ting ea
h su
h 
ir
uit from the left to theright. First, we 
hoose the lo
ations for the s-mat
hes along f1; : : : ; rg. This 
anbe done in at most r! ways. On
e these lo
ations are �xed, we pro
eed along the
ir
uit. There are n possible 
hoi
es for the initial point �(0). There are at mostn 
hoi
es for ea
h new s-value, and there are at most 2 ways to 
omplete the edgefor ea
h repeat of the already en
ountered s-value. Therefore there are at mostr!� n� nk�12r+1�k � Crnk su
h 
ir
uits.We say that a set of 
ir
uits �1; �2; �3; �4 is mat
hed if ea
h edge of any one ofthese 
ir
uits is either self-mat
hed i.e., there is another edge of the same 
ir
uitwith equal s-value, or is 
ross-mat
hed, i.e., there is an edge of the other 
ir
uitwith the same s-value (or both).The following bound will be used to prove almost sure 
onvergen
e of moments.Proposition 4.3. Fix r 2 N. Let N denote the number of mat
hed quadruplesof 
ir
uits in f1; : : : ; ng of length r su
h that none of them is self-mat
hed. Thenthere is a 
onstant Cr su
h that N � Crn2r+2:



14 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGProof. First observe that there are at most 2r distin
t s-values in the 4r edges ofa mat
hed quadruples of 
ir
uits of length r. Further, the number of quadruplesof su
h 
ir
uits for whi
h there are exa
tly u distin
t s-values is at most Cr;unu+4.Indeed, order the edges (�j(i�1); �j(i)), of su
h quadruples starting at j = 1, i = 1,then i = 2; : : : ; r, followed by j = 2, i = 1 and then i = 2; : : : ; r, et
. There are atmost u4r possible allo
ations of the distin
t s-values to these 4r edges, at most n4
hoi
es for the starting points �1(0), �2(0), �3(0), and �4(0) of the 
ir
uits and atmost nu for the values of �j(i) at those (j; i) for whi
h (�j(i� 1); �j(i)) is the left-most o

urren
e of one of the distin
t s-values. On
e these 
hoi
es are made, wepro
eed to sequentially determine the mapping �1(i) from i = 0 to i = r, followedby the mappings �2; �3; �4, noting that by (4.3) at most 24r�u�4 quadruples 
anbe produ
ed per su
h 
hoi
e.Re
all that the number of possible partitions P of the 4r edges of our quadrupleof 
ir
uits into jPj distin
t groups of s-mat
hing edges, with at least two edges inea
h group, is independent of n. Thus, by the pre
eding bound it suÆ
es to showthat for ea
h partition P with jPj 2 f2r � 1; 2rg su
h that ea
h 
ir
uit shares atleast one s-value with some other 
ir
uit, there 
orrespond at most Cn2r+2 mat
hedquadruples of 
ir
uits in f1; : : : ; ng. To this end, note that jPj = 2r implies thatea
h s-value is shared by exa
tly two edges, while when jPj = 2r � 1 we also haveeither two s-values shared by three edges ea
h or one s-value shared by four edges(but not both).Fixing hereafter a spe
i�
 partition P of this type, it is not hard to 
he
k thatupon re-ordering our four 
ir
uits we have an s-value that is assigned to exa
tly oneedge of the 
ir
uit �1, denoted hereafter (�1(i� � 1); �1(i�)), and in 
ase jPj = 2r,we also have another s-value that does not appear in �1 and is assigned to exa
tlyone edge of �2, denoted hereafter (�2(j� � 1); �2(j�)). (Though this property maynot hold for all ordering of the four 
ir
uits, an inspe
tion of all possible graphs of
ross-mat
hes shows that it must hold for some order).We are now ready to improve our 
ounting bound for the 
ase of jPj = 2r � 1,by the following dynami
 
onstru
tion of �1:First 
hoose one of the n possible values for the initial value �1(0), and 
ontinue�lling in the values of �1(i), i = 1; 2; : : : ; i� � 1. Then, starting at �1(r) = �1(0),sequentially 
hoose the values of �1(r � 1); �1(r � 2); : : : ; �1(i�), thus 
ompletingthe entire 
ir
uit �1. This is done in a

ordan
e with the s-mat
hes determinedby P , so there are n ways to 
omplete an edge that has no s-mat
h among theedges already 
onstru
ted, while by (4.3) if an edge is mat
hing one of the edgesalready available, then it 
an be 
ompleted in at most 2 ways. Sin
e this pro
eduredetermines uniquely the edge (�1(i�� 1); �1(i�)) and hen
e the s-value assigned toit, it redu
es the number of free s-values to 2r � 2. Consequently, the number ofquadruples of 
ir
uits 
orresponding to P is at most Cn2r+2.In 
ase jPj = 2r, we �rst 
onstru
t �1 by the pre
eding dynami
 
onstru
tionwhile determining the s-value for the edge (�1(i� � 1); �1(i�)) out of the 
ir
uit
ondition for �1. Then, we repeat the dynami
 
onstru
tion for �2, keeping itin a

ordan
e with the s-values determined already by edges of �1 and uniquelydetermining the edge (�2(j� � 1); �2(j�)) and hen
e the s-value assigned to it, bythe 
ir
uit 
ondition for �2. Thus, we have again redu
ed the total number offree s-values to 2r � 2, and 
onsequently, the number of quadruples of 
ir
uits
orresponding to P is again at most Cn2r+2.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 15The next result deals only with the slope mat
hing fun
tion sT (x; y) = jx� yj.Proposition 4.4. Fix k 2 N. Let N be the number of sT -mat
hed 
ir
uits � inf1; : : : ; ng of length 2k with at least one pair of sT -mat
hed edges (�(i � 1); �(i))and (�(j�1); �(j)) su
h that �(i)��(i�1)+�(j)��(j�1) 6= 0. Then, as n!1we have n�(k+1)N ! 0:Proof. By Proposition 4.2, we may and shall 
onsider throughout path � inf1; : : : ; ng of length 2k for whi
h the absolute values of the slopes �(i) � �(i � 1)take exa
tly k distin
t non-zero values and, for � to be a 
ir
uit, the sum of all2k slopes is zero. Let P denote a partition of the 2k slopes to sT -mat
hing pairs,indi
ating also whether ea
h slope is negative or positive, with m(P) denoting thenumber of su
h pairs for whi
h both slopes are positive. Observe that if underP both slopes of some sT -mat
hing pair are negative, then ne
essarily m(P) � 1,for otherwise the sum of all slopes will not be zero for any path 
orresponding toP . Thus, it suÆ
es to show that at most nk 
ir
uits � 
orrespond to ea
h P withm = m(P) � 1. Indeed, �xing su
h P , there are at most n ways to 
hoose �(0) andnk�m ways to 
hoose the k �m pairs of slopes for whi
h at least one slope in ea
hpair is negative. The remaining m pairs of sT -mat
hing positive slopes are to be
hosen among f1; : : : ; ng subje
t to a spe
i�ed sum (due to the 
ir
uit 
ondition).Sin
e there are at most nm�1 ways for doing so, the proof is 
omplete.4.3. Moments of the average spe
tral measure.Proposition 4.5. Suppose fXjg are bounded i.i.d. random variables su
h thatIE(X) = 0; IE(X2) = 1. Then for k 2 Nlimn!1 1nk+1 IEtr(T2kn ) = Xw:jwj=2k pT (w);(4.4)and limn!1 1nk+1=2 IEtr(T2k�1n ) = 0:(4.5)Proof. For a 
ir
uit � : f0; 1; : : : ; rg ! f1; 2; : : : ; ng writeX� = rYi=1X�(i)��(i�1):(4.6)Then IEtr(Trn) =X� IEX�;(4.7)where the sum is over all 
ir
uits in f1; : : : ; ng of length r.By H�older's inequality, for any �nite set � of 
ir
uits of length rjX�2� IEX�j � IE(jX jr)#�:(4.8)Sin
e jX jr is bounded, we 
an use the bound (4.8) to dis
ard the \non-generi
"
ir
uits from the sum in (4.7). To this end, note that sin
e the random variablesfXjg are independent and have mean zero, the term IEX� vanishes for every 
ir
uit� with at least one unpaired Xj . Sin
e Tn is a symmetri
 matrix, by (4.6) pairedvariables 
orrespond to the slopes of the 
ir
uit � whi
h are equal in absolute value.
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e, the only 
ir
uits that make a non-zero 
ontribution to (4.7) are those withmat
hed absolute values of the slopes. This �ts the formalism of Se
tion 4.2 withthe mat
hing fun
tion sT (x; y) = jx� yj.If r = 2k � 1 > 0 is odd then ea
h sT -mat
hed 
ir
uit � of length r must havean edge of order 3. From (4.8) and Proposition 4.2 we get jIEtr(T2k�1n )j � Cnk,proving (4.5).When r = 2k is an even number, let � be the set of all 
ir
uits � :f0; 1; : : : ; 2kg ! f1; : : : ; ng with the set of slopes f�(i) � �(i � 1) : i = 1; : : : ; 2kg
onsisting of k distin
t non-negative integers s1; : : : ; sk and their 
ounterparts�s1; : : : ;�sk. From (4.8) and Proposition 4.4 it follows thatlimn!1 1nk+1 jIEtr(Trn)�X�2� IEX�j = 0:Moreover, for every 
ir
uit � 2 �, if Xj enters the produ
t X� then it o

