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Abstract— Singular Value Decomposition (SVD) is a powerful
tool for multivariate analysis. However, independent computa-
tion of the SVD for each sample taken from a bandlimited ma-
trix random process will result in singular value sample paths
whose tangled evolution is not consistent with the structure of
the underlying random process. The solution to this problem
is developed as follows: (i) a SVD with relaxed identification
conditions is proposed, (ii) an approach is formulated for
computing the SVD’s of two adjacent matrices in the sample
path with the objective of maximizing the correlation between
corresponding singular vectors of the two matrices, and (iii)
an efficient algorithm is given for untangling the singular value
sample paths. The algorithm gives a unique solution conditioned
on the seed matrix’s SVD. Its effectiveness is demonstrated
on bandlimited Gaussian random-matrix sample paths. Results
are shown to be consistent with those predicted by random-
matrix theory. A primary application of the algorithm is
in multiple-antenna radio systems. The benefit promised by
using SVD untangling in these systems is that the fading
rate of the channel’s SVD factors is greatly reduced so that
the performance of channel estimation, channel feedback and
channel prediction can be increased.

I. INTRODUCTION

Many observable processes in the natural world give rise

to matrix random process. Examples can be found in multiple

antenna radio communications [1] [2], gene expression [3]

[4], and kinematics [5] among others. If these random pro-

cess are bandlimited, then they may be sampled at uniform

intervals and represented as discrete sample paths without

loss of information. The Singular Value Decomposition

(SVD) is a powerful tool for analyzing the multidimensional

observations from these matrix random processes. However,

computation of the SVD for each matrix-valued sample of a

bandlimited random process results in singular value sample

paths whose evolution is not consistent with the structure

of the underlying random process. This is because the

SVD computation is applied independently from sample to

sample, during which strict phase and ordering identification

conditions are imposed on the singular values.

This work addresses the problem of how to compute

the SVD’s of a random matrix sample path in a way that

preserves the covariance of the underlying random process.

The solution to this problem is developed as follows: (i) a

SVD with relaxed identification conditions is proposed, (ii)
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an approach is formulated for computing the SVD’s of two

adjacent matrices in the sample path with the objective of

maximizing the correlation between corresponding singular

vectors of the two matrices, and (iii) an efficient algorithm

is given for untangling the singular value sample paths.

Random matrix processes of the type arising in Multiple

Input Multiple Output (MIMO) radio channels will be stud-

ied as an example throughout this paper. This is a useful case

to study because it lends an intuitive physical interpretation

of the SVD and because it is a relevant research area. Spatial

multiplexing of information across antennas in an array

allows MIMO transceivers to communicate information over

independent parallel channels. The SVD of a MIMO channel

matrix is used to provide the transmitter and receiver with the

necessary beamforming coefficients for spatial multiplexing

[6].

The remainder of the work is organized as follows. In

Section II, the traditional definition of the SVD is revisited

and MIMO beamforming is introduced. Section III details

the approach for computing the SVD’s of two adjacent ma-

trices and the untangling algorithm is presented. Section IV

demonstrates the effectiveness of the algorithm by presenting

results from the untangling of a MIMO Gaussian random

process. A summary of the major contributions is given in

Section V.

II. SVD AND MATRIX SAMPLE PATHS

In this section, the SVD will be reformulated to allow

greater freedom when computing the factors of a random

matrix. Next, it will be shown how the SVD of a MIMO

channel matrix is used to form a spatial filter that is matched

to the radio propagation paths between transmitter and re-

ceiver arrays. The problem of tangled sample paths will then

be introduced.

A. The SVD Revisited

Consider the set
{

H(k) ∈ CM×N
∣∣ k = 1, . . . , K

}
. Each

H(k) admits a SVD according to,

H(k) = U (k)Σ(k)V (k)H

, (1)

where U (k) ∈ CM×M and V (k) ∈ CN×N are unitary matri-

ces whose columns,
{
~u

(k)
1 , . . . , ~u

(k)
M

}
and

{
~v

(k)
1 , . . . , ~v

(k)
N

}
,

are the left and right singular vectors of H(k). The matrix,

Σ(k) ∈ RM×N , is populated by the singular values of

H(k),
{
σ

(k)
1 , . . . , σ

(k)
min(M,N)

}
, along the diagonal and zeros

elsewhere.



Two strict identification conditions are imposed on the

SVD:

i. The singular values are real and non-negative.

ii. The singular values are ordered along the diagonal as,

σ
(k)
1 ≥ σ

(k)
2 ≥ · · · ≥ σ

(k)
min(M,N) (2)

and the singular vectors are ordered accordingly.

These strict identification conditions may be relaxed as

follows:

(a) It is permissible to multiply ~u
(k)
i by exp

(
jθ

(k)
U,i

)
and

~v
(k)
i by exp

(
jθ

(k)
V,i

)
without violating (1) so long as

σ
(k)
i is multiplied by exp

(
−j

(
θ
(k)
U,i + θ

(k)
V,i

))
.

(b) The singular values may be permuted on the diagonal

of Σ(k) without violating (1) so long as the columns

of U (k) and V (k) are permuted accordingly.

In what follows, the case of square matrices (M = N) may

be considered without loss of generality (the generalization

to rectangular matrices is easily accommodated). Points (a)

and (b) can be incorporated in the SVD definition. Let

P (k) ∈ CN×N be a unitary permutation matrix such that post

multiplication of a matrix by P (k) causes the reordering of

the columns of the matrix. Let Θ(k) ∈ C
N×N be a diagonal

unitary matrix given by,

Θ(k) = diag
[
ejθ

(k)
1 ejθ

(k)
2 · · · ejθ

(k)
N

]
, (3)

where θ
(k)
i has its domain on [0, 2π). By reforming the SVD

factors as,

U
(k)
ΘP = U (k)Θ

(k)
U P (k),

Σ
(k)
ΘP = P (k)H

Θ
(k)H

U Σ(k)Θ
(k)
V P (k),

V
(k)
ΘP = V (k)Θ

(k)
V P (k), (4)

the SVD becomes,

H(k) = U
(k)
ΘP Σ

(k)
ΘP V

(k)H

ΘP . (5)

There are therefore an infinite number of valid decomposi-

tions for each H(k).

B. SVD Beamforming

The noise free MIMO system is modeled as,

~y (k) = H(k)~x (k)

=
(
U (k)Σ(k)V (k)H

)
~x (k)

(6)

where (~x, ~y) ∈ CN×1 are the transmitted and received signal

vectors respectively. A treatment of the noisy case is beyond

the scope of this paper and is not necessary for conveying the

ideas presented hereafter. A MIMO channel can be resolved

into a set of parallel independent channels if the transmitted

symbols are spatially multiplexed and the received symbols

are spatially demultiplexed as follows [1],

~y (k) = U (k)H

H(k)
(
V (k)~x (k)

)

= Σ(k)~x (k) . (7)

Fig. 1. Array beam-pairs associated with the two dominant singular
channels of a 10 × 10 MIMO channel. Beam gain-patterns are plotted on
a linear scale.

Furthermore, spectral efficiency is maximized by waterfilling

transmit power across the elements of ~x (k) according the

channel’s singular values. Such a scheme is accomplished

by computing the SVD of H(k) at the receiver and feeding

back Σ(k) and V (k) to the transmitter before performing

the waterfilled mux/demux communication of ~x (k). The

feedback rate must be fast enough so that this can be

accomplished before the channel has changed significantly.

On the other hand, feedback requires use of the channel

(overhead) which results in a loss of spectral efficiency. The

optimal feedback rate is therefore a function of the singular

values’ temporal coherence and feedback overhead. A similar

situation arises in beamforming for MIMO OFDM systems

where the singular values of each subcarrier channel vary

across frequency and optimal pilot density is a function of

coherence bandwidth and pilot overhead. The mux/demux

operations have an important beamforming interpretation [6].

Consider the simulated MIMO propagation scenario shown

in Fig. (1). Two circular arrays with ten elements and 1λ radii

are set up in a simple Line of Sight (LoS) scenario with four

scatterers. Propagation paths are discovered by raytracing

between each pair of transmit and receive antenna. A simple

path loss model is then applied to each path and the MIMO

channel matrix and its SVD are computed. Pairs of left and

right singular vectors are then used as weighting vectors

to beamform at the transmitter and receiver [7]. The beam

patterns associated with the two strongest singular values are

shown. The first beam-pair focuses energy along the LoS

path while the second beam-pair uses the scattering paths.

The remaining beam-pair patterns (not shown) are unique

and use the available multipath to provide other independent

channels. Thus, the SVD relates the MIMO channel matrix

to the underlying physical propagation environment by way

of the spatial filters formed by the singular vector pairs. It is

important to recognize that a common phase rotation of the

elements of a singular vector does not alter the associated

beam’s gain-pattern. Thus, even though there are infinite

valid factorizations of a MIMO channel according to (5),

there is a unique set of beam gain-patterns for a given



propagation scenario.

C. Tangled Sample Paths

Consider a series, H(1...K) =
{
H(1), . . . , H(K)

}
, that

is a sample path taken from a wide sense stationary and

bandlimited random matrix process at a rate satisfying the

Nyquist-Shannon sampling criteria. Such a sample path

arises when sampling a MIMO radio channel across time

or frequency. The SVD may be computed for each H(k) to

yield a sample path decomposition,

H(1...K) −→ U (1...K), Σ(1...K), V (1...K) (8)

where the sample paths of the SVD factors are,

U (1...K) =
{

U (1), . . . , U (K)
}

,

Σ(1...K) =
{

Σ(1), . . . , Σ(K)
}

,

V (1...K) =
{

V (1), . . . , V (K)
}

, (9)

and sample paths of the singular channels are denoted by the

triplet,

(~u, σ,~v)(1...K)
i , for i = 1, . . . , min (M, N) . (10)

A SISO channel sample path, h
(1...K)
ij , has a smooth evo-

lution that is governed by the covariance of the underlying

random process [8]. This random process arises from the

physical process of multipath superposition. Since both SISO

channels and MIMO singular channels arise from similar

physical processes, it is expected that the singular channel

sample paths should have a smooth evolution. However,

when the strict identification conditions, (i) and (ii), are

imposed independently from one sample to the next when

computing (8), the resulting singular channel sample paths

will be a tangled ordering of the natural singular channel

sample paths. This will be made clear by example in

subsequent sections. The tangled singular channel sample

paths will be seen to not have a smooth evolution and will

have an auto-covariance and a cross-covariance that are not

consistent with the underlying random process. This tangling

is a serious problem for closed loop MIMO communications

because the feedback rate (pilot density) needed for channel

tracking (channel estimation) is greater than what is inher-

ently necessary. Consequently, the system’s performance is

diminished.

III. UNTANGLING SINGULAR CHANNELS

A solution to the problem of tangled singular channel

sample paths can be formulated by using the SVD with

relaxed identification conditions to compute singular channel

sample paths whose covariance is consistent with that of

the underlying random process. The SVD formulation in (5)

requires a search over the space of permutation and rotation

matrices for the factorization that is most consistent with

those of the adjacent matrices’ SVDs. Since it is the singular

vectors that contain information about the propagation mul-

tipath, they will play the central role in finding the optimal

factorization. As the search proceeds from one sample to the

next, the singular channel sample paths will untangle from

the muddled sample paths computed with the strict SVD

identification conditions.

A. Correlation Recovery Strategy

A reference matrix, H(R), and a target matrix, H(k), are

chosen from the sample path, H(1...K). The assignment

H(R) = H(k−1) may be made without loss of gener-

ality. The SVDs of H(R) and H(k) are then computed

subject to the strict identification conditions. The triplet(
U (R), Σ(R), V (R)

)
will serve as the template to which the

triplet
(
U (k), Σ(k), V (k)

)
is matched as closely as possible

using permutations and phase rotations according to (4). Let

the difference matrices between the singular vectors of the

H(R) and H(k) be,

D
(k)
U = U (R) − U

(k)
ΘP , D

(k)
V = V (R) − VΘP (11)

The matching can be formulated as a search over all possible

triplets
(
Θ

(k)
U , Θ

(k)
V , P (k)

)
with the objective of minimizing

the sum of squared differences,

min
P (k) , Θ

(k)
U

,Θ
(k)
V

tr
[
D

(k)H

U D
(k)
U

]
+ tr

[
D

(k)H

V D
(k)
V

]
(12)

where the sum of squared differences can be expanded as,

tr
[
D

(R)H

U D
(k)
U

]
+ tr

[
D

(R)H

U D
(k)
U

]

= tr
[
U (R)H

U (R)
]
− 2Re

{
tr

[
U (R)H

U
(k)
ΘP

]}

+ tr
[
U

(k)H

ΘP U
(k)
ΘP

]
+ tr

[
V (R)H

V (R)
]

− 2Re
{

tr
[
V (R)H

V
(k)
ΘP

]}
+ tr

[
V

(k)H

ΘP V
(k)
ΘP

]
.

(13)

Since terms one, three, four and six on the right side of (13)

are not affected by
(
Θ

(k)
U , Θ

(k)
V , P (k)

)
, minimizing the sum

of squared differences is equivalent to maximizing the sum

of singular vector correlations (terms two and five),

max
P (k),Θ

(k)
U

,Θ
(k)
V

Re
{

tr
[
R

(k)
U + R

(k)
V

]}
(14)

where the correlation matrices,

R
(k)
U = U (R)H

UΘP , R
(k)
V = V (R)H

VΘP , (15)

have elements that comprise the set of all possible inner

products of the reference and target singular vectors. The

maximization in (14) implies a search over the infinite

set
{(

Θ
(k)
U , Θ

(k)
V , P (k)

)}
. Fortunately, the global optimum

solution,
(
Θ̂

(k)
U , Θ̂

(k)
V , P̂ (k)

)
, can be found by searching over

a finite set if either P̂ (k) or
(
Θ̂

(k)
U , Θ̂

(k)
V

)
are known. As will

be shown, an elegant search strategy is to find P̂ (k) assuming

that an appropriate
(
Θ̂

(k)
U , Θ̂

(k)
V

)
exists and then to compute(

Θ̂
(k)
U , Θ̂

(k)
V

)
analytically given P̂ (k).

The search for P̂ (k) proceeds as follows. A simple inter-

change columns i and j of U
(k)
ΘP is equivalent to interchang-

ing columns i and j of R
(k)
U (and similarly for V

(k)
ΘP and



R
(k)
V ). Consequently, the measure of improvement in,

Re
{

tr
[
R

(k)
U + R

(k)
V

]}
= Re

{
n∑

i=1

(
r
(k)
ii

)

U
+

(
r
(k)
ii

)

V

}
,

(16)

that results from an interchange of columns i and j is,

∆
(k)
R (i, j) =Re

{(
r
(k)
ij + r

(k)
ji − r

(k)
jj − r

(k)
ii

)

U

+
(
r
(k)
ij + r

(k)
ji − r

(k)
jj − r

(k)
ii

)

V

}
. (17)

Phase rotations of the singular vectors according to (4) by the

appropriate
(
Θ

(k)
U , Θ

(k)
V

)
guarantee that the greatest possible

improvement,

∆
(k)
|R| (i, j) =

(∣∣∣r(k)
ij

∣∣∣ +
∣∣∣r(k)

ji

∣∣∣ −
∣∣∣r(k)

jj

∣∣∣ −
∣∣∣r(k)

ii

∣∣∣
)

U

+
(∣∣∣r(k)

ij

∣∣∣ +
∣∣∣r(k)

ji

∣∣∣ −
∣∣∣r(k)

jj

∣∣∣ −
∣∣∣r(k)

ii

∣∣∣
)

V
, (18)

is achievable, thus permitting the search for P̂ (k) to be

executed by column swaps without jointly searching for Θ̂
(k)
U

and Θ̂
(k)
V . The maximization problem is then,

max
P (k)

tr
[∣∣∣R(k)

U

∣∣∣ +
∣∣∣R(k)

V

∣∣∣
]
. (19)

The search for P̂ (k) can be performed iteratively by column

swaps using (18) as a metric for directing the search. The

details of an efficient algorithm for implementing this search

strategy are given in Section III-B. Once P̂ (k) has been

found, finding the associated
(
Θ̂

(k)
U , Θ̂

(k)
V

)
is simply a matter

of computing the angle between singular vectors of H(R) and

the permuted singular vectors of H(k) according to,

{
θ
(k)
U,i = − arg

(
~u

(R)H

i ~u
(k)
i

)∣∣∣ i = 1, . . . , N
}

, (20)

and likewise for
{
θ
(k)
V,i

}
where arg (·) ≡ Im {ln (·)} yields

the radian angle of a complex scalar. These left and right

phase rotation matrices are then applied to Σ(k) as required

by (5) to compensate for the conjugate phase rotation being

applied to the corresponding singular vectors. The resulting

match of
(
U

(k)
ΘP , V

(k)
ΘP

)
to

(
U (R) , V (R)

)
is optimal in a least

squares sense.

Thus far, the discussion has assumed noise-free sam-

ple paths. The case of an additive noise model, ~y (k) =
H(k)~x (k) + ~n (k), is relevant and can be addressed in part

by using the weighted singular vectors,

Ũ (k) = U (k)
(
Σ(k)

)1/2

, Ṽ (k) = V (k)
(
Σ(k)

)1/2

(21)

in the search for
(
Θ̂

(k)
U , Θ̂

(k)
V , P̂ (k)

)
. This biases the search

in favor of those singular vectors with greatest signal to noise

ratio. This is not all that can be done to counteract the noise.

However, a proper treatment of noisy sample paths is beyond

the scope of this paper.

B. Untangling Algorithm

The algorithm given in Table 1 untangles the singular

channel sample paths from the sample paths computed

with the strict identification conditions. The algorithm’s core

(lines 4-21) is an efficient implementation of the correlation

recovery strategy discussed in Sections III-A. The number

of possible permutations on the singular vector ordering is

N !. However, the core algorithm guarantees that the least

squares solution for P̂ (k) is found in at most N (N − 1)
column swaps. The essential aspects of the core algorithm

are:

i. Column i (pivot column) is swapped with the column

that would result in the maximum improvement to (18),

whenever an improvement is possible.

ii. Each column becomes the pivot column in cyclic order

and the algorithm proceeds iteratively until no further

improvement can be made.

More generally, the core algorithm can be applied to any

problem where the trace of a matrix must be maximized

under column (or row) permutations. The algorithm’s shell

(lines 1-3,22) parses the sample path, H(1...K), using a slid-

ing reference, H(R) = H(k−1). The SVD factors computed

by the core algorithm for each matrix sample are therefore

dependent on the reference seed-matrix’s factorization (line

2). This seed matrix has its SVD computed according to strict

identification conditions on ordering and phase. Any ordering

and phase for the seed reference’s SVD would also suffice.

Whatever the initial order and phase, they determine the

relative ordering and phase-offset of the untangled singular

channel sample paths. As will be discussed in Section IV,

the untangling solution is unique when conditioned on the



seed matrix’s singular value ordering and phases.

The Untangling Algorithm’s performance can be poor if

either of the following two situations arise and are not treated

appropriately. The first situation is that of a matrix with close

singular values. In this case, the SVD algorithm becomes

unstable and slight perturbations of the matrix cause wildly

different decompositions. The second situation (an extreme

case of the first) is that of a matrix with repeated singular

values. In this case, the singular vectors associated with

the repeated singular values are indeterminate and contain

no information. The case of equal singular values is very

unlikely in practical applications where the H(k) are sampled

from a random processes occurring in the physical world.

These two situations may be handled by implementing the

following simple modifications to the Untangling Algorithm:

i. Set a threshold, µ(k), for the tolerable difference be-

tween singular values returned by the SVD algorithm.

For example,

min
(
σ

(k)
i − σ

(k)
i+1

)
< ǫ, i = 1, . . . , N − 1 (22)

where ǫ is a small positive number and σ
(k)
1 ≥ · · · ≥

σ
(k)
N .

ii. If the threshold is violated then attempt a match but

display a warning message and blacklist the offending

matrix so that it cannot be used as a reference.

