
Chapter 3

Quantum key distribution

One of the first applications of quantum mechanics to the field of information
theory has been the 1984 proposal of Bennett and Brassard for a secure
protocol to distribute a secret private key that is common to two distant
parties. Since then there have been a few other similar protocols and a
new field has emerged nowadays called “quantum cryptography”. In this
chapter we limit ourself to original protocol - now called BB84 - and to a
simpler one found by Bennet in 1992 - in a later chapter we will also give
the EPR protocol proposed by Ekert in 1991. The general idea of BB84 is
as follows. Alice sends a string of classical bits - the secret key - to Bob by
using intermediate quantum mechanical Qbits (in pratice these are photons
transmitted in optic fibers). Any attempt by Eve to capture some information
about the key amounts to observe the Qbits and, according to the postulates
of QM this observation will perturb the quantum system. Alice and Bob are
then able to detect this perturbation, thus the presence of Eve, and abort
communication.

The subject is in fact more complicated because in reality the channel
(the optic fiber) is noisy and it is non-trivial to distinguish Eve from noise.
The full proof of security1 for BB84 requires a combination of non-trivial
methods from classical and quantum information theory and is beyond the
scope of this course. Here we will analyze only the two basic attacks from
Eve, that were originaly considered by Bennett and Brassard, and we will
assume the channel is not noisy.

Quantum cryptography is not only a theoretical idea. It is also a truly
experimental subject since the protocols have been implemented and shown
to work in the laboratory (first at IBM by Bