
Chapter 6

Quantum entropy

As in classical information theory there is a notion of entropy which quantifies
the amount of uncertainty contained in an ensemble of Qbits. This is the
von Neumann entropy that we introduce in this chapter. In some respects
it behaves just like Shannon’s entropy but in some others it is very different
and strange. As an illustration let us immediately say that as in the classical
theory, conditionning reduces entropy; but in sharp contrast with classical
theory the entropy of a system can be lower than the entropy of its parts.

The von Neumann entropy was first introduced in the realm of quantum
statistical mechanics, but we will see in later chapters that it enters naturaly
in various theorems of quantum information theory.

6.1 Main properties of Shannon entropy

Let X be a random variable taking values x in some alphabet with probabil-
ities px = Prob(X = x). The Shannon entropy of X is

H(X) =
∑

x

px ln
1

px

and quantifies the average uncertainty about X.
The joint entropy of two random variables X, Y is similarly defined as

H(X, Y ) =
∑

x,y

px,y ln
1

px,y

and the conditional entropy

H(X|Y ) =
∑

y

py

∑

x,y

px|y ln
1

px|y

1



2 CHAPTER 6. QUANTUM ENTROPY

where
px|y =

px,y

py

The conditional entropy is the average uncertainty ofX given that we observe
Y = y. It is easily seen that

H(X|Y ) = H(X, Y ) −H(Y )

The formula is consistent with the interpretation of H(X|Y ): when we ob-
serve Y the uncertainty HX, Y ) is reduced by the amountH(Y ). The mutual
information betweenX and Y is the complement of the remaining uncertainty
H(X|Y )

I(X;Y ) = H(X) −H(X|Y ) (6.1)

= H(Y ) −H(Y |X)

= H(X) +H(Y ) −H(X, Y ) = I(Y : X)

It is easily seen that I(X;Y ) = 0 iff px,y = pxpy.
The Kullback-Leibler divergence, or relative entropy, between two prob-

ability distributions p and q is a useful tool

D(p‖q) =
∑

x

px ln
1

qx
−

∑

x

px ln
1

px

=
∑

x

px ln
px

qx

Note that this quantity is not symmetric, D(p‖q) 6= D(q‖p). One can also
check that

I(X;Y ) = I(Y ;X) = D(PX,Y ‖PXPY )

Let us list the main inequalities of classical information theory and indicate
which become true or false in the quantum domain.

• The maximum entropy state corresponds to the uniform distribution.
For an alphabet with cardinality D we have

0 ≤ H(X) ≤ lnD

with the upper bound attained iff px = 1
D

. Quantum mechanicaly this
is still true.

• H(X) is a concave functional of px. This means that if p0(x) =
∑

k akpk(x), ak ≥ 0,
∑

k ak = 1 then

H0(X) ≥
∑

k

akHk(X)

QMly this is still true.
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• Entropy is subadditive,

H(X, Y ) ≤ H(X) +H(Y )

Equivalently conditioning reduces entropyH(X|Y ) ≤ H(X),H(Y |X) ≤
H(Y ), and mutual information is positive I(X;Y ) ≥ 0. QMly all this
is true.

• The conditional entropy is positive, the entropy of (X, Y ) is higher than
that of X (or Y )

H(X|Y ) ≥ 0, H(X, Y ) ≥ H(X), H(X, Y ) ≥ H(Y )

with equality if Y = f(X) QMly this is not true ! We will see that
(again !) entanglement is responsible for this !

• Conditionning reduces conditional entropy

H(X|Y, Z) ≤ H(X|Y )

This inequa;ity is also called “strong subadditivity” and is equivalent
to

H(X, Y, Z) +H(Y ) ≤ H(X, Y ) +H(Y, Z)

Equality is attained iff X − Y − Z form a Markov chain. This means
that px,z|y = px|ypz|y or equivalently px,y,z = pz|ypy|xpx (a Markov chain
is reversible: Z−Y −X is also a Markov chain). we will see that QMly
strong subadditivity still holds. In view of the great gap in difficulty
between the classical and quantum proofs it is fair to say that this fact
is subtle and remarquable. However the notion of Markov chain is not
obvious in the quantum case (there is no natural notion of conditional
probability) so it is not easily asserted when equality holds.

• A consequence of strong subadditivity is the data processing inequality
obeyed by Markov chains X − Y − Z

H(X|Z) ≥ H(X|Y )

Indeed H(X|Z) ≥ H(X|Z, Y ) = H(X|Y ) where the first inequality is
strong subadditivity and the equality follows from the fact Z and X
are independent given Y . Since the notion of Markov chain is not clear
QMly the quantum version of the data processing inequality is a subtle
matter.
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• The relative entropy is positive

D(p‖q) ≥ 0

This is basicaly a convexity statement which is also true QMly.

• A very useful algebraic identity which follows immediately from defini-
tions, is the chain rule

H(X1, ..., Xn|Y ) =

n
∑

i=1

H(Xi|Xi+1, ..., Xn, Y )

and

I(X1, ..., Xn|Y ) =
n

∑

i=1

I(Xi|Xi+1, ..., Xn, Y )

6.2 Von Neuman entropy and main proper-

ties

We assume that the system of interest is described by its density matrix
ρ and furthermore we restrict ourselves to the case of a finite dimensional
Hilbert space dimH = D. the von Neumann entropy is by definition

S(ρ) = −Trρ ln ρ

In physics this quantity gives the right connection between quantum statis-
tical mechanics and thermodynamics when ρ = e−βH/Z is the Gibbs state
describing a mixure at thermal equilibrium. In quantum information theory
this entropy enters in many theorems (data compressio, measures of entan-
glement ect...) and thus acquires a fundamental status.

For the moment we just note that the definition is reasonable in the
following sense. Suppose the quantum system is prepared in a mixture of
states {|φx〉; px} so that its density matrix is

ρ =
∑

x

px|φx〉〈φx|

For the special case where |x〉 form an orthonormal basis of H, this is
a diagonal operator, so the eigenvalues of ρ ln ρ are px ln px, and S(ρ) =
−

∑

x px ln px = H(X), where X is the random variable with distribution
px. In an orthogonal mixture all states can be perfectly distinguished so the
mixture behaves classicaly: the quantum and classical entropies coincide.
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We emphasize that for a general mixture the states |φx〉 are not orthonor-
mal so that S(ρ) 6= H(X). In fact we will see that the following holds in full
generality

S(ρ) ≤ H(X)

where X is the random variable associated to the “preparation” of the mix-
ture. This bound can be understood intuitively: since the states |φx〉 can-
not be perfectly distinguished (unless they are orthogonal, see chap 2) the
quantum uncertainty associated to ρ is less than the classical uncertainty
associated to X.

In the case of a pure state ρ = |Ψ〉〈Ψ| we see that the eigenvalues of ρ
are 1 (multiplicity one) and 0 (multiplicity D − 1). Thus

S(|Ψ〉〈Ψ|) = 0

The entropy of a pure state is zero because there is no uncertainty in this
state (in line with the Copenhagen interpretation of QM).

A quantity that plays an important role is also the relative entropy defined
by analogy with the KL divergence

S(ρ||σ) = Trρ ln ρ− Trρ lnσ

Let us set up some notation concerning the entropy of composite systems
and their parts. For a bipartite system AB with density matrix ρAB we write

S(AB) = −TrρAB ln ρAB

and for its parts described by the reduced density matrices ρA = TrBρAB

and ρB = TrAρAB,

S(A) = −TrρA ln ρA, S(B) = −TrρB ln ρB

One could try to pursue further the anlogies with the classical case and
define conditional entropies as S(A|B) = S(AB)−S(B), S(B|A) = S(AB)−
S(A) and mutual information as I(A;B) = I(B;A) = S(A)+S(B)−S(AB).
However it is not clear that these are of any fundamental use since they do
not enter (yet) in any theorem of quantum information theory. Perhaps two
more serious argument for suspicion are that first, as we will see S(AB)−S(B)
can be negative, and second it is not at all clear how to define the quantum
analog of conditional probabilities.

Let us now proceed to the statements and proofs of the basic inequalities
satisfied by von Neumann’s entropy.
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• Uniform distribtion maximizes entropy. Any ρ can be diag-
onalized and has positive eigenvalues ρx which sum to one. Thus
S(ρ) = −

∑

ρx ln ρx, a quantity which is maximized for the distri-
bution ρx = 1

D
(as in the classical case). Thus in the basis where it is

diagonal ρ = 1
D
I, and this is also true in any basis. We conclude

0 ≤ S(ρ) ≤ lnD

where the upper bound is attained for the “fully mixed” (or most dis-
ordered, or uniform) state ρ = 1

D
I. The lower bound is attained for

pure states (check !).

• Concavity. Let ρ and σ be two density matrices. then

S(tρ+ (1 − t)σ) ≥ tS(ρ) + (1 − t)S(σ), 0 ≤ t ≤ 1

The proof follows the same lines as the classical one which uses con-
vexity of x → x ln x. We prove below that ρ → Trρ ln ρ is a convex
functional and this immediately impies concavity of von Neumann’s
entropy.

Lemma 1 (Klein’s inequality). Let A and B selfadjoint and f con-
vex from R → R. We have

Tr(f(A) − f(B) − (A−B)f ′(B)) ≥ 0

Proof. Let A|φi〉 = ai|φi〉 and B|ψi〉 = bi|ψi〉. Then

Tr(f(A)−f(B)−(A−B)f ′(B)) =
∑

i

〈φi|f(A)−f(B)−(A−B)f ′(B)|φi〉

(6.2)
Each term in the sum equals

f(ai) − 〈φi|f(B)|φi〉 − ai〈φi|f ′(B)|φi〉 + 〈φi|Bf ′(B)|φi〉 (6.3)

Using the closure relation

1 =
∑

j

|ψj〉〈ψj |

equation (6.2) can be rewritten as

∑

j

|〈φi|ψj〉|2
(

f(ai − f(bj) − (ai − bj)f
′(bj)

)

Now since f : R → R is convex we have

f(ai) − f(bj) ≥ (ai − bj)f
′(bj)

which proves the statement.
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Corollary 2. Let A and B selfadjoint and positive (positive means that
all eigenvalues are positive or equivalently that all diagonal averages
〈ψ|A|ψ〉 are positive for any |ψ〉). Then

TrA lnA− TrB lnB ≥ Tr(A− B)

Proof. Take f(t) = t ln t and apply Klein’s inequality.

Now choose A = ρ and B = tρ+ (1 − t)σ. From the corrolary

Trρ ln ρ− Trρ ln(tρ+ (1 − t)σ) ≥ (1 − t)Tr(ρ− σ) = 0

Choose A = σ and B = tρ+ (1 − t)σ. Then

Trσ lnσ − Trσ ln(tρ+ (1 − t)σ) ≥ tT r(σ − ρ) = 0

Multiplying the first inequality by t and the second by (1 − t) and
adding them yields

Tr(tρ+ (1 − t)σ) ln(tρ+ (1 − t)σ) ≤ tT rρ ln ρ+ (1 − t)Trσ ln σ

which proves the concavity of entropy.

• Positivity of relative entropy. Choose A = ρ and B = σ and apply the
corrollary,

S(ρ||σ) = Trρ ln ρ− Trρ lnσ ≥ Tr(ρ− σ) = 0

• Subadditivity. In the classical case one has

H(X) +H(Y ) −H(X, Y ) = D(px,y||pxpy) ≥ 0

In the quantum case the proof is similar, but we detail the steps

S(A) + S(B) − S(AB) = −TrAρA ln ρA − TrBρB ln ρB + Trρcab ln ρAB

= −TrρAB ln ρA ⊗ IB − TrρAB ln IA ⊗ ρB + TrρAB ln ρAB

= TrρAB ln ρAB − TrρAB(ln ρA ⊗ IB + ln IA ⊗ ρB)

= TrρAB ln ρAB − TrρAB ln ρA ⊗ ρB

= S(ρAB||ρA ⊗ ρB) ≥ 0

Note that subadditivity can also formaly be written as S(A|B) ≤ S(A)
in terms of the naive conditional entropy. We may say that conditioning
reduces quantum entropy, as in the classical case.