urs in itexa
tly twi
e, resulting with IEX� = 1, and 
onsequently with P�2� IEX� = #�.Therefore, the following lemma 
ompletes the proof of (4.4), and with it, that ofProposition 4.5.Lemma 4.6. limn!1 1nk+1#� =Xw pT (w);where the sum is over the �nite set of partition words w of length 2k.Proof. The 
ir
uits in � 
an be labeled by the partition words w of length 2k whi
hlist the positions of the pairs of sT -mat
hes along f1; : : : ; 2kg. This generates thepartition � = Sw �(w) into the 
orresponding equivalen
e 
lasses.To every su
h partition word w we 
an assign nk+1 paths �(i) = xi, i = 0; : : : ; 2kobtained by solving the system of equations (3.2), with values 1; 2; : : : ; n for ea
h ofthe k + 1 free variables, and the remaining k values 
omputed from the equations(whi
h represent the relevant sT -mat
hes for any � 2 �(w)). Some of these pathswill fail to be in the admissible range f1; : : : ; ng. Let pn(w) be the fra
tion ofthe nk+1 paths that stay within the admissible range f1; : : : ; ng, noting that byProposition 4.2, pn(w) � n�(k+1)#�(w)! 0.Interpreting the free variables xj as the dis
rete uniform independent randomvariables with values f1; 2; : : : ; ng, pn(w) be
omes the probability that the 
om-puted values stay within the pres
ribed range. As n!1, the k + 1 free variablesxj=n 
onverge in law to independent uniform U [0; 1℄ random variables Uj . Sin
epn(w) is the probability of the (independent of n) event Aw that the solution of(3.2) starting with xj=n 2 f1=n; 2=n; : : : ; 1g has all the dependent variables in(0; 1℄, it follows that pn(w) 
onverges to pT (w), the probability of the event Awthat the 
orresponding sums of independent uniform U [0; 1℄ random variables taketheir values in the interval [0; 1℄.Next we give the Hankel version of Proposition 4.5.Proposition 4.7. Let fXjg be bounded i.i.d. random variables su
h that IE(X) =0; IE(X2) = 1. For k 2 N,limn!1 1nk+1 IEtr(H2kn ) = Xw:jwj=2k pH(w);(4.9)



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 17and limn!1 1nk+1=2 IEtr(H2k�1n ) = 0:(4.10)Proof. We mimi
 the pro
edure for the Toeplitz 
ase. For a 
ir
uit � :f0; 1; : : : ; rg ! f1; 2; : : : ; ng writeX� = rYi=1X�(i)+�(i�1):(4.11)As previously, IEtr(Hrn) =X� IEX� ;(4.12)where the sum is over all 
ir
uits in f1; : : : ; ng of length r, and by H�older's inequal-ity, we again have the bound (4.8), whi
h for bounded jX jr we use to dis
ard the\non-generi
" 
ir
uits from the sum in (4.12). To this end, with the random vari-ables Xj independent and of mean zero, the term IEX� vanishes for every 
ir
uit� with at least one unpaired Xj . By (4.11), in the 
urrent setting paired variables
orrespond to an sH -mat
hing in the 
ir
uit �. Hen
e, only sH -mat
hed 
ir
uits(in the formalism of Se
tion 4.2) 
an make a non-zero 
ontribution to (4.12).If r = 2k � 1 > 0 is odd then ea
h sH-mat
hed 
ir
uit � of length r must havean edge of order 3. From (4.8) and Proposition 4.2 we get jIEtr(H2k�1n )j � Cnk,proving (4.10).When r = 2k is an even number, let � be the set of all 
ir
uits � :f0; 1; : : : ; 2kg ! f1; : : : ; ng with the sH -values 
onsisting of k distin
t numbers.Re
all that IEX� = 1 for any � 2 � (see (4.11)). Further, with any sH -mat
hed
ir
uit not in � having an edge of order 3, it follows from (4.8) and Proposition 4.2that limn!1 1nk+1 jIEtr(Hrn)�#�j = 0:Therefore, the following lemma 
ompletes the proof of (4.9), and with it, that ofProposition 4.7.Lemma 4.8. limn!1 1nk+1#� = Xw:jwj=2k pH(w):Proof. Similarly to the proof of Lemma 4.6, label the 
ir
uits in � by the partitionwords w whi
h list the positions of the pairs of sH -mat
hes along f1; : : : ; 2kg, withthe 
orresponding partition � = Sw �(w) into equivalen
e 
lasses. To every su
hpartition word w we 
an assign nk+1 paths �(i) = xi; i = 0; : : : ; 2k obtained bysolving the system of equations (3.6), with values 1; 2; : : : ; n for ea
h of the k + 1free variables, and the remaining k values 
omputed from the equations. Some ofthese paths will fail to be a 
ir
uit, and some will fail to stay in the admissible rangef1; : : : ; ng. Let pn(w) denote the fra
tion of the paths that stay within the admis-sible range f1; : : : ; ng and are 
ir
uits, noting that pn(w)� n�(k+1)#�(w) ! 0 byProposition 4.2. Thus, pn(w) is the probability of the event Aw that the solutionof (3.6) starting with the free variables xj that are independent dis
rete uniformrandom variables on the set f1=n; 2=n; : : : ; 1g, stays within (0; 1℄ and satis�es theadditional 
ondition x0 = x2k . It follows that as n ! 1, the probabilities pn(w)
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onverge to pH(w), the probability of the event Aw with the free variables nowbeing independent and uniformly distributed on [0; 1℄.4.4. Con
entration of moments of the spe
tral measure.Proposition 4.9. Let fXjg be bounded i.i.d. random variables su
h that IE(X) =0 and IE(X2) = 1. Fix r 2 N. Then there is Cr < 1 su
h that for all n 2 N wehaveIE[(tr(Trn)� IEtr(Trn))4℄ � Crn2r+2 and IE[(tr(Hrn)� IEtr(Hrn))4℄ � Crn2r+2.Proof. The argument again relies on the enumeration of paths. Sin
e both proofsare very similar, we analyze only the Hankel 
ase.Using the 
ir
uit notation of (4.11) we have thatIE[(tr(Hrn)� IEtr(Hrn))4℄ = X�1;�2;�3;�4 IE[ 4Yj=1(X�j � IE(X�j ))℄;(4.13)where the sum is taken over all 
ir
uits �j , j = 1; : : : ; 4 on f1; : : : ; ng of length rea
h. With the random variables Xj independent and of mean zero, any 
ir
uit �kwhi
h is not mat
hed together with the remaining three 
ir
uits has IE(X�k ) = 0and IE[ 4Yj=1(X�j � IE(X�j ))℄ = IE[X�k Yj 6=k �X�j � IE(X�j )�℄ = 0:Further, if one of the 
ir
uits, say �1, is only self-mat
hed, i.e., has no 
ross-mat
hededge, then obviouslyIE[ 4Yj=1(X�j � IE(X�j ))℄ = IE[X�1 � IE(X�j )℄IE[ 4Yj=2 �X�j � IE(X�j )�℄ = 0:Therefore, it suÆ
es to take the sum in (4.13) over all sH -mat
hed quadruples of
ir
uits on f1; : : : ; ng, su
h that none of them is self-mat
hed. By Proposition 4.3,there are at most Crn2r+2 su
h quadruples of 
ir
uits, and with jX j (hen
e jX�j)bounded, this 
ompletes the proof.4.5. Proofs of the Hankel and Toeplitz 
ases.Proof of Theorem 1.1. Proposition 4.1(i) implies that without loss of generality wemay assume that the random variables fXjg are 
entered and bounded.By Proposition 4.5 the odd moments of the average measure IE(�̂(Tn=pn))
onverge to 0, and the even moments 
onverge to m2k of (3.5). Sin
e m2k is at mostthe number (2k� 1)!! of words of length 2k, these moments determine the limitingdistribution 
T uniquely. By Chebyshev's inequality we have from Proposition 4.9that for any Æ > 0 and k; n 2 N,IPh�� Z xkd�̂(Tn=pn)� Z xkdIE(�̂(Tn=pn))�� > Æi � CkÆ�4n�2 :Thus, by the Borel-Cantelli lemma, with probability one R xkd�̂(Tn=pn) !R xkd
T as n ! 1, for every k 2 N. In parti
ular, with probability one, therandom measures f�̂(Tn=pn)g are tight, and sin
e the moments determine 
Tuniquely, we have the weak 
onvergen
e of �̂(Tn=pn) to 
T .Sin
e the moments do not depend on the distribution of the i.i.d. sequen
e fXjg,the limiting distribution 
T does not depend on the distribution of X either, and is
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 as all its odd moments are zero. By Proposition A.1, it has unboundedsupport.Proof of Theorem 1.2. We follow the same line of reasoning as in the proof of The-orem 1.1, starting by assuming without loss of generality that fXjg are 
enteredand bounded, in view of Proposition 4.1(ii). Then, by Proposition 4.7, as n ! 1the odd moments of the average measure IE(�̂(Hn=pn)) 
onverge to 0, and theeven moments 
onverge to m2k of (3.8), whereas from Proposition 4.9 we 
on
ludethat with probability one the same applies to the moments of �̂(Hn=pn). Sin
em2k � (2k � 1)!!, these moments determine the limiting distribution 
H uniquely.The almost surely 
onvergen
e R xkd�̂(Hn=pn) ! R xkd
H as n ! 1, for allk 2 N, implies tightness of �̂(Hn=pn) and its weak 
onvergen
e to the non-randommeasure 
H . Sin
e its moments do not depend on the distribution of the i.i.d.sequen
e fXjg, so does the limiting distribution 
H , whi
h is symmetri
 sin
e allits odd moments are zero. By Proposition A.2 it has unbounded support, and isnot unimodal.4.6. Markov matri
es with 
entered entries. In view of Proposition 4.1(iii) wemay and shall assume hereafter without loss of generality that the random variablesXij are bounded. Our proof of Theorem 1.3 follows a similar outline as that usedin proving Theorems 1.1 and 1.2, where the 
ombinatorial arguments used here relyon matrix de
omposition.Starting with some notation we shall use throughout the proof, let �n be a graphwhose verti
es are two-element subsets of f1; : : : ; ng with the edges between verti
esa and b if the sets overlap, a \ b 6= ;. We indi
ate that (a; b) is an edge of �n bywriting a � b, and for a 2 �n let a = fa�; a+g with 1 � a� < a+ � n.The main tool in the Markov 
ase is the following de
ompositionMn = Xa2�nXaQa;a;where Xa := Xa+;a� and Qa;b is the n�n matrix de�ned for verti
es a; b of �n byQa;b[i; j℄ = 8<: �1 if i = a+; j = b+, or i = a�; j = b�;1 if i = a+; j = b�, or i = a�; j = b+;0 otherwise.Let ta;b = tr(Qa;b): It is straightforward to 
he
k thatta;b = 8>><>>: �2 if a = b;�1 if a 6= b and a� = b� or a+ = b+;1 if a� = b+ or a+ = b�;0 otherwise.From this, we see that ta;b = tb;a. Sin
e it is easy to 
he
k that Qa;b � Q
;d =tb;
Qa;d, we get tr (Qa1;a1 �Qa2;a2 � � � � �Qar;ar) = rYj=1 taj ;aj+1 ;(4.14)where for 
onvenien
e we identi�ed ar+1 with a1.
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ir
uit � = (a1 � � � � � ar � a1) of length r in �n letX� = rYj=1 taj ;aj+1 rYj=1Xaj :(4.15)It follows from (4.14) and (4.15) thattr(Mrn) =X� X� ;(4.16)where the sum is over all 
ir
uits of length r in �n, leading to the Markov analogof the path expansion (4.7), IEtr(Mrn) =X� IEX�:(4.17)We say that a 
ir
uit � = (a1 � � � � � ar � a1) of length r in �n is vertex-mat
hed if for ea
h i = 1; : : : ; r there exists some j 6= i su
h that ai = aj , andthat it has a mat
h of order 3 if some value is repeated at least three times among(aj ; j = 1; : : : ; r). Note that the only non-vanishing terms in (4.17) 
ome fromvertex-mat
hed 
ir
uits.In analogy with Proposition 4.2, we show next that generi
ally vertex-mat
hed 
ir
uits have only double repeats, and 
onsequently, the odd momentsof IE�̂(Mn=pn) 
onverge to zero as n!1.Proposition 4.10. Fix r 2 N. Let N denote the number of vertex-mat
hed 
ir
uitsin �n with r verti
es whi
h have at least one mat
h of order 3. Then there is a
onstant Cr su
h that for all n 2 NN � Crnb(r+1)=2
:Proof. Either r = 2k is even, or r = 2k � 1 is odd. In both 
ases, the totalnumber of di�erent verti
es per path is at most k � 1. Sin
e a1 � a2 � � � � � ar,there are at most n2=2 
hoi
es for a1, and then at most 4n 
hoi
es for ea
h of theremaining k � 2 distin
t values of aj , and 1 
hoi
e for ea
h repeated value. ThusN � 4rn2 � nk�2 = Cnk.Corollary 4.11. Suppose fXij ; j > i � 1g are bounded i.i.d. random variablessu
h that IE(X) = 0; IE(X2) = 1. Then,limn!1 1nk+1=2 IEtr(M2k�1n ) = 0:(4.18)Proof. If IEX� is non-zero, then all the verti
es of the path a1 � a2 � � � � � a2k�1must be repeated at least twi
e. So for an odd number of verti
es, there must bea vertex whi
h is repeated at least 3 times. Thus, by Proposition 4.10 and theboundedness of jXij j and of ta;b,��IEtr(M2k�1n )�� � Cknk;and (4.18) follows.Let Wn = n1=2Zn + Xn + �In, where Xn is a symmetri
 n � n matrix withi.i.d. standard normal random variables (ex
ept for the symmetry 
onstraint),Zn = diag(Zii)1�i�n, with i.i.d. standard normal variables Zii that are indepen-dent of Xn and � is a standard normal, independent of all other variables. Adire
t 
ombinatorial evaluation of the even moments of IE�̂(Mn=pn) is providedin [BDJ03℄. We follow here an alternative, shorter proof, proposed to us by O.



