
Chapter 9

Capacity of quantum channels

9.1 Overview

In this chapter we consider the problem of transmission of information through
quantum channels. A sender wants to communicate a message to a receiver
through a quantum noisy channel As we will see in more detail later, a noisy
quantum channel can be reasonably modeled by a linear completely posi-
tive map from the space of density matrices (input) to the space of density
matrices (output)

N : ρinput → N (ρinput) = ρ′
output

In the quantum setting even the problem of point to point communication
is much richer than in the classical case and questions of principle such as
the analogs of Shannon’s theorem are not completely solved. We start the
chapter with an overview of the main settings that have been explored.

In general the encoder will input in the channel ”words” of length N .
The words of length N are states of a Hilbert space H⊗N where the single
letter space H has dimH = d. Here we will always have d = 2 in mind
(so the channels are ”binary-input”, i.e their inputs are Qbits, for example
polarization states of photons). As the following discusion will make clear
there are many possible settings that one can imagine. Let us briefly descibe
three broad situations have been discussed in the literature. In the sequel we
treat in more detail only the first one.

Sending classical messages through quantum channels. This situa-
tion is the closest possible to the classical one and is depicted on figure 9.1.
Classical messages from a set {1, ..., M} of M possible messages are to be sent
by Alice to Bob and should be reproduced faithfully by Bob. Alice encodes
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Figure 9.1: Model of classical-quantum communication

them as input code words that are N fold tensor product states:

ρx1
⊗ .... ⊗ ρxN

where each ρx is chosen (according to some encoding rule) in the 2×2 density
matrices of H1. Strictly speaking the codewords are guenuinely quantum,
except if the states of terms in the tensor product are mutualy orthogonal
(and thus distinguishable). These are transmitted over a quantum channel
(photons are sent through an optic fiber) and the output is in general a
quantum state of H⊗N . If the channel is memoryless (and binary-output
say) the output state will again be a tensor product:

ρ′
x1

⊗ .... ⊗ ρ′
xN

In order to decode, the decoder has to measure the state. Note that even if
the input letters are pure states, the output letters are truly mixed states;
this will become obvious once we will develop te noise models.

Consider for a moment the (seemingly) simplest situation where the de-
coder uses measurements that act on each term of the tensor product sep-
arately and independently. In other words he observes the output Qbits
”one by one”. In this way the decoder obtains a vector of measurement
outcomes y1, ..., yN with its associated probability distribution compatible
with the measurement postulate. The encoder+channel+measurement ap-
paratus can be viewed as an effective channel were the input and output are
classical. Shannon’s classical theory then implies that the capacity2 of this
encoding-decoding scheme is given by the single letter expression

max
{px,ρx}

max
{Py}

I(X; Y ), ρ′
x = N (ρx) (9.1)

The px in the optimization can be interpreted as the probability distribution
according to which the encoder chooses the Qbits ρx. We recognize in this

1For simplicity the reader may think of these as pure states ρx = |φx〉〈φx|. As we will
see later, in fact, there is a setting in which capacity is achieved for pure states (but not
necessarily othogonal)

2That is the maximum achievable rate R = 1

N
log2 M for reliable communication. The

reliability criterion is given in later section



9.1. OVERVIEW 3

expression the ”accessible information” (chap 7) is

max
{Py}

I(X; Y ) (9.2)

The maximum accesible information (9.1) has been called by some authors
the C1,1 capacity of the channel. The first 1 means that we allow only tensor
product states and the second 1 means that we allow only measurements
that act on one received Qbit at a time. As we learned in chap 7 there is
no known information theoretic expression for the optimzation problem (9.2)
but at least we have the Holevo upper bound3

C1,1 ≤ max
px,ρx

χ({px,N (ρx)}) = max
{px,ρx}

[
S(N (

∑

x

pxρx)) −
∑

x

pxS(N (ρx))

]

Clearly the capacity may only increase if we increase the space of possible
measurements. The C1,∞ capacity denotes the maximum achievable rate
when there is no restriction on the type of measurements of the output state.
More precisely, the measurement basis acts on the whole of H⊗N (and as
we will see we let N → +∞). It turns out that when we allow general
measurements the Holevo bound is achieved (as we will show). This is the
content of the Holevo-Schumacher-Westmoreland (HSW) theorem and this
capacity is commonly called the classical-quantum or product state or C1,∞
capacity. We have

C1,∞ = max
{px,ρx}

χ({px,N (ρx)}) = max
{px,ρx}

[
S(N (

∑

x

pxρx)) −
∑

x

pxS(N (ρx))

]

This is a single letter expression which can be seen as the quantum analog
of Shannon’s formula

C = max
px

[H(Y ) − H(Y |X)]

Thus the Holevo quantity can be thought as an anlog of mutual information.
But we immediately warn the reader that there are other analogs as we
discuss later on.

But does this really give the maximum achievable rate of transmission of
a classical message through a quantum channel ? The answer is not known
in general. Indeed one could allow to encode classical messages into general
states of H⊗n, not just tensor products. A natural question is whether the
use of entanglement for the input can increase the C1,∞ capacity. We allow

3Here ρ =
∑

x
pxρx and by linearity of the channel map N (ρ) =

∑
x

pxN (ρx)
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Figure 9.2: More general model of classical-quantum communication: one
would like to know the C∞,∞ capacity

again general measurements on the output state (see figure 9.1). One can
define a maximum achievable rate for this situation, called C∞,∞. A single
letter expression is not known but it is conjectured that

C∞,∞ = C1,∞

It is non trivial to exclude that entanglement of the inputs do not help increas-
ing the capacity; but this can be shown to be equivalent to the “additivity
conjecture” for the composition of two channels

C1,∞(N1 ⊗N2) = C1,∞(N1) + C1,∞(N2)

Note that superadditivity is known (≥); however the ≤ inequality has been
checked/proved only for special channels.

Entanglement assisted communication. As said above it is conjectured
that entanglement of the input does not help increase the capacity. Is there
another way to use entanglement ? When we introduced dense coding (also
called superdense coding in the literature) we saw that Alice can transmit
two bits of classical information to Bob through a noiseless channel, by first
sharing an EPR pair with him and then sending her particle (one Qbit). This
was a noiseless situation where the capacity is twice the unassisted one. This
suggests that the transmission rate for classical messages can be increased
by sharing entanglement between the sender and the receiver. A situation
analyzed recently by Bennett-Shor-Smolin-Thapliyal is that of transmitting
classical messages through a quantum channel allowing the sender and re-
ceiver to share an unlimited amount of EPR pairs (figure 9.1). Assume that
beforehand, Alice and Bob share an unlmited number of entangled pairs
thanks to some noiseles medium. Alice encodes classical messages by per-
forming operations on her Qbits in her lab and then sends them through a
noisy quantum channel. This time there is no limitation to tensor product
states in the encoding map of Alice. As before Bob can do any measurement
on his side. In other words this is a kind of (∞,∞) situation and the channel
is N ⊗ I: indeed Alice sends her part of the state and Bob just keeps his
part of the state intact. The maximum achievable rate has the singe letter
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Figure 9.3: Alice and Bob share entanglement in order to communicate

characterization

CE = max
ρ

[S(ρ) + S(N (ρ)) − S((N ⊗ I)|Ψρ〉)]

where the maximum is taken over density matrices (here think of 2×2 matri-
ces) in the Hilbert space (of letters) of Alice HA. The state |Ψρ〉 is a purifica-
tion of ρ in the bigger space HAlice⊗HBob. In other words TrBob|Ψρ〉〈Ψρ| = ρ.
One can show that the third term does not depend on the specific purification
that is used4. The bracket [−] is a well defined functional of ρ only.

The proof of this formula uses Holevo’s formula for blocks and the channel
⊗n

i=1(N ⊗ I). The optimization can then be reduced to the single letter
characterization by the use of dense coding and an additivity property

CE(N1 ⊗N2) = CE(N1) + CE(N2)

We will not prove this capacity formula in the course, but just mention
the close ressemblance with Shannon’s

C = max
px

[H(X) + H(Y ) − H(X, Y )]

To see the analogy first note that S(ρ) and S(N (ρ)) correspond to H(X)
and H(Y ). But why is it that S((N ⊗ I)|Ψρ〉) corresponds to H(X, Y ) ?
This is because once Bob receives Alice’s particles he holds in his lab the
whole state (N ⊗ I)|Ψρ〉 which has partial traces