It is possible, though unlikely, that a tie is computed for

different column swaps’ improvement metrics. This situation

is averted in line 14 by the greater-than logic which causes

the first of the column swaps ties to be used. Even so, a tie

should be treated in a manner similar to the case of repeated

singular values by giving a warning, attempting a match and

blacklisting the offending matrix.

IV. RESULTS

In this section, an example is given to demonstrate the

effectiveness of the Untangling Algorithm in computing

smoothly evolving singular channels from a fading MIMO

radio channel. A comparison is made between tangled and

untangled sample paths. The covariance of the untangled

singular value sample path is compared with those of the

SISO channel sample paths and tangled singular value sam-

ple paths. Joint and marginal distributions of the untangled

singular values are compared with those known from random

matrix theory.

A. MIMO Channel Synthesis

Consider the case of a MIMO radio distortion process

between a fixed transmitter and a mobile receiver. It may

be assumed that the random MIMO distortion process, H ,

is a time varying matrix of i.i.d. zero mean Gaussian random

variables, hij . The temporal auto-covariance of each SISO

channel realized from H may be given by [8],

c
(
h

(t)
ij , h

(t+τ)
ij

)
= J0 (2πfd τ) (23)

where J0 (x) is the Bessel function of the first kind and

fd = v/λc is the maximum Doppler frequency resulting

from a receiver moving with velocity, v, and a carrier

frequency with wavelength, λc. The assumption that the

SISO channels are independent and identically distributed is

justifiable in many communication scenarios. The temporal

auto-covariance given in (23) arises from non-line-of-sight

scenarios with rich multipath propagation. This bandlim-

ited random matrix process may be sampled over time to

yield a sample path, H(1...K). Realizations of h
(1...K)
ij can

readily be generated in computer simulation by a multipath

sum-of-sinusoids model [9]. This model does not generate

MIMO channels directly from antenna array geometries and

a scattering topology as in the case of Fig. 1. However,

array geometries and a scattering topology are associated

with the model’s output by way of the the random variables

used to seed the paths’ phase and arrival angle. For the

analysis that follows, MIMO channel sample paths were

generated according to the sum-of-sinusoids model with

these parameters: 500 paths, fd = 15 Hz, λc = 0.125 m,

and Ts = 3.3 ms.

B. Untangled Sample Paths

Fig. 2(a) shows the singular sample paths for a realization

of H(1...K) where M = N = 3. SVD’s were computed

according to strict identification conditions on ordering and

phase with the result that singular value sample paths form

separate layers. Fig. 2(b) shows the average singular vector

correlation between adjacent samples,

R
(k)

=
1

2N
tr

(
U (R)H

U
(k)
ΘP + V (R)H

V
(k)
ΘP

)
. (24)

The correlation profile indicates that although the singular

vectors of the kth and (k − 1)th
samples are initially corre-

lated, the strict identification conditions soon cause a loss

of correlation. Fig. 3(a) shows the magnitude of the singular

values after applying the Untangling Algorithm to the same

MIMO sample path as was used for Fig. 2(a). Although

the singular values magnitudes have not changed, the traces

that connect them are very different than what they were

before untangling. The singular value sample paths are now

observed to weave. When the traces cross, they do so in

natural smooth transitions. The correlation profile in Fig.

3(b) shows that the untangled singular vectors maintain high

correlation with those of the earlier sample.

An important aspect of the untangling process is that

the singular values are allowed to become complex valued.

Fig. 4 shows the untangled singular value sample paths as

a function of time. These traces reflect a natural smooth

evolution in accordance with the bandlimited underlying

random process.