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 21Zeitouni. The key step, provided by our next lemma, repla
es the even momentsby those of the better understood matrix ensemble Wn.Lemma 4.12. Suppose fXij ; j > i � 1g are bounded i.i.d. random variables su
hthat IE(X) = 0; IE(X2) = 1. Then, for every k 2 N,limn!1n�(k+1)[IEtr(M2kn )� IEtr(W2kn )℄ = 0 :(4.19)Proof. First observe that by Proposition 4.10, we may and shall assume withoutloss of generality that fXijg are i.i.d standard normal random variables, subje
tto the symmetry 
onstraint Xij = Xji (as su
h a 
hange a�e
ts n�(k+1)IEtr(M2kn )by at most Ckn�1). Re
all the representation Mn = Xn � Dn of (1.3) and letfMn = Xn� eD(n)n+1 where eD(n)n+1 is obtained by omitting the last row and 
olumn ofthe diagonal matrix eDn+1 whi
h is an independent 
opy ofDn+1 that is independentofXn. Observe that the diagonal entries of� eD(n)n+1 are jointly normal, of zero mean,varian
e n+1 and su
h that the 
ovarian
e of ea
h pair is 1. Therefore, with � eD(n)n+1independent of Xn, for ea
h n, the distribution of fMn is exa
tly the same as thatof Wn. Consequently, (4.19) is equivalent tolimn!1 n�(k+1)IE[tr(M2kn )� tr(fM2kn )℄ = 0 :(4.20)The �rst step in proving (4.20) is to note that by a path expansion similar to (4.17)we have that IE[tr(M2kn )� tr(fM2kn )℄ =X� [IEM� � IEfM�℄ ;(4.21)where now the sum is over all 
ir
uits � : f0; : : : ; 2kg ! f1; : : : ; ng, andM� = 2kYi=1M�(i�1);�(i)with the 
orresponding expression for fM�. Set ea
h word w of length 2k to bea 
ir
uit by assigning w[0℄ = w[2k℄ and let �(w) denote the 
olle
tion of 
ir
uits� su
h that the distin
t letters of w are in a one to one 
orresponden
e with thedistin
t values of �. Let v = v(w) be the number of distin
t letters in the wordw, noting that #�(w) � nv(w) and that IEM� � IEfM� = fn(w) is independentof the spe
i�
 
hoi
e of � 2 �(w). Hen
e, taking the letters of w to be from theset of numbers f1; 2; : : : ; 2kg with the 
onvention that w(i) = w[i℄, we identify was a representative of � 2 �(w) (re
all w[0℄ = w[2k℄). For example, w = abb
of v(w) = 3 distin
t letters be
omes w = 1223 whi
h we identify with the 
ir
uit� 2 �(w) of length 4 
onsisting of the edges f1; 2g, f2; 2g, f2; 3g and f3; 1g. Inview of (4.21), we thus establish (4.20) by showing that for any w, some Cw < 1and all n, jfn(w)j = jIEMw � IEfMwj � Cwnk�v(w)+1=2 :(4.22)Let q = q(w) be the number of indi
es 1 � i � 2k for whi
h w[i℄ = w[i � 1℄(for example, q(1223) = 1). It is 
lear from the de�nition of Mn and fMn thatfn(w) 6= 0 only if q(w) � 1. Let u = u(w) 
ount the number of edges of distin
tendpoints in w, namely, with fw[i�1℄; w[i℄g 2 �n, whi
h appear exa
tly on
e alongthe 
ir
uit w (for example, u(1223) = 3). Then, by independen
e and 
entering wehave that IEfMw = 0 as soon as u(w) � 1, whereas it is not hard to 
he
k that if
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es to 
onsider in (4.22) only 
ir
uitsw with q(w) � u(w).It is not hard to 
he
k that ex
luding the q loop-edges (ea
h 
onne
ting somevertex to itself), there are at most k+b(u�q)=2
 distin
t edges in w. These distin
tedges form a 
onne
ted path through v(w) verti
es, whi
h for u � 1 must also bea 
ir
uit. Consequently, for any of the words w we are to 
onsider,v(w) � k + 1u(w)=0 + b(u(w)� q(w))=2
 � k :(4.23)Pro
eeding to bound jfn(w)j, note that any 
ontribution whi
h grows with nmust 
ome from the q diagonal entries of Mn and fMn whi
h are en
ountereda

ording to the 
ir
uit w. Suppose �rst that u � 1, in whi
h 
ase fn(w) = IEMw.Computing the latter, upon expanding the sums in the q relevant diagonal entries ofDn = diag(Pnj=1 Xij), we must assign spe
i�
 