TrAlice|Ψρ〉〈Ψρ| = ρ, T rBob|Ψρ〉〈Ψρ| = N (ρ)

4in the achievability part of the proof this purification is fixed at the outset by the
shared EPR pairs: the encoding map acts only on Alice’s particle
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Here it is important to stress that it is thanks to the shared entangement
that both states ρ and N (ρ) “exist at the same time” in the full received
state. In the HSW situation of the previous paragraph these states do not
exist simultaneously. Once ρ is sent, N (ρ) is received but ρ has disapeared.
Because of the no-cloning theorem Alice cannot copy ρ before sending it. In
classical information theory it is always possible to copy X so that X and Y

can exist simultaneously.
These remarks perhaps explain why the classical mutual information

I(X; Y ) has many possible quantum generalizations. In quantum mechan-
ics H(Y ) − H(Y |X) and H(X) + H(Y ) − H(X, Y ) correspond to different
settings and become respectively C1,∞ and CE (which are not equal).

Sending quantum messages through quantum channels. Suppose
that the source produces quantum messages. These are quantum states
and it is meaningful to linearly combine them (superposition principle).
We define such a set of quantum messages as an M dimensional Hilbert
space. So taking a basis of M (say othogonal) states the source produces
the span{|1〉, |2〉, ..., |M〉}. Note that this span is isomorphic to the tensor
product H⊗ log

2
M (to see this think of the dimension of this space) where H

is a single Qbit space. Alice has to send any message in this span reliably to
Bob. She encodes the message by a map from the message space to a Hilbert
space H⊗N where H is a single Qbit space. The rate of the code is defined as
1
N

log2 M . Bob decodes by a map from H⊗N to span{|1〉, |2〉, ..., |M〉}. The
reliability criterion is that the overlap (inner product) between the original
and decoded state is cose to one. Note that the decoder should not observe
the quantum states in order not to destroy them (this does not mean that
this communication is useless. The sender might want to transmit a quantum
state to a receiver that needs it to perform a specific task even if he does
not observe this state). The maximum achievable rate for reliable communi-
cation, sometimes called the quantum-quantum capacity, has been shown to
be equal to (Shor)

Q = lim
N→∞

1

N
sup
ρN

[S(N (ρN)) − S((N ⊗ I)|ΨρN
〉)]

where |ΨρN
〉 is a purification of ρN in a bigger space H⊗N ⊗R. Again, one

can show that this quantity does not depend on the particular purification.
However this formula is not a ”single letter expression” (it is not additive)
and the optimization is intractable (even for N = 1 it is hard). This ex-
pression does not have a clear classical analog, and has been called coherent
information.

Comparison of various capacities.
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It is a general fact that

C1,∞ ≤ C∞,∞ ≤ CE

Moreover Q generaly vanishes above some noise threshold above which quan-
tum coherence (linear superpositions) cannot be maintained faithfuly.

It is in general difficult to compute the quantum capacities, but there
are a certain number of situations where this has been done exactly. The
simplest situation is perhaps the case of the quantum erasure channel. In
the classical case the erasure channel transmit the input from some alphabet
{1, 2, ..., d} intact with probability 1 − p and outputs an erasure symbol E

with probability p. Shannon’s capcity is C = (1 − p) ln d. The quantum
version is as follows. A state vector from a d dimensional Hilbert space Cd is
transmitted intact with probability 1 − p and outputs a specific extra state
|E〉 ⊥ Cd with probability p (so the output Hilbert space is the direct sum
Cd ⊕C). The result is:

C1,∞ = C∞,∞ = (1 − p) ln d

CE = 2(1 − p) ln d

Q = (1 − 2p) ln d, 0 ≤ p ≤ 1

2
, Q = 0 p ≥ 1

2

For further examples we refer the reader to the litterature.

9.2 Noise in open quantum systems

At the fundamental level for an isolated system there is no such thing as noise;
indeed the dynamics is purely deterministic and given by a unitary operator
U acting on states. When we observe the system and make measurements
the outcomes are described by the measurement postulate which does not
involve any noisy element. In fact this is also true classicaly except that
the dynamics is given by Newton’s law and the measurements are purely
deterministic.