Exercise: check the identity ln ρA ⊗ IB + ln IA ⊗ ρB = ln ρA ⊗ ρB by
using spectral decompositions.
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• Araki-Lieb bound. Classicaly H(X, Y ) ≥ H(X) (the whole is more
disordered than the parts). But quantum mechanically this can be
completely wrong as the following counterexample shows. In qyuantum
mechanics it is not true that the naive conditional entropy is always
non-negative. Let

ρAB = |B00〉〈B00|
This is a pure state so S(AB) = 0. However we have for the two parts

ρA =
1

2
IA, ρB =

1

2
IB

which have maximal entropies S(A) = S(B) = ln 2. The two parts of
the EPR pair when looked upon localy are as disordered as they can
be, however the global state is highly correlated.

Is there a general good lower bound for S(AB) in terms of the entropies
of the parts ? The answer is provided by

Theorem 3 (Araki-Lieb).

S(AB) ≥ |S(A) − S(B)|

Proof. The proof is a nice application of the purification idea and the
Schmidt decomposition theorem. We introduce a third system R such
that ABR is a purification of AB. That is

ρABR = |ABR〉〈ABR|, T rRρABR = ρAB

By subadditivity

S(AR) ≤ S(A) + S(R) (6.4)

Now since ρABR is a pure state the non-zero eigenvalues of ρAB and ρR
are equal; and also the non zero eigenvalues of ρAR and ρB are equal
(Schmidt theorem). Thus

S(AB) = S(R), S(AR) = S(B)

Replacing in (6.4) we get

S(B) − S(A) ≤ S(AB)

Since A and B play a symmetric role we can exchange them which ends
the proof.
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• Strong subadditivity. let ABC be a quantum system formed of three
parts HA ⊗HB ⊗HC. We have similarly to the classical case

S(ABC) + S(B) ≤ S(AB) + S(BC)

This can be written also as S(C|AB) ≤ S(C|B) in terms of “naive” con-
ditional entropies. So one may say that further conditioning reduces
conditional entropy (although the “conditional” entropy is not neces-
sarily positive). As in classical information theory, this inequality plays
an important role.

Classicaly the proof of this inequality is based on the positivity of the
KL divergence. It turns out that quantum mechanicaly the proof is
much more difficult. We will omit it here except for saying that one
can base it on the joint concavity of the functionals

f(A,B) = TrM †AsMB(1−s)

for any matrix M (not necessarily selfadjoint) and any 0 ≤ s ≤ 1.
This fact was a conjecture of Wigner-Yanase-Dyson for many years
until Lieb found a proof (1973). Later, Lieb and Ruskai realized that
it implies strong subadditivity.

6.3 Useful bounds on the entropy of a mix-

tures

This section is devoted to the proof of the following important theorem

Theorem 4. Let X be a random variable with distribution px and ρ =
∑

x pxρx where ρx are mixed states. We have

S(ρ) ≤
∑

x

pxS(ρx) +H(X)

This inequality has a clear interpretation: the uncertainty about ρ cannot
be greater than the average uncertainty about each ρx plus the uncertainty
about the classical preparation described by X. If in particular ρx = |φx〉〈φx|
are pure states we have S(ρx) = 0 so, as announced at the beginning of the
chapter,

S(ρ) ≤ H(X)
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Proof. First we deal with a mixture of pure states. For convenience we call
this mixture A and set

ρA =
∑

x

px|φx〉A〈φx|A

Let HR a space whose dimension is equal to the number of terms in the
mixture and with orthonormal basis labeled as |x〉R. The pure state

|AR〉 =
∑

x

√
px|φx〉A ⊗ |x〉R

is a purification of ρA because

TrR|AR〉〈AR| =
∑

x

px|φx〉〈φx|A = ρA

We also have that

ρR = TrA|AR〉〈AR| =
∑

x,x′

√
px

√
px′〈φx|φx′〉A|x〉R〈x′|R (6.5)

By the Schmidt theorem we know that ρA and ρR have the same non zero
eigenvalues, thus

S(ρA) = S(ρR)

Consider now

ρ′R =
∑

x

px|x〉R〈x|R

and look at the relative entropy

S(ρR||ρ′R) = TrρR ln ρR − TrρR ln ρ′R ≥ 0

Thus

S(ρA) = S(ρR) ≤ −TrρR ln ρ′R (6.6)