hoi
es to at least u of the resultingfree indi
es j1; : : : ; jq 2 f1; : : : ; ng in order to mat
h all u un-mat
hed edges of w ofthe form fw[i� 1℄; w[i℄g 2 �n. Indeed, by independen
e and 
entering, every otherterm of this expansion has zero expe
tation. After doing so, as ea
h diagonal entryof Dn is normal of mean zero and varian
e n, we 
on
lude by H�older's inequalitythat jfn(w)j � Cwn(q�u)=2. By our bound (4.23) on v(w), this implies that (4.22)holds.Consider next words w for whi
h u(w) = 0 and let a1; : : : ; aq be the q verti
esfor whi
h fai; aig is an edge of the 
ir
uit w. Let Mii = Qi�Si and fMii = eQi� eSi,for i = 1; : : : ; 2k, where Qi = Xii �P2kj=1 Xij , eQi = Xii � eXi;n+1 �P2kj=1 eXij , andeSi = Pnj=2k+1 eXij with the 
orresponding expressions for Si. Note that we mayand shall repla
e ea
h Si by eSi without altering IEMw, and sin
e the o�-diagonalentries of Mn and fMn are the same, we have thatfn(w) = IEhLw� qYi=1(Qai � eSai)� qYi=1( eQai � eSai)�i= qXi=1 IEhLw(Qai � eQai) i�1Yj=1Maj ;aj qYj=i+1 fMaj;aji ;where Lw is the produ
t of the (2k� q) o�-diagonal entries of Mn that 
orrespondto the edges of w that are in �n. Sin
e the distribution of (Lw; fQig; f eQig) isindependent of n > 2k, while Mii and fMii are normal of mean zero and varian
e atmost n + 2, it follows by H�older's inequality that jfn(w)j � Cwn(q(w)�1)=2, whi
hby (4.23) results with (4.22).As already seen, (4.22) implies that (4.20) holds and hen
e the proof of thelemma is 
omplete.Let 
0(dx) = dx2�p4� x21jxj�2 denote the semi-
ir
le distribution, 
1(dx) =dxp2� exp(�x2=2) denote the standard normal distribution and let 
M = 
0 � 
1 bethe 
orresponding free 
onvolution. In view of Lemma 4.12, our next result showsthat the even moments of IE�̂(Mn=pn) 
onverge as n!1 to those of 
M .Proposition 4.13. For every k 2 N,limn!1n�(k+1)IEtr(W2kn ) = Z x2kd
M :(4.24)



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 23Proof. Let An = Zn + n�1=2�In, so n�1=2Wn = An + n�1=2Xn. By the strongLLN, with probability one �̂(An)! 
1 weakly. Further, supn IE R jxjd�̂(An) <1,and IE R jxjd�̂(n�1=2Xn) � n�1pIEtr(X2n) = 1, implying by [PV00, Theorem 2.1and p. 280℄ that �̂(Wn=pn) 
onverges weakly to 
M , in probability. It follows thatfor any k 2 N and all r <1,limn!1 IE Z hr(x)d�̂(Wn=pn) = Z hr(x)d
M(4.25)where hr(x) = (min(jxj; r))2k . Re
all that all moments of 
M are �nite (
.f. Propo-sition A.3), so as r !1 the right-hand side of (4.25) 
onverges to R x2kd
M . It isnot hard to 
he
k that for any k 2 N,IE Z x2kd�̂(Wn=pn) = n�(k+1)IEtr(W2kn ) ;is bounded in n by some Ck <1. Hen
e, for all n,jn�(k+1)IEtr(W2kn )� IEZ hr(x)d�̂(Wn=pn)j � Ck+1r�2 ;and (4.24) follows by 
onsidering r !1 in (4.25).We next derive the analog of Proposition 4.3 and similarly to Proposition4.9, get as a result the 
on
entration of moments of �̂(Mn=pn) around those ofIE(�̂(Mn=pn)).Proposition 4.14. Fix r 2 N. Let N denote the number of vertex-mat
hed quadru-ples of 
ir
uits in �n with r verti
es ea
h, su
h that none of them is self-mat
hed.Then there is a 
onstant Cr su
h thatN � Crn2r+2:Proof. Let P denote the partition of the 4r verti
es of the 
ir
uits �1; : : : ; �4 in�n to jPj � 2r distin
t groups of mat
hing verti
es, with at least two elements inea
h group, while having ea
h 
ir
uit 
ross-mat
hed to at least one of the other
ir
uits. As part of P we spe
ify also whi
h of the four types of edges to use inea
h 
onne
tion along the 
ir
uits. For i = 1; 2; 3; 4, let ui = ui(P) be the numberof distin
t verti
es in �i that do not appear in any �j , j < i. There are at mostn1+u1 ways to 
hoose the 
ir
uit �1 in agreement with P , that is, n2=2 ways to
hoose the vertex a1 of �1 and at most n ways for ea
h of the remaining u1 � 1distin
t verti
es of �1. For i = 2; 3; 4, per given �j , j < i, the same pro
edureshows that there are at most n1+ui ways to 
omplete the 
ir
uit �i. Further, if �i is
ross-mat
hed to �j for some j < i, then starting the 
ompletion of �i at a vertexthat we already determined by su
h a 
ross-mat
h, we have that there are only nuiways to 
omplete �i. The latter improved bound always applies for i = 4, and itis not hard to 
he
k that upon re-ordering the four 
ir
uits, we 
an assure that itapplies also for i = 3. We thus get at most nu+2 quadruples of 
ir
uits per 
hoi
eof P , where u =Pi ui = jPj � 2r, yielding the stated bound.Proposition 4.15. Suppose fXij ; j > i � 1g are bounded i.i.d. random variablessu
h that IE(X) = 0 and IE(X2) = 1. For any r 2 N, there exists Cr < 1 su
hthat IE[(tr(Mrn)� IEtr(Mrn))4℄ � Crn2r+2 for all n 2 N.



24 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGProof. By (4.16) we have the Markov analog of (4.13)IE[(tr(Mrn)� IEtr(Mrn))4℄ = X�1;�2;�3;�4 IE[ 4Yj=1(X�j � IE(X�j ))℄;(4.26)where the sum is taken over all 
ir
uits �j , j = 1; : : : ; 4 in �n, ea
h having rverti
es. With the random variables fXij ;n � j > i � 1g independent and of meanzero, just like the proof of Proposition 4.9, it suÆ
es to take the sum in (4.26)over all vertex-mat
hed quadruples of 
ir
uits on �n, su
h that none of them isself-mat
hed. Sin
e jX j (and hen
e jX�j) is bounded the stated inequality followsfrom the bound of Proposition 4.14 on the number of su
h quadruples.Proof of Theorem 1.3. The proof is very similar to that of Theorems 1.1 and 1.2,where by Proposition 4.1(iii), we may and shall assume that fXij ; j > i � 1gare i.i.d. bounded. Then, by (4.18) the odd moments of the average measureIE(�̂(Mn=pn)) 
onverge to 0, and by Proposition 4.13 the even moments 
onvergeto those of 
M , whereas from Proposition 4.15 we 
on
lude that with probabilityone the same applies to the moments of �̂(Mn=pn). By Proposition A.3, 
M is asymmetri
 measure of bounded smooth density that, though of unbounded support,is uniquely determined by its moments (having in parti
ular zero odd moments).Hen
e, the almost surely 
onvergen
e R xkd�̂(Mn=pn)! R xkd
M as n!1, forall k 2 N, implies the weak 
onvergen
e of �̂(Mn=pn) to 
M .A
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H , 
M and 
TIn this se
tion we establish properties of the symmetri
 measures with mo-ments given by (3.5), and (3.8) and the free 
onvolution 
M of Theorem 1.3. Forproofs, it is 
onvenient to express the volumes pH(w) and pT (w) as the probabili-ties that involve sums of independent uniform random variables. This 
an be doneby setting the free variables as the independent uniform U [0; 1℄ random variablesU0; U1; : : : ; Uk, expressing the dependent variables as the linear 
ombinations ofU0; U1; : : : ; Uk, and expressing the volumes as the probabilities that these linear
ombinations are in the interval I . For ea
h partition word w of length 2k with anon-zero volume p(w), this probability takes the formp(w) = IP0� k\i=18<: MXj=0 ni;jUj 2 [0; 1℄9=;1A ;(A.1)where ni;j are integers and M = k.Proposition A.1. A symmetri
 measure 
T with even moments given by (3.5) hasunbounded support.