Noise is a phenomenological concept that is useful to describe the influ-
ence of the environnement on an open system. Let H be the Hilbert space of
the system of interset which interacts with some environnement described by
the space HE . the total space is H⊗HE . We will suppose that initialy the
two systems are decoupled and have state ρS ⊗ ρE . The evolution operator
U acts nontrivialy on the tensor product and couples the two systems: after
some time the total system’s state is

U(ρS ⊗ ρE)U † = ρtotal
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If we want to describe only the dynamics of H we use the partial density
matrix

ρ′
S = TrEρtotal

For simplicity let us suppose that the environnement is initialy in a pure
state ρE = |E〉〈E|. Then

ρ′
S =

∑

k

〈k|Uρ ⊗ |E〉〈E|U †|k〉 =
∑

k

〈k|U |E〉ρS〈E|U †|k〉

This is of the form

ρ′
S =

∑

k

NkρSN
†
k , Nk = 〈k|U |E〉

Here Nk are operators H → H (because U : H ⊗HE → HS ⊗ HE). These
operators satisfy a completeness relation

∑

k

N
†
kNk =

∑

k

〈E|U †|k〉〈k|U |E〉 = 〈E|U †U |E〉 = I

A model of noise. We arrive at the conclusion that although for the whole
system the evolution is unitary, for the open part H it is described by a set
of operators {Nk : H → H},

ρ → ρ′ =
∑

k

NkρN
†
k ,

∑

k

N
†
kNk = I (9.3)

The reader can easily verify that ρ′ ≥ 0 and that Trρ′ = 1. The evolution of
an open quantum system is not necessarily unitary. But at least it is linear
and it maps density matrices into density matrices. The operators {Nk}
describe the noise. Their choice defines what we call a model of quantum
noise.
Analogy with a transition probability matrix. The density matrices ρ

and ρ′ have spectral decompositions which allow to interpret them as classical
mixtures (this is a mathematical interpretation, it does not mean the system
is prepared in a classical state). This allows then to interpret the map ρ → ρ′

as a transition probability matrix. Indeed let ρ =
∑

x px|x〉〈x| and ρ′ =∑
y p′y|y〉〈y|. We have

ρ′ =
∑

x

pxNk|x〉〈x|N †
k

Inserting to closure relations, we get

ρ′ =
∑

z,z′

(|z〉〈z′|)(
∑

x

px〈z|Nk|x〉px〈x|N †
k |z†〉)
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In other words ρ′ has (zz′) matrix elements

∑

x

px〈z|Nk|x〉〈x|N †
k |z†〉

Let D be the matrix that diagonalises it. We must have

p(y) =
∑

x

px

∑

z,z′

Dyz〈z|Nk|x〉〈x|N †
k |z†〉Dz′y

We see on this formula that the map between ρ and ρ′ can be described by
a transition probability matrix

p(y|x) =
∑

z,z′

Dyz〈z|Nk|x〉〈x|N †
k |z†〉Dz′y

Superoperators. A superoperator is defined as a map of the form (9.3).
There are a few fundamental properties that such maps obey.

Property 1. Any superoperator has a unitary representation on a higher
dimensional Hilbert space. In other words any superoperator may be viewed
as coming from the effect of some environnement on a quantum system.
Indeed given ρ′ =

∑M
k=1 NkρN

†
k consider a Hilbert space HE , dimHE = M

and define U : H ⊗ HE → H ⊗HE such that |φ〉 ⊗ |E〉 → ∑M
k=1(Nk|φ〉) ⊗

|E ⊕ k〉 = U(|φ〉 ⊗ |E〉) where ⊕ means the sum mod M . One can easily
check that U preserves the inner product so that it is unitary. Moreover one
can check that ρ′ = TrE(U(ρ ⊗ |E〉〈E|)U †).

Property 2. Superoperators are linear maps from density matrices to density
matrices (check that). In fact the converse is also true. This is the content
of the Kraus representation theorem that we do not prove here.