Furthermore, the untangling solution is unique when

conditioned on the seed matrix’s singular value ordering

and phases. For example, consider the forward untangled

singular value sample path Σ(1,2,...K)
→ generated by parsing

H(1,2,...K) and the reverse untangled singular value sample

path Σ(1,2,...K)
← generated by parsing H(K...,2,1). It was

verified that,

Σ(1,2,...K)
→ = Pr ⊙

(
Σ(K,...,2,1)
← ⊙ Θr

)
⊙ Pr (25)
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Fig. 2. (a) Singular value sample paths of a spatially white 3 × 3 MIMO
channel computed using strict identification conditions on singular value
ordering and phase. (b) Average singular vector correlation between adjacent
samples.
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Fig. 3. (a) Magnitude of the untangled singular value sample paths of a
spatially white 3×3 MIMO channel. (b) Average singular vector correlation
between adjacent samples.
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Fig. 4. Smooth evolution of the untangled singular value sample paths
from a spatially white 3 × 3 MIMO channel.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

 (s)

| 
c

x
x (

 
 )

 |

h
i j

 (SISO)

i
 (raw)

i
 (untangled)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

 (s)

| 
c

x
y
 (

 
 )

 |

h
i j

 (SISO)

i
 (raw)

i
 (untangled)

Fig. 5. Covariance functions computed from a spatially white 3×3 MIMO
channel (a) auto-covariance (b) cross-covariance.

without exception (except for numerical precision errors).

Here Θr is a diagonal unitary matrix that derotates the

singular values in Σ(K)
← so they are real and non-negative,

Pr is the permutation matrix that is then used to perform

the reverse one-to-one mapping of the singular values in

Σ(K)
→ to those in Σ(K)

← and ⊙ represents element-wise matrix

multiplication over the entire sample path. The existence of a

unique solution for a given MIMO sample path is consistent

with the specific underlying physical process giving rise to

that sample path.

C. Sample Path Covariance

Fig. 5 compares the magnitude of the temporal covariance

of a SISO channel sample path, a raw singular value sample

path, and an untangled singular value sample path. These are

computed from 3×3 sample paths of length K = 10 000. In

general, each of the min (M, N) raw singular value sample

paths has a slightly different covariance function whereas the

covariance of each of the untangled singular value sample

path is the same. For simplicity, the covariance shown for

the raw singular values is the mean of all covariances.

Figure 5(a) shows that the SISO channel auto-covariance

matches that expected from (23) and reaches 0.7 at τ =
0.012 s. The auto-covariance for the raw singular value

sample path decays slightly faster than that of the raw

singular channels and reaches 0.7 at τ = 0.006 s. It is

remarkable to observe that the untangled singular channel’s

covariance decays far less rapidly than that of the SISO

channels and reaches 0.7 at τ = 0.035 s. The untangling pro-

cess has ‘slowed down’ the perceived channel dramatically.

This result implies that channel tracking (estimation) can be

done with a lower feedback rate (pilot density) when using

the untangled singular channels instead of the raw MIMO

channels directly. Figure 5(b) compares the magnitude of the

temporal cross-covariance of a SISO channel sample path, a

raw singular value sample path, and an untangled singular

value sample path. As expected, the SISO channel sample

paths are uncorrelated. The tangled nature of the raw singular



value sample paths manifests itself as a non-zero covariance

at lag τ = 0. The fact that the untangled singular value

sample paths have no covariance verifies that the untangling

process has resolved sample paths whose evolutions are

independent of each other.

D. Sample Path Density Functions

Analytic results are known for the distributions of ordered

and unordered eigenvalues of the Wishart matrices [1], [10].

This is relevant to the topic of MIMO singular channels

because W (k) = H(k)H(k)H

is drawn from the Wishart

distributed random process W = HH
H . The eigenvalues

of W (k),
(
λ

(k)
1 , . . . , λ

(k)
M

)
, are simply the magnitude squared

of the singular values of H(k). Given that H(k) ∈ C
M×N ,

the joint density function for the unordered eigenvalues of

W is,

P (λ1, . . . , λM ) =
1

M !
exp

(
−ΣM

i=1λi

) M∏

i=1

λN−M
i

(M − i)! (N − i)!

M∏

i<j

(λi − λj)
2

,

(26)

while the marginal density function of the unordered eigen-

values of W is,

P (λ) =
1

M

M−1∑

i=0

i!

(i + N − M)!