26 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGProof. It suÆ
es to show that (m2k)1=k !1. Let w be a partition word of length2k. Denoting Si =Pj ni;jUj � 12 ; i = 1; 2; : : : ; k, we havepT (w) = IP k\i=1njSij < 12o! :(A.2)Sin
e the 
oeÆ
ients ni;j in (A.1) take values 0;�1 only, and Pj ni;j = 1, ea
hof the sums Si in (A.2) has the following formS = (U� � 1=2) + LXj=1(U�(j) � U
(j));(A.3)where �; �(j); 
(j); j = 1; : : : ; L are all di�erent. Let Li denote the number ofindependent random variables U in this representation for Si. Clearly, 1 � Li �k + 1.Fixing " > 0 let Uj = 1=2 + Vj=("(k + 1)) for j = 0; : : : ; k. For k > 1=" de�nethe event A = k\j=0�jUj � 1=2j < 12"(k + 1)� ;noting that 
onditionally on A, the random variables V0; : : : ; Vk are independent,ea
h uniformly distributed on [�1=2; 1=2℄. As under this 
onditioning the i.i.d.random variables fVjg have symmetri
 laws, it is easy to 
he
k that for i = 1; : : : ; k,the form (A.3) of Si implies thatIP(jSij > 12 jA) = IP(j LiXj=1 Vj j > "(k + 1)=2) = 2IP( LiXj=1 Vj > "(k + 1)=2) ;whi
h by Markov's inequality is bounded above by2e�"2(k+1)=2(IEe"V )Li = e�"2(k+1)=2 �e"=2 � e�"=2" �Li :Sin
e ex�e�x2x � ex2=2 for x > 0, and Li � k + 1, we dedu
e thatIP�jSij > 12 ����A� � 2 exp ��"2(k + 1)=2 + "2Li=4� � 2e�"2(k+1)=4 ;(A.4)for i = 1; : : : ; k. As 2ke�"2(k+1)=4 � 1=2 for some k0 = k0(") < 1 and all k � k0,it follows from (A.2) and (A.4) that for all k � k0 and any word w of length 2k,pT (w) � 12IP(A) = 12("(k + 1))�(k+1):(A.5)Sin
e there are more than k! partition words w of length 2k, this shows that for alllarge enough k we havem2k � 12k!("(k + 1))�(k+1) � (3")�k:Hen
e, lim supk!1m1=k2k � 1=(3"). As " > 0 is arbitrarily small, this 
ompletes theproof.Proposition A.2. A symmetri
 measure 
H with even moments given by (3.8) isnot unimodal and has unbounded support.
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 distribution 
H is unimodal. Sin
e all mo-ments of 
H are �nite, from Khin
hin's Theorem, see [Luk70, Theorem 4.5.1℄, itfollows that if �(t) = R eitx
H(dx) denotes the 
hara
teristi
 fun
tion of 
H , theng(t) = �(t) + t�0(t) must be a 
hara
teristi
 fun
tion, too. The even moments 
or-responding to g(t) are (2k + 1)m2k(
H), and must be a positive de�nite sequen
e,that is, the Hankel matri
es with entries [(2(i+j)�3)m2(i+j�2)(
H )℄1�i;j�n shouldall be non-negative de�nite. However, with m4 = 2, m6 = 11=2 and m8 = 281=15,for n = 3 the determinantdet24 1 3m2 5m43m2 5m4 7m65m4 7m6 9m8 35 = det24 1 3 103 10 77=210 77=2 843=5 35 = �73=20is negative. Thus, 
H is not unimodal.To show that the support of 
H is unbounded we pro
eed like in the Toeplitz
ase. The main te
hni
al obsta
le is that some partition words 
ontribute zerovolume. We will therefore have to �nd enough partition words that 
ontribute anon-zero volume, and then give a lower bound for this 
ontribution.We 
onsider only moments of order 4k � 2, k � 2, and �nd the 
ontribution ofthe partition words whi
h have no repeated letters in the �rst half, i. e.,w[1℄ 6= w[2℄ 6= � � � 6= w[2k � 1℄:That is, we 
onsider the set of partition words w of length 4k � 2 of the formw = ab
::: with the �rst 2k � 1 letters written in the �xed (alphabeti
) order,followed by the repeated letters a; b; 
; : : : at positions 2k; : : : ; 4k � 2. We alsorequire that the repeats are pla
ed at odd distan
e from the original mat
hingletter. Formally, we 
onsider the set of partition words w of length 4k � 2 whi
hsatisfy the following 
ondition.If w[�℄ = w[�℄ and � < � then � 6� � mod 2, � � 2k � 1, and � � 2k.Sin
e we 
an permute all letters at lo
ations 2k; 2k+2; : : : ; 4k� 2 and all letters atlo
ations 2k+1; 2k+3; : : : ; 4k�3, 
learly there are k!(k�1)! su
h partition words.To show that all su
h partition words 
ontribute a non-zero volume, we needto 
arefully analyze the matrix of the resulting system of equations (3.6). This isa (2k � 1) � (4k � 1) matrix with entries 0;�1 only. The �rst 2k � 1 
olumns ofthe matrix are �lled in with the pattern of sliding pairs 1; 1 
orresponding to �rsto

urren
es of every letter, i.e. the left hand sides of equations (3.6) are simply8>>><>>>: x0 + x1 = : : :x1 + x2 = : : ::::x2k�2 + x2k�1 = : : : :So the �rst 2k 
olumns of the matrix are as follows, with the star denoting as yetunspe
i�ed entries of the 2k-th 
olumn.1100..00*0110..00*0011..00*...0000..11*0000..011



28 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGThe remaining 
olumns are as follows. In every even row of the se
ond half we havea disjoint (non-overlapping) pairs (�1;�1), in
luding the site adja
ent to the "lastletter", that has entry 1 in the last row, and entry �1 in one of the odd rows. Noneof these �1;�1 are in the last 
olumn, a 
oeÆ
ient of x4k�2.In the odd rows we have pairs of 
onse
utive (�1;�1) whi
h overlap entries fromthe even rows, but not themselves, in
luding a single (�1;�1) pair whi
h �lls inone spot in the last 
olumn, the 
oeÆ
ients of x4k�2.For example, the word w = ab
 : : : ab
 : : : , where all 2k � 1 letters a; b; 
; : : : arerepeated alphabeti
ally twi
e, is in the 
lass of the partition words under 
onsider-ation. The 
orresponding system of equations is8>>>>>><>>>>>>: x0 + x1 = x2k�1 + x2k:::xi + xi+1 = x2k+i�1 + x2k+i; i = 1; 2; : : : ; 2k � 3:::x2k�2 + x2k�1 = x4k�3 + x4k�2 ;and its matrix is1100..00-1-1 0 ... 0 00110..00 0-1-1 ... 0 00011..00 0 0-1 ... 0 0...0000..11 0 0 0 ...-1 00000..01 1 0 0 ...-1-1All other partition words in our 
lass are obtained from permuting lettersw[2k℄; w[2k + 2℄; : : : ; w[4k � 2℄, and then permuting letters w[2k + 1℄; w[2k +3℄; : : : ; w[4k�3℄ of w = ab
 : : : ab
. Thus all other systems of equations are obtainedfrom the above one by permuting even rows in 
olumns 2k + 1; 2k + 2; : : : ; 4k � 2and odd rows in 
olumns 2k; 2k+1; : : : ; 4k� 1 (apart from the 1 at 
olumn 2k androw 2k � 1 whi
h is never permuted, but get eliminated if the �rst row permutesto be
ome the last one). For ea
h of these words the sum of all odd rows in thesystem minus the sum of all even rows is [1; 0; : : : ; 0;�1℄, implying that for su
h wthe additional 
onstraint x0 = x4k�2 we require when 
omputing pH(w) is merelya 
onsequen
e of (3.6).The solutions of equations (3.6) for su
h partition words w are easy to analyzedue to parity 
onsiderations. Gaussian elimination 
onsists here of subtra
tionsof the given row from the row dire
tly above it, starting with the subtra
tion ofthe (2k � 1) row and ending with the subtra
tion of the se
ond row from the �rstrow, at whi
h point the �rst 2k � 1 
olumns be
ome the identity matrix. Duringthese subtra
tions, a �1 entry in ea
h 
olumn of the original system 
an meet anon-zero entry only from a row positioned at an odd distan
e above it, in whi
h
ase they 
an
el ea
h other. So as we keep subtra
ting, all 
oeÆ
ients take values0;�1 only. Further, for ea
h row the sum of the entries in 
olumns 2k; : : : ; 4k � 1is �2, ex
ept for the last row for whi
h it is �1. Thus, after all subtra
tions havebeen made, these sums are �1 at ea
h of the rows. We 
an now set the 2k freevariables to i.i.d. U [0; 1℄ random variables, x2k�1 = U0; : : : ; x4k�2 = U2k�1, andsolve the 2k� 1 equations for the dependent variables x0; : : : ; x2k�2. By the above
onsiderations we know that ea
h of these dependent random variables is expressed