Theorem 1 (Kraus). Let N : ρ → N (ρ) be a map satisfying

• N (ρ) ≥ 0 if ρ ≥ 0

• TrN (ρ) = 1 if Trρ = 1

• N (αρ1 + βρ2) = αN (ρ1) + βN (ρ2)

• N (ρ)† = N (ρ) if ρ† = ρ

Then the map N can be represented as a superoperator for some set of {Nk}.
This also means that N (ρ) can also be viewed as the reduced density matrix
of a larger system evolving unitarily.
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With this theorem you see that if you accept that state of a quantum
system are density matrices (as advocated by von Neumann) you are also
inevitably led to the fact that quantum evolution is described by unitary
operators (at the expense of enlarging and/or purifying the system).

Examples of superoperators.

• A unitary evolution ρ′ = UρU †

• A measurement that does not record the measurement results ρ′ =∑
i PiρPi, {Pi} a measurement basis.

• The channel models of next section.

A physical process that is not described by superoperators.

• A von Neumann measurement that randomly maps ρ to some random
output ρ′

i = PiρPi

TrPiρPi
, {Pi} a measurement basis (if the measurement is

repeated many time the probability of the output is TrPiρPi). This is
not a superoperator because it is a non-linear operation. Otherwise it
is positivity and trace preserving.

9.3 Models of noisy quantum channels

Physicaly a quantum channel is a medium, supporting the propagation or
storage of quantum states (pure or mixed), which is subject to interaction
with the environnement. The preceding analysis of open quantum system
makes it quite natural to model a noisy Q-channel by a superoperator . If
for example the input and the output are Qbits (2× 2 matrices in the Bloch
sphere) we may speak of a binary input-binaryoutput channel. (But note
that the Hilbert space of the input and that of the output need not have
the same dimension, which means that Nk are not square matrices.) In the
course we consider only memoryless channels. This means that

N (ρ1 ⊗ ... ⊗ ρN ) = N (ρ1) ⊗ ... ⊗N (ρN)

Moreover we will restrict ourselves to the binary-input binary-output case. In
the later case the most general input state is (one term of the tensor product
above) of the form

ρ =
1

2
(I + a · Σ), |a| ≤ 1
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The superoperator has to be linear and map this density matrix to another
density matrix of the form

ρ′ =
1

2
(I + a′ · Σ), |a′| ≤ 1

It is posssible to show that necessarily

a′ = Ma + c, M = OS

were O is a real orthogonal matrix and S is real symmetric. The channel has
the effect of deforming and rotating the Bloch sphere. We now review the
most common examples of channels.

Bit flip channel.

ρ′ = N0ρN
†
0 + N1ρN

†
1 = pρ + (1 − p)XρX

with
N0 =

√
pId, N1 =

√
1 − pX

This is anlogous to the BSC(p) channel as can be seen from the unitary
representation in a larger Hilbert space

U(α|0〉 + β|1〉) ⊗ |0, 1〉 =
√

p(α|0〉 + β|1〉) ⊗ |0, 1〉 + (α|1〉+ β|0〉) ⊗ |1, 0〉

Phase flip channel.

ρ′ = N0ρN
†
0 + N1ρN

†
1 = pρ + (1 − p)ZρZ

with
N0 =

√
pId, N1 =

√
1 − pZ

This is anlogous to the BSC(p) channel as can be seen from the unitary
representation in a larger Hilbert space

U(α|0〉 + β|1〉) ⊗ |0, 1〉 =
√

pα|0〉 + β|1〉) ⊗ |0, 1〉 + (α|1〉 − β|0〉) ⊗ |1, 0〉

The reader can check that this is a bit flip in the rotated basis {H|0〉, H|1〉}
or X basis.

Bit-Phase flip channel. This cahnnel is a sucession of bit and phase flips.
In fact it is a bit flip in the Y basis. More formaly

ρ′ = N0ρN
†
0 + N1ρN

†
1 = pρ + (1 − p)ZρZ
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with
N0 =

√
pId, N1 =

√
1 − pY =

√
1 − pXZ

Depolarizing channel. In this case a Qbit is completely depolarized with
probability p and left untouched with probability (1-p). This is the analog
of the classical binary erasure channel (BEC) where the bit value is erased
with probability p and left untouched with probability 1 − p. Here