[
LN−M

i (λ)
]2 λM−N

eλ

(27)

where Lk
n (x) is the associated Laguerre polynomial with

Rodrigues representation,

Lk
n (x) =

n∑

m=0

(−1)m
(n + k)!

(n − m)! (k + m)! m!
xm (28)

Fig. 6 shows the joint density function computed from

(26) for N = M = 2. Fig. 7 shows the joint distribution

of the untangled eigenvalues for a realization of H(1...10000)

and computed using a histogram over the same domain as

the function in Fig. 6. The untangled distribution is matches

the theoretic density function and is completely different

from the joint distribution of the ordered eigenvalues (not

shown). It is difficult to show the joint density function

for min (M, N) > 2 but the marginal density function for

these higher order cases can be shown as is done in Fig.

8 for M = 2 and N = 3. Again, there is very good

agreement between the untangled eigenvalue distribution and

the theoretic distribution. It is expected that the untangled

eigenvalues should have distributions agreeing with those

given in (26) and (27) because the untangling operation

recovers the ordering randomness of the underlying i.i.d.

Gaussian process.

V. CONCLUSION

This work has addressed the problem of how to compute

the SVD’s of a random matrix sample path in a way that

preserves the covariance of the underlying random process.

The solution to this problem was developed as follows: (i)
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Fig. 6. Joint density function given by (26) for the unordered eigenvalues
of W where H ∈ C2×2 and H ∼ N (0, I)
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a SVD with relaxed identification conditions was proposed,

(ii) an approach was formulated for computing the SVD’s

of two adjacent matrices in the sample path that maximizes

the correlation between corresponding singular vectors of the

two matrices, and (iii) an efficient algorithm was given for

untangling the singular value sample paths.

The algorithm’s effectiveness was demonstrated on i.i.d.

Gaussian MIMO channels. It was shown that the algorithm

resolves smoothly evolving singular channel sample paths

that are in accord with the stochastic structure of the un-

derlying random process. Furthermore, the algorithm gives

a unique solution conditioned on the seed matrix’s singular

value ordering and phases.

It was shown that the untangling process dramatically

increases the coherence period (or bandwidth) of the singular

channels. A primary application of the algorithm is in MIMO

radio systems. The benefit promised by using SVD untan-

gling in these systems is that the fading rate of the channel’s

SVD factors is greatly reduced so that the performance of

channel estimation, channel feedback and channel prediction

can be increased.

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” AT&T
Bell Labs, Tech. Rep., 1995.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless

Personal Communications, vol. 6, no. 3, pp. 311 – 335, 1998.
[3] O. Alter, P. O. Brown, and D. Botstein, “Singular value decompo-

sition for genome-wide expression data processing and modeling,”
Proceedings of the National Academy of Sciences, vol. 97, no. 18,
p. 1010110106, August 2000.

[4] R. Boscolo, C. Sabatti, J. C. Liao, and V. P. Roychowdhury, “A
generalized framework for network component analysis,” IEEE/ACM

Transactions on Computational Biology and Bioinformatics, vol. 2,
no. 4, pp. 289 – 301, Oct.-Dec. 2005.

[5] A. A. Maciejewski and C. A. Klein, “The singular value decompo-
sition: Computation and applications to robotics.” Int. J. Robot. Res.,
vol. 8, no. 8, pp. 63–79, 1989.

[6] J. B. Andersen, “Array gain and capacity for known random channels
with multiple element arrays at both ends,” IEEE Journal on Selected

Areas in Communications, vol. 18, no. 11, pp. 2172 – 2178, November
2000.

[7] H. Krim and M. Viberg, “Two decades of array signal processing
research: the parametric approach,” IEEE Signal Processing Magazine,
vol. 13, no. 4, pp. 67 – 94, July 1996.

[8] W. C. Jakes, Microwave Mobile Communications. John Wiley and
Sons, New York, 1974.

[9] R. H. Clarke, “A statistical theory of mobile-radio reception,” The Bell

System Technical Journal, vol. 47, pp. 957 – 1000, July - August 1968.
[10] A. M. Tulino and S. Verdu, Random Matrix Theory and Wireless

Communications. Now Publishers, 2004.