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 29as an alternating sums of independent uniform U[0,1℄ random variables of the form(A.3).The argument we used for deriving (A.5) thus gives the bound pH(w) �12 (2k")�2k for ea
h of these k!(k � 1)! partition words, and hen
e for all k largeenough, we have m4k�2(
H ) � 12k!(k � 1)!(2"k)�2k � (6")�2k:Thus m1=k4k�2 !1, whi
h implies that the support of 
H is unbounded.Proposition A.3. The free 
onvolution 
M = 
0 � 
1 of the standard semi-
ir
ledistribution 
0 and the standard normal 
1 is a symmetri
 measure, determined bymoments, has unbounded support and a smooth bounded density.Proof. By [Bia97, Corollary 2℄, 
M has a density, by [Bia97, Corollary 4℄ the densityis smooth, and by [Bia97, Proposition 5℄ it is bounded.We now verify that 
M is determined by moments and has unbounded support.We need the following observation: a probability measure � has odd moments van-ishing i� the odd free 
umulants k2r+1(�) of � vanish. This 
an be easily read from[Spe97, formula (72)℄.Sin
e free 
umulants linearize free 
onvolution, kr(
M ) = kr(
0) + kr(
1). Thisshows that the odd moments of 
M vanish. Re
all that the free 
umulants kn(�)and the moments mn(�) of a probability measure � are related by [Spe97, formula(72)℄. In parti
ular, for � with vanishing odd moments, the even 
umulants k2r(�)are related to the moments by the equationsm2n(�) = nXr=1 k2r(�) Xi1+���+i2r=2n�2r 2rYj=1mij (�) ; n = 1; 2; : : : :(A.6)By symmetry, the odd 
umulants of 
1 vanish, and k2r(
1) are non-negative;(k2r(
1) 
ount all irredu
ible pair partitions of f1; : : : ; 2rg, see [BS96, page 152℄).Sin
e k2(
0) = 1, and all higher free 
umulants of 
0 vanish (see [HP00, Example2.4.6℄), we have k2r(
1) � k2r(
M ) � 2k2r(
1)Together with (A.6) this implies by indu
tion thatm2r(
1) � m2r(
M ) � 4rm2r(
1)In parti
ular, 
M has unbounded support and is uniquely determined by moments.Sin
e its odd 
umulants vanish, the odd moments vanish and 
M is symmetri
.Additional material for expanded version onlyProof of Remark 3.1. This holds true be
ause the probabilities p(w) are rational.In fa
t, one 
an verify by indu
tion on the number of variables M that the jointdensity fM of fPMj=1 ni;jUjgi=1;:::;k on Rk is a pie
e-wise polynomial expression:there are polynomials P (M)i1;:::;ik indexed by i1; : : : ; ik 2 Z su
h thatfM (x1; x2; : : : ; xk) = P (M)[x1=N ℄;[x2=N ℄;:::;[xk=N ℄(x1; x2; : : : ; xk);(A.7)



30 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGwhere N = Qi;j ni;j . Indeed, f0 = 1. Suppose that formula (A.7) holds true forsome M with N = Qi;j ni;j . Let N 0 = NQki=1 ni;M . Sin
e N jN 0, we 
an writede
omposition (A.7) with N 0 instead of N . This givesfM+1(x1; : : : ; xk) = Z 10 fM (x1 � n1;Mu; x2 � n2;Mu; : : : ; xd � nk;Mu)du= Z 10 P (M)[(x1�n1;Mu)=N 0℄;:::;[(xk�nd;M )=N 0℄(x1 �n1;Mu; x2 �n2;Mu; : : : ; xk �nk;Mu)du:Noti
e that if i� := [x�=N 0℄ then for n � N 0 and 0 < u < 1 we have[(x� � nu)=N 0℄ = ( i� if 0 < u < x��i�N 0ni� � 1 if x��i�N 0n � u < 1 :Ordering the numbers�x1 � i1N 0n1;M ; x2 � i2N 0n2;M ; : : : ; xk � ikN 0nk;M �in in
reasing order, and splitting the integral R 10 fMdu into the appropriate rangeswe therefore get a pie
ewise polynomial expression for fM+1.From (A.7) it follows that p(w) = RIk fM (x1; : : : ; xk) dx1 : : : dxk is a �nitesum of rational numbers, obtained by integrating the polynomials P (M)i1;:::;ik over theintervals with rational end-points of the form [ i�1N ; iN ℄; i = 1; 2; : : : ; N .Appendix B. Combinatorial arguments for Markov MatrixB.1. Moments of free 
onvolution. In this se
tion we identify moments of thefree 
onvolution 
0 � 
1. The result and the method of proof were suggested by[BS96℄, who give a 
ombinatorial expression for the moments of free 
onvolutionsof normal densities.Denote byW the set of all partition words. Re
all that a (partition) sub-word ofa word w is a partition word w1 su
h that w = a:::
w1d::z. Let W0 be the set of allirredu
ible partition words, i. e., words that have no proper (non-empty) partitionsub-words.De�nition B.1 ([BS96℄). We say that p :W ! R is pyramidally multipli
ative, iffor every w 2 W of the form w = a:::
w1d::z, we have p(w) = p(w1)p(a:::
d::z).Lemma B.1 ([BS96, page 152℄). Suppose that the moments are given bym2n = Xw2W;jwj=2np(w);(B.1)and m2n�1 = 0, n = 1; 2; : : : . If the weights p(w) are pyramidally multipli
ative,then the free 
umulants are k2n = Xw2W0;jwj=2n p(w):Proposition B.2. A symmetri
 measure 
M with the even moments given by (3.1)is given by the free 
onvolution 
M = 
0 � 
1.
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M , 
0, and 
1. If w = ::w1:: thenh(w) = h(w1) + h(w nw1), so the Markov weights pM (w) := 2h(w) are pyramidallymultipli
ative. It is well known that the moments of the normal distribution aregiven by (B.1) with p1(w) = 1, whi
h is (trivially) multipli
ative. The momentsof the semi-
ir
le distribution are given by (B.1) with p0(w) = 1 for the so 
allednon-
rossing words, and p0(w) = 0 otherwise. (A partition word is non-
rossing, ifit 
an be redu
ed to the empty word by removing pairs of 
onse
utive double lettersxx, one at a time.) It is well known that this weight is pyramidally multipli
ative,too.We now use Lemma B.1 to 
ompare the free 
umulants of the semi-
ir
le, normaland Markov distributions. Let w 2 W0. If jwj = 2 then pM (w) = 2, and otherwisepM (w) = 20 = 1 as an irredu
ible word has no proper sub-words, and hen
e noen
apsulated sub-words. Thus k2(
M ) = 2, and for n � 2k2n(
M ) = #fw 2 W0; jwj = 2ng:If jwj = 2 then p0(aa) = 1, and otherwise p0(w) = 0 as an irredu
ible word oflength 4 or more 
annot be non-
rossing. Thus k2(
0) = 1, and for n � 2k2n(
0) = 0:From p1(w) = 1 we get k2n(
1) = #fw 2 W0; jwj = 2ngfor n � 1; in parti
ular, k2(
1) = 1. Thus, for n � 1k2n(
M ) = k2n(
0) + k2n(
1);whi
h proves that 
M = 
0 � 
1.B.2. Even moments. The purpose of this se
tion is to provide a 
ombinatorialproof of the 
onvergen
e of even moments of the measure IE�̂(Mn=pn), when theo�-diagonal entries ofMn are bounded 
entered random variables of unit varian
e.By Proposition 4.10 without loss of generality we may assume that the sum in (4.17)is taken over all partition words w = a1a2 : : : a2k, i.e. words of length 2k whi
h
onsist of pairs of letters, and over all 
ir
uit-representations of these letters a1 �a2 � � � � � a2k � a1 in �n. To put it di�erently, for a path a1 � a2 � � � � � a2k � a1in �n, we de�ne its word w by w[i℄ = w[j℄ when ai = aj , 0 � i < j � jwj, withthe letters entering the expression in alphabeti
 order. Note that IEQrj=1 Xaj = 1for ea
h of these a1a2 : : : ar. Hen
e, the main 
ontribution term to the limit of the2k-th moment of IE(�̂(Mn=pn)) 
omes from the sum over the partition words w ofemn(w) = 1nk+1 X 2kYj=1 taj ;aj+1 ;(B.2)where the sum in (B.2) is taken over the setf(a1; : : : ; a2k) 2 �2kn : a1 � a2 � � � � � a2k � a1; [a1 : : : a2k℄ = wg:The main task of this se
tion is to identify the limit of emn(w) by proving thefollowing proposition.Proposition B.3. For any partition word w, we have that emn(w) ! 2h(w) asn!1, where h(�) is given by De�nition 3.1.In view of Proposition 4.10, an immediate 
onsequen
e of Proposition B.3 is:



32 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGCorollary B.4. Suppose fXij ; j > i � 1g are bounded i.i.d. random variablessu
h that IE(X) = 0 and IE(X2) = 1. Then, for any k 2 N,limn!1 1nk+1 IEtr(M2kn ) = Xw:jwj=2k 2h(w):We devote the rest of this se
tion to 
ombinatorial lemmas and the proof ofProposition B.3. To this end, note that if a sequen
e a1; : : : ; a2k 2 �n 
onsists ofk di�erent verti
es with the non-empty interse
tions aj \ aj+1, j = 1; : : : ; 2k, thenwe have # (a1 [ a2 [ � � � [ a2k) � k + 1.De�nition B.2. We will say that a1 � � � � � a2k � a1 is a typi
al 
ir
uit, if# (a1 [ a2 [ � � � [ a2k) = k + 1.Sin
e the non-typi
al 
ir
uits satisfy # (a1 [ a2 [ � � � [ a2k) � k, and there areat most (2n)k possible 
hoi
es for k di�erent elements in the sum a1[a2[� � �[a2k,trivially, we haveLemma B.5. For every partition word w there are at most Cnk non-typi
al 
ir-
uits.So it is 
lear that the dominant 
ontribution in (B.2) 
omes from the typi
al
ir
uits. It turns out that these 
ir
uits are in the one-to-one 
orresponden
e withthe 
ir
uits on a sub-latti
e of Z2. Denote by e�n the n�n square with the diagonalremoved, e�n = f(i; j) : 1 � i; j � n; i 6= jg;and equip e�n with the graph stru
ture by de�ning its edges as the pairs of points(~a;~b) su
h that either the �rst or the se
ond 
oordinates of ~a;~b 
oin
ide; that is, if~a = (xa; ya) and ~b = (xb; yb) then we will write ~a � ~b if either xa = xb or ya = yb.
1 2 3sss sss sss sss~a1~a2~a3 ~a4~a5 ~a6 -