ρ′ =
p

2
I + (1 − p)ρ

It is not immediately clear that this compatible with the superoperator rep-
resemntation (but from the Kraus theorem it has to be !). We notice that

I

2
=

1

4
(ρ + XρX + Y ρY + ZρZ)

for any ρ (exercises). Thus

ρ′ = (1 − 3p

4
)ρ +

p

4
(XρX + Y ρY + ZρZ)

The elements of this superoperator are {Nk} = {
√

1 − 3p
4
,
√

p

2
X,

√
p

2
Y,

√
p

2
Z}.

This last representation is not unique, indeed

ρ′ = (1 − p)ρ +
p

3
(XρX + Y ρY + ZρZ)

A unitary representation is

U |φ〉 ⊗ |0, 1, 2, 3〉 =
√

1 − p|φ〉 ⊗ |0, 1, 2, 3〉+

√
p

3
X|φ〉 ⊗ |1, 2, 3, 0〉

+

√
p

3
Y |φ〉 ⊗ |2, 3, 0, 1〉+

√
p

3
Z|φ〉 ⊗ |3, 0, 1, 2〉

This formula has a clear interpretation: a photon polarization state (say)
is left unchanged with probability 1 − p and is given a random polarization
with probability p.

9.4 Product State Capacity: HSW theorem

In this paragraph we adress the classical-quantum communication problem
and prove the HSW theorem. A sender has M messages m ∈ {1, ..., M}.
These messages can be described by log2 M bits and we assume that the
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source produces the messages with uniform probability (say some compres-
sion has been done beforehand). Each message is encoded as strings of N

Qbits in states that are of tensor product form. The alphabet for the channel
is ρx where we restrict (this is not loss of generality) to 2× 2 matrices. Each
message is encoded as a block of length N

E : m → ρx1(m) ⊗ ρx2(m) ⊗ ... ⊗ ρxN (m)

where the code introduces redundancy because we take N > log2 M . This
map defines the code C. The rate of the code is R = log

2
M

N
. The code word

is sent through a quantum memoryless channel which produces the output

N (E(m)) = ρ′
x1(m) ⊗ ρ′

x2(m) ⊗ ... ⊗ ρ′
xN (m)

The receiver performs a measurement thanks to a basis of C⊗N . So this
basis consists in a set of orthogonal projectors spanning the Hilbert space.
We need M projectors in order to potentialy obtain the M messages and an
extra one corresponding to outcomes not in the set of messages. So we take
a measurement apparatus described by {Q0, Q1, ..., QM} with

Q0 + Q1 + ... + QM = I

In summary the decoder D is a measurement apparatus: if the outcome of
the measurement is in subspace Qj , j = 1, ..., M the decoder declares that
the message sent was m̂ = j; if the outcome is in subspace Q0 the decoder
declares an error m̂ = 0.

The reliability of the (E ,D) scheme is measured by an average probability
of error. Given that m is sent the probability of error is

P (m)
error = Prob(m̂ 6= m|m = input) = Tr(I − Qm)ρ′

x(1) ⊗ ρ′
x(2) ⊗ ... ⊗ ρ′

x(N)

The average probability of error is

Perror =
1

M

M∑

m=1

P (m)
error

Suppose that we have shown that there exist (E ,D) for which the average
probability Perror < ǫ. Then we can use the standard trick of “expurgation”
to deduce that there exist (E ,D) with P

(m)
error < 2ǫ for all m in the new code

book at the expense of a 1
N

rate loss.
The following theorem is the analog of Shannon’s famous channel cod-

ing theorem. In its present form it was proven separately by Holevo and
Schumacher-Westmoreland.
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Theorem 2 (HSW theorem.). Fix ǫ and δ small positive and R = log
2

M
N

.
Set

C1,∞ = max
{px,ρx}

[
S(N (

∑

x

pxρx)) −
∑

x

pxS(N (ρx))
]

(the Bloch sphere is compact so max is attained).

• Achievability. Let R < C1,∞ − ǫ. Then there exists, for N and M

large enough, a scheme (E ,D) such that Perror ≤ δ.