It remains to compute the right hand side. Since |x〉R is an orthonormal
basis

ln ρ′R =
∑

x

(ln px)|x〉R〈x|R

which implies

TrρR ln ρ′R =
∑

x

(ln px)TrρR|x〉R〈x|R =
∑

x

(ln px)〈x|ρR|x〉
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From the expression of ρR (6.5) we remark that

〈x|ρR|x〉 = px

Thus (6.6) becomes

S(ρA) ≤ −
∑

px ln px = H(X)

Consider now the general case of a mixture of mixed states ρ =
∑

x pxρx.
each mixed state has a spectral decomposition

ρx =
∑

j

λ
(x)
j |e(x)

j 〉〈e(x)
j |

so
ρ =

∑

x,j

pxλ
(x)
j |e(x)

j 〉〈e(x)
j |

Note that this is a convex combination of one dimensional projectors so that
we can apply the previous result

S(ρ) ≤ −
∑

x,j

pxλ
(x)
j ln pxλ

(x)
j

= −
∑

x,j

pxλ
(x)
j ln px −

∑

x,j

pxλ
(x)
j lnλ

(x)
j

= −
∑

x

px ln px −
∑

x

px

∑

j

λ
(x)
j lnλ

(x)
j

= H(X) +
∑

x

pxS(ρx)

In the last equality we used S(ρx) =
∑

j λ
(x)
j lnλ

(x)
j .

6.4 Measuring without learning the measure-

ment outcome cannot decrease entropy

Suppose we are given a mixed state ρ and a measurement apparatus with
measurement basis {|x〉〈x|}. According to the measurement postulate the
possible outcomes are pure states

|x〉, with probability px = 〈x|ρ|x〉
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[Note that
∑

x〈x|ρ|x〉 = 1]. If we observe the measurement result we know
that we have some |x〉 with zero entropy.

Now imagine that we do the measurement but do not record the measure-
ment result (subsequently we will call this a “blind” measurement). Then
our description of the state of the system is a mixture {|x〉, px} with diagonal
density matrix

ρblind =
∑

x

〈x|ρ|x〉|x〉〈x|

Note that this diagonal density matrix is equivalent to a classical state. If
we look at the relative entropy

S(ρ||ρblind) ≥ 0

we find, by a small calculation1,

S(ρ) ≤ H(〈x|ρ|x〉) = S(ρblind)

Thus blind measurements can only increase the entropy or leave it constant.
To conclude the chapter consider again a composite system AB where

Alice and Bob are very far apart and do not communicate. A local measure-
ment (with an apparatus {|i〉A〈i|A}) is done by Alice on part A which is blind
to Bob. Thus according to the previous inequality S(ρblind

B ) − S(ρB) ≥ 02.
However a true (immediate) increase would violate locality and it is very
reassuring to check that S(ρblind

B ) = S(ρB)
After Alice’s measurement the possible outcomes for the total system are

(|i〉A〈i|A ⊗ IB)ρAB(|i〉A〈i|A ⊗ IB)

Tr(|i〉A〈i|A ⊗ IB)ρAB(|i〉A〈i|A ⊗ IB)

or equivalently

ρ
(i)
AB =

(|i〉A〈i|A ⊗ IB)ρAB(|i〉A〈i|A ⊗ IB)

〈i|ρA|i〉
with probability (we set |i〉A = |i〉 to alleviate the notation)

〈i|ρA|i〉

Since this is a blind measurement for Bob the reduced density matrix is (a
mixture of mixed states)

ρblind
B =

∑

i

〈i|ρA|i〉TrAρ
(i)
AB

1identical to the one in the proof of the upper bound in the previous section
2Since Bob can consider that his system is isolated, he can apply the second law of

thermodynamics to “deduce“ this same inequality
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A short calculation shows that this equals

ρblind
B =

∑

i

〈i|ρA|i〉
〈i|ρAB|i〉
〈i|ρA|i〉

=
∑

i

〈i|ρAB|i〉 = TrAρAB = ρB

So after Alice’s measurement not only Bob’s entropy is unchanged but even
his density matrix is left the same as it was before the measurement. This
provides a completely general proof that Bob does not notice Alice’s mea-
surements. On Alice’s side if she does not record her measurement outcome
her entropy is greater.