6j
iFigure 1. A sample 
ir
uit ~a1 � � � � � ~a6 in e�4 with turnsat every vertex. For ease of drawing, this 
ir
uit 
orresponds to anon-partition word w = ab
def . Sample mat
hed 
ir
uits of length12 on these verti
es are ~a1 � ~a1 � � � � ~a6 � ~a6 (w = aabb

ddeeff ,no turns!), or ~a1 � � � � � ~a6 � ~a1 � � � � � ~a6 (w = ab
defab
def ,with turns at every vertex).The natural graph homomorphism ' : e�n ! �n is given by '(i; j) = fi; jg 2 �n.De�nition B.3. We will say that a 
ir
uit ~a1 � � � � � ~a2k � ~a1 in e�n is a liftingof a �n-
ir
uit a1 � � � � � a2k � a1 , if the following two 
onditions hold:



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 33(i) '(~aj) = aj for j = 1; : : : ; 2k.(ii) If ai = aj then ~ai = ~aj .Noti
e that although every vertex of �n 
an be lifted in two di�erent ways,
ondition (ii) ensures that the lifting of a 
ir
uit is uniquely de�ned by the mappingof the k distin
t verti
es a1; a�1 ; : : : ; a�k of the 
ir
uit a1 � � � � � a2k � a1 to e�n.De�nition B.4. We will say that a path ~a1 � : : : ~aj�1 � ~aj � ~aj+1 � � � � � ~a2k ine�n turns at vertex ~aj if ~aj�1 6= ~aj 6= ~aj+1, and the edges (~aj�1; ~aj) and (~aj ; ~aj+1)are perpendi
ular.We will say that a path a1 � a2 � � � � � as�1 � as � as+1 � � � � � a2k in �nturns at vertex as, if as�1 \ as \ as+1 = ;.Proposition B.6. Let w be a �xed partition word.(i) Every typi
al 
ir
uit based on w 
an be lifted to a 
ir
uit in e�.(ii) The lifting is a one-to-two mapping, and be
omes unique on
e we spe
ify the�rst vertex ~a1 as a point in the lower triangle f(i; j) : 1 � j < i � ng � e�n.(iii) The lifted paths may turn only at the verti
es that 
orrespond to the pairsof letters of w whi
h en
apsulate a 
omplete partition sub-word w0 of length2 � jw0j � 2k � 2.We will need the following simple 
ounting result.Lemma B.7. Suppose that a1 � a2 � : : : a2k � a1 is a typi
al 
ir
uit. Supposethat the set faj+1; : : : ; aj+rg of r 
onse
utive verti
es of the 
ir
uit 
onsists of sdistin
t verti
es. Then#(aj+1 [ aj+2 [ � � � [ aj+r) = s+ 1:(B.3)Proof. Suppose that (B.3) fails for some j; r. Let r be the length of the longestsequen
e that fails (B.3). (Here we use the 
ir
ular symmetry, i. e., we identifya2k+1 = a1; a2k+2 = a2; : : : .) Sin
e the full 
ir
uit is typi
al, we must have r < 2k.By 
ir
ular symmetry, without loss of generality we may assume that j = 0 so that# (a1 [ aj+2 [ � � � [ ar) � s. Sin
e r is maximal, ar+1 must be a new vertex, orelse we 
ould have in
luded it in the sequen
e without a�e
ting the union. But# (a1 [ a2 [ � � � [ ar+1) = # (a1 [ a2 [ � � � [ ar) + 2�#((a1 [ a2 [ � � � [ ar) \ ar+1) � s+ 2� 1 � s+ 1:Sin
e there are s+1 distin
t verti
es in the sequen
e a1; a2; : : : ar+1, this shows that(B.3) fails for a sequen
e of length r + 1, 
ontradi
ting the maximality of r.Noti
e sin
e all verti
es are mat
hed, by 
ir
ular symmetry, if a 
ir
uit of length2k turns at vertex as and i = as�1 \ as, then there is t > s+ 1 su
h that i 2 at.We now show that the �rst re-o

urren
e of su
h i is at the repeated vertex.Lemma B.8. If a typi
al 
ir
uit a1 � a2 � : : : a2k � a1 turns at vertex as = fi; jg,i = as�1 \ as, and t is the �rst vertex after as+1 that 
ontains i, then at = fi; jg.Proof. Suppose at = fi; lg with l 6= j. Let r be the number of distin
t verti
es inthe sequen
e as+1; as+2; : : : ; at. By Lemma B.7, we have# (as+1 [ as+2 [ � � � [ at) = r + 1:
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e as 3 i, and the remaining verti
es before at do not 
ontain i, thereforevertex as di�ers from as+1; : : : at�1. Sin
e l 6= j, we get as 6= at. So the sequen
eas; as+1; as+2; : : : ; at has r + 1 distin
t verti
es. By Lemma B.7# (as [ as+1 [ as+2 [ � � � [ at) = r + 2:But # (as [ as+1 [ as+2 [ � � � [ at)= # (as+1 [ as+2 [ � � � [ at) + 2�#(as \ (as+1 [ as+2 [ � � � [ at)) :Noti
ing that as\ (at[as+1) = fi; jg, we see that # (as [ as+1 [ as+2 [ � � � [ at) =r + 1 < r + 2, a 
ontradi
tion. This shows that at = as.Remark B.1. Suppose that a 
ir
uit turns at as = fi; jg and as�1 \ as = fig.Let at be the se
ond o

urren
e of the vertex fi; jg. From Lemma B.8 it follows by
ir
ular symmetry that, starting the 
ir
uit at as, the 
ir
uit 
an be written asfi,jg � fj; lg � � � � � fi,jg � fi;mg � � � � � fi; ng;and i does not appear in any of the verti
es between the two boxed o

urren
esof as and at. Likewise, reversing the roles of j; i we see that j does not appearoutside of the sequen
e en
apsulated between the 
onse
utive appearan
es of thevertex fi; jg 2 �n. Hen
e the se
ond appearan
e of fi; jg must be a turn, too.In fa
t, these 
onse
utive appearan
es of a turn-vertex en
apsulate a 
ompletelymat
hed sub-
ir
uit, and the 
orresponding word has an en
apsulated partitionsub-word.Lemma B.9. If a typi
al 
ir
uit a1 � a2 � : : : a2m � a1 turns at vertex as = fi; jg,i = as�1 \ as, and at = fi; jg is the se
ond o

urren
e of the same vertex, then thesegment as+1 � as+2 � � � � � at�1 is a typi
al 
ir
uit with verti
es mat
hed withinthis sequen
es.Proof. Of 
ourse the turn 
ondition requires at 6= as+1 so that t > s + 1, so thereis at least one vertex between as and at.We �rst prove that all the verti
es of the sequen
e as+1; as+2; : : : ; at�1 are pairedwithin this sub-sequen
e.Suppose that this is not true. Then there is at least one vertex that is not pairedwithin the en
apsulated subsequen
e. Then this vertex must be mat
hed outsideof the en
apsulated sequen
e. Let ar1 = fm;ng = ar2 , where 1 � s < r1 < t <r2 � 2k be su
h pair at maximal distan
e r2� r1 apart. Without loss of generality,we may assume that ar1�1 \ ar1 = fmg.Sin
e ar2 is outside of the segment asas+1 : : : at, by Remark B.1 both m 6= j andn 6= j. Therefore, the 
ir
uit must turn at some vertex fm; lg positioned betweenas+1 and ar1 . Suppose that the turning vertex fm; lg 6= fm;ng. Then by RemarkB.1, all m's must be en
losed between the two o

urren
es of the vertex fm; lg.In parti
ular, the se
ond o

urren
e must be to the right of ar2 , 
reating a moredistant pair of verti
es whi
h are not paired within the en
apsulated subsequen
e.By maximality of ar1 ; ar2 , there 
annot be a turn between as and ar1 . This meansthat as\as+1\� � �\ar1 = fjg, and hen
e eitherm or nmust equal j, a 
ontradi
tion.Thus all the verti
es of as+1 � as+2 � � � � � at�1 are paired within this sub-sequen
e.Now we verify the 
ir
uit 
ondition. Sin
e t > s � 1, by the previous part ofthe proof, t � 1 > s + 1. Sin
e the 
ir
uit turns at both verti
es as; at and the