• Converse. Let R > C1,∞ + ǫ. Then for any scheme (E ,D) we have
Perror ≥ δ

Proof of the converse. The proof combines the Holevo bound with the
classical Fano inequality. If we think of the classical case this means that
in some sense the Holevo bound (which boils down to strong subadditivity)
takes care at the same time of the data processing and subadditivity steps.
The receiver has a mixture { 1

M
;⊗N

i=1ρ
′
xi(m)} that is to be interpreted as a

preparation of a quantum state according to the random variable M with
Prob(M = m) = 1

M
. The measurement outcome is labelled by a classical

variable M̂ with values in {0, 1, ..., M}. Recall Perror = 1
M

∑M
m=1 Prob(m̂ 6=

m).

h2(Perror) + Perror log2(2
NR + 1 − 1) ≥ H(M|M̂)

where h2 is the binary entropy function. So

Perror ≥
1

NR
H(M|M̂) − 1

N
h2(Perror)

On the other hand by Holevo’s bound and H(M) = log2 M = NR,

H(M|M̂) = H(M) − I(M|M̂) ≥ NR − χ

(
1

M
;

M∑

m=1

1

M
⊗N

i=1 ρ′
xi(m)

)

Now from the subadditivity of von Neumann’s entropy,

S
( 1

M

M∑

m=1

⊗N
i=1ρ

′
xi(m)

)
≤

N∑

i=1

S
( 1

M

M∑

m=1

ρ′
xi(m)

)

(on the right hand side we took all N partial traces leaving out only the
1 particle subsystems intact). Therefore using (additivity of entropy for
independent subsystems)

S
(
⊗N

i=1ρ
′
xi(m)

)
=

N∑

i=1

S(ρ′
xi(m))
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we get

χ
( 1

M
; ρ′⊗N

)
≤

N∑

i=1

(
S
( 1

M

M∑

m=1

ρ′
xi(m)

)
− 1

M

M∑

m=1

S(ρ′
xi(m))

)

We recognize on the r.h.s a sum of Holevo quantities

χ
( 1

M
;N (

M∑

m=1

1

M
ρxi(m))

)

which can be upper bounded by N maxpx,ρ χ(X;N (ρ)). Thus we conclude
that if R > C1,∞ + ǫ

Perror ≥
R − C1,∞

R
− 1

N
h2(Perror)

Thus if R > C1,∞ + ǫ for N large enough we have Perror ≥ δ.

Sketch of proof for the achievability. The details are more technical than
in the classical case so we just give the main ideas. As in the classical case
one uses a random code ensemble C in order to prove that EC[Perror(C)] ≤ δ.
Since there must exist at least one code with error probability below the
average, we conclude that there exist one coding scheme with Perror(C) ≤
δ. To construct the ensemble C first fix a probability distribution px, and
corresponding 2 × 2 density matrices ρx, x ∈ {1, ..., D}. For each message
m ∈ {1, ..., M} randomly pick an input block

ρx1(m) ⊗ ... ⊗ ρxN (m)

with probability

px1(m)...pxN (m)

Once this has been done for all messages one has a code C ∈ C. One com-
municates with this given code C. The ensemble C of all such possible codes
obtained by repeating the random experiment is the code book or code en-
semble C (note that the cardinality of this ensemble is DN). The sender picks
a message m ∈ {1, .., M} and a code C ∈ C and sends the codeword through
the channel. The receiver gets

ρ′
x1(m) ⊗ ... ⊗ ρ′

xN (m) = σm

We need to introduce two kind of typical subspaces of the Hilbert space.
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Each ρ′
x has a spectral decomposition with eigenvalues λk and eigenpro-

jectors Pk (here k = 1, 2). Thus given the input message m, the received
word above has eigenvalues of the form

λ
(m)
k1

λ
(m)
k2

...λ
(m)
kN

with eigenprojectors
P

(m)
k1

⊗ ... ⊗ P
(m)
kN

We define the projector

P
(m)
typ =

∑

typical e.v sequence

P
(m)
k1

⊗ ... ⊗ P
(m)
kN

where the sum is over typical sequences of eigenvalues, defined as those which
have empirical entropy close to the average entropy of received words

{
λ

(m)
k1

, ...., λ
(m)
kN

|
∣∣∣∣ −

1

N

N∑

i=1

log2 λ
(m)
ki

−
∑

x

pxS(ρ′
x)