RANDOM HANKEL, MARKOV AND TOEPLITZ MATRICES 35element j does not appear outside the segment as � as+1 � � � � � at, we must haveas \ as+1 = fjg and at�1 \ at = fjg. Thus as+1 \ at�1 = fjg, showing that the
ir
uit 
ondition holds for the segment as+1 � as+2 � � � � � at�1.Sin
e by Lemma B.7, every sub-
ir
uit of a typi
al 
ir
uit, it typi
al, this endsthe proof.Proof of Proposition B.6. We prove (i)-(iii) simultaneously by indu
tion on thenumber of letters k in word w. Clearly, all 
ir
uits 
orresponding to w = aa
an be lifted in exa
tly two ways, and have no turns.Given a typi
al 
ir
uit a1 � a2 � � � � � a2k � a1, one of the following three 
asesmust o

ur:(i) a1 \ a2 \ � � � \ a2k 6= ;,(ii) the 
ir
uit turns at some vertex,(iii) a1 \ a2 \ � � � \ a2k = ; but there are no turns.In the �rst 
ase, assuming that the interse
tion is fig, we 
an lift a1 to one of thetwo points ~a1 = (i; �) or ~a1 = (�; i) in e�n. Then we lift the remaining verti
es aseither a horizontal (�; i) or a verti
al (i; �) 
ir
uit in e�n.In the se
ond 
ase, denoting by as the �rst turn and by at the se
ond o

urren
eof this vertex, by Lemma B.9 as+1 � � � � � at�1 is a typi
al non-zero 
ir
uit oflength at most jwj � 2. By indu
tion assumption, this 
ir
uit 
an be lifted to~as+1 � � � � � ~at�1 in e�n in two ways. The remaining letters also form a 
ir
uit,whi
h by 
ir
ular symmetry we 
an write as at � at+1 � � � � � ar�1 � as = at.This 
ir
uit 
an be lifted to e�n in two ways by swapping the 
oordinates of at.One of this two swaps will mat
h ~as with ~as+1, lifting the entire 
ir
uit. The lifted
ir
uit will turn at ~as, and the letters as : : : at en
apsulate a partition sub-wordas+1 : : : at�1 of positive length.In the third 
ase, let s be the largest value su
h that a1\a2\� � �\as 6= ;. Writea1\a2\� � �\as = fig and as = fi; jg. Clearly, 1 < s < 2k. Then as�1\as\as+1 = ;.Sin
e as is not a turn vertex, we must have as�1 = as and as \ as+1 = fjg. By
ir
ular symmetry, we may assume that s = 2. Then the sequen
e a3; : : : ; a2k hask � 1 distin
t verti
es and by Lemma B.7 #(a3 [ � � � [ a2k) = k, and#(a2 [ � � � [ a2k) = 2 +#(a3 [ � � � [ a2k)�#(a2 \ (a3 [ � � � [ a2k))� k + 2�#(a2 \ (a3 [ a2k)) :However, a2 \ (a3 [ a2k) = (a2 \ a3)[ (a2 \ a2k) = fig[ fjg, so #(a2 [ � � � [ a2k) =k < k + 1. Thus the third 
ase 
annot o

ur, as a1 � a2 � � � � � a2k � a1 is not atypi
al 
ir
uit.Proof of Proposition B.3. Let w = a1a2 : : : a2k be a word with m0 en
apsulatedsub-words of lengths zero or 2k � 2; thus m0 is the number of repeated pairs of
onse
utive letters aa when the letters of w are arranged on the 
ir
le. Let m1 bethe number of en
apsulated words of positive length (maxed at 2k � 4), so thath(w) = m0 +m1.By Lemma B.5 to �nd the asymptoti
 of emn(w) we may restri
t the sum under(B.2) to typi
al 
ir
uits.Noti
e that if a1 � : : : a2k � a1 is a typi
al 
ir
uit, then the 
orrespondingprodu
t Q taj ;aj+1 is positive. Indeed, after lifting it to ~a1 � : : : ~a2k � ~a1 it is easyto see that ta;b > 0 when the edge (~a;~b) 
rosses the diagonal line y = x in e�n. Sin
ethe lifted 
ir
uit ~a1 � : : : ~a2k � ~a1 
an be drawn as a 
ontinuous 
urve, it 
rosses



36 W LODZIMIERZ BRYC, AMIR DEMBO, AND TIEFENG JIANGthe line y = x an even number of times. Sin
e for the edges in �n we have ta;b 6= 0,there remains an even number of fa
tors ta;b < 0, and their produ
t is positive.This shows that for a typi
al 
ir
uit a1 � : : : a2k � a1, the produ
t in (B.2) is2kYj=1 taj ;aj+1 = 2m0 :The number of the typi
al 
ir
uits based on the partition word w is easy toevaluate by 
ounting their liftings to e�n. Let a1 � : : : a2k � a1 be a 
ir
uit 
orre-sponding to w, so that ai = aj i� w[i℄ = w[j℄. We pro
eed by lifting one vertex ofthe 
ir
uit at a time. There are n(n� 1)=2 possible 
hoi
es for the initial vertex inthe lower triangle i > j, and there are two possible dire
tions to follow to any newvertex: either horizontal or verti
al. On
e the horizontal or verti
al dire
tion was
hosen, we 
an keep �lling in the 
onse
utive edges as follows. There is 1 
hoi
e forthe se
ond o

urren
e of a vertex already on the path. If a new vertex ar is notyet a repeat of a vertex already on the previous portion of the path, and ar is notthe beginning of an en
apsulated word, then by Lemma B.8 its lifting must followthe previous dire
tion. So there are between n � k and n 
hoi
es for the \free"
omponent of ~ar. If ar is the �rst vertex of an en
apsulated sub-word, and r > 1,then the 
ir
uit is allowed to turn. So there are between 2n � 2k and 2n 
hoi
esfor its lifting ~ar to 
ontinue either as a verti
al or a horizontal path (Note that weex
lude a2 from this 
ount, sin
e we already 
ounted the fa
tor of 2 for the initial
hoi
e of an edge from ~a1 to ~a2, and there are no additional possibilities if a2 is aturn.)Sin
e we have k � 1 new verti
es to add to the 
ir
uit, the total number N ofsu
h 
ir
uits is between2n(n� 1)2 (2n� 2k)m1(n� k)k�1�m1 � N � 2n(n� 1)2 (2n)m1nk�1�m1 :Thus �1� kn�k�1 2m0+m1 � emn(w) � 2m0+m1 ;and emn(w)! 2m0+m1 = 2h(w).Appendix C. Cal
ulation of low order momentsThe following tables list partition words, 
orresponding solids, and their volumes.For Hankel matrix, we needed 8-th moments to establish that the distribution isnot unimodal. Table 1. Toeplitz m4(
T ) = 8=3Word Solid Volumeabba I3 1abab U0 � U1 + U2 2 I 2/3aabb I3 1
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T ) = 11Word Solid Volumeab

ba I4 1ab

ab U0 � U1 + U2 2 I 2/3ab
b
a U1 � U2 + U3 2 I 2/3ab
ba
 � U1 � U2 + U3 2 IU0 � U2 + U3 2 I � 1/2ab
a
b � U0 � U1 + U3 2 IU0 � U1 + U2 2 I � 1/2ab
ab
 � U0 � U1 + U3 2 IU0 � U2 + U3 2 I � 1/2abb

a I4 1abb
a
 U0 � U1 + U3 2 I 2/3abba

 I4 1aba

b U0 � U1 + U2 2 I 2/3aba
b
 � U0 � U1 + U2 2 IU1 � U2 + U3 2 I � 1/2abab

 U0 � U1 + U2 2 I 2/3aab

b I4 1aab
b
 U0 � U2 + U3 2 I 2/3aabb

 I4 1Table 3. Hankel m4(
H ) = 2Word Volumeabba 1abab 0aabb 1Table 4. Hankel m6(
H) = 11=2Word Solid Volumeaabb

 I4 1abba

 I4 1abb

a I4 1ab
ab
 � U0 + U1 � U3 2 I�U0 + U2 + U3 2 I 1/2aab

b I4 1ab

ba I4 1
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H) = 281=15Word Solid Volumeaabb

dd: I5 1abba

dd: I5 1abb

add: I5 1abb

dda: I5 1ab
ab
dd: � U0 + U1 � U3 2 IU2 � U0 + U3 2 I 1/2aab

bdd: I5 1ab

badd: I5 1ab

bdda: I5 1ab

dabd: � U0 + U1 � U4 2 I�U0 + U2 + U4 2 I 1/2aab

ddb: I5 1ab

ddba: I5 1abb
da
d: � U0 + U1 � U4 2 I�U0 + U3 + U4 2 I � 1/2aab
db
d: � U0 + U2 � U4 2 I�U0 + U3 + U4 2 I � 1/2ab
db
da: � U1 + U2 � U4 2 I�U1 + U3 + U4 2 I � 1/2ab
ad
bd: 8<: U0 + U1 � U3 2 IU2 + U3 � U4 2 IU1 � U3 + U4 2 I 9=; 11/30aabb
dd
: I5 1abba
dd
: I5 1abb
dd
a: I5 1ab
abdd
: � U0 + U1 � U3 2 I�U0 + U2 + U3 2 II � 1/2ab
dbad
: 8<: U1 + U2 � U4 2 IU0 � U2 + U4 2 I�U0 + U2 + U3 2 I 9=; 11/30ab
addb
: � U0 + U1 � U3 2 I�U0 + U2 + U3 2 I � 1/2ab
ddab
: � U0 + U1 � U3 2 I�U0 + U2 + U3 2 I � 1/2aab
dd
b: I5 1ab
dd
ba: I5 1
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Figure 2. Histogram of the empiri
al distribution �̂(Hn=pn) ofeigenvalues of 10 realizations of a 500 � 500 Hankel matrix withstandardized triangular U � U 0 entries.
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Figure 3. Histogram of the empiri
al distribution �̂(Tn=pn) ofeigenvalues of 10 realizations of a 500� 500 Toeplitz matrix withstandardized triangular U � U 0 entries.
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Figure 4. Histogram of the empiri
al distribution �̂(Mn=pn)of eigenvalues of 10 realizations of a 500�500 Markov matrix withstandardized triangular U � U 0 entries.
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