∣∣∣∣ ≤ ǫ

}

This projector is the one that projects on the space of typical output states
(words) given an input message m. The law of large numbers implies that

EC[TrσmP m
typ] ≥ 1 − δ, EC[TrP m

typ] = 2N(
P

x pxS(ρ′x)±ǫ) (9.4)

Let us show here the first inequality: the trace is equal to

EC
∑

typical e.v sequence

λ
(m)
k1

λ
(m)
k2

...λ
(m)
kN

= EC,λ[1typical e.v sequence]

= ProbC,λ

[∣∣ − 1

N

N∑

i=1

log2 λ
(m)
ki

−
∑

x

pxS(ρ′
x)

∣∣ ≤ ǫ

]

≥ 1 − δ

where the last inequality is the law of large numbers in the probability space
(C, λ).

Consider now the mixture (of mixed states)

σ =
∑

x1(m)

pxN (m)px1(m)...pxN (m)ρx1(m) ⊗ ... ⊗ ρxN (m) = ⊗N
i=1

(∑

x

pxρ
′
x

)

The eigenvalues and eigenprojectors are of the form µk1
...µkN

and Pk1
⊗ ...⊗

PkN
. The typical eigenvalue sequences are those in the ensemble

{
µ1, .., µN |

∣∣ − 1

N

N∑

i=1

log2 µki
− S(ρ′)

∣∣ < ǫ

}
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where ρ′ =
∑

x pxρx. We set Ptyp for the projector on the span of these
typical eigenvalue sequences. As usual the law of large numbers implies

Tr ⊗N
i=1

(∑

x

pxρ
′
x

)
Ptyp ≥ 1 − δ, T rPtyp = 2NS(ρ′)±ǫ) (9.5)

For the decoding operation in principle we would like to use a set of
projectors that span the Hilbert space. It turns out that for technical reasons
the notion of generalized measurements has to be introduced5. The decoding
operation is a generalized measurement described by a “positive operator
valued measure” (POVM). This notion is a convenient generalization of von
Neumann’s ordinary projective measurements: POVM is simply a resolution
of the identity in terms of positive operators, where we drop the orthogonality
requirement. In fact it can be shown to be equivalent at the expense of
purifying and making unitary transformations. Set

Qm =
(∑

m

PtypP
(m)
typ Ptyp

)−1/2
PtypP

(m)
typ Ptyp

(∑

m

PtypP
(m)
typ Ptyp

)−1/2

and
Q0 = I −

∑

m

Qm

where the operators in the inverse square root are restricted over the comple-
ment of their kernel (so that the inverse exists). Let us check that {Q0, Q1, ..., QM}
is a POVM. Evidently they are selfadjoint and for all m = 1, ..., M they are
positive. Moreover ∑

m

Qm = Ikernel < I

thus the extra Q0 is also positive. Thus we have a POVM.
The decoding rule can now be stated. An apparatus described by a

POVM works in the same way than in the usual measurement postulate:

σm → Qm′σmQm′ ↔ output m′ with probability TrσmQm′

The average probability of error is

Perror =
1

M

M∑

m=1

(
TrσmQ0 +

∑

m′ 6=m

TrσmQm′

)

The fist term in the parenthesis corresponds to a ”decoder failure” and the
second term corresponds to a ”decoding error”. As in the classical case one
proves

EC[Perror] ≤ 4δ + (M − 1)2−N
(

S(ρ′)−
P

x pxS(ρ′x)−2ǫ
)

5This will not be explained in detail here. We refer to Chuang and Nielsen
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starting from (9.4) and (9.5). As is often the case for quantum calculations
the estimates are a bit technical due to the non-commutative nature of the
algebra. The reader is refered to pages 559 and 560 of [Nielsen and Chuang]
or to the original papers of Holevo or Schumacher-Westmoreland for the
details leading to this estimate.

When the rate 1
N

log2 M < S(ρ′) − ∑
x pxS(ρ′

x) − 2ǫ the average error
probability can be made as small as we wish for N large enough. Thus
this coding-decoding scheme achieves reliable transmission. the best rate
attainable is found by taking a scheme where px and ρx maximize S(ρ′) −∑

x pxS(ρ′
x). End of proof.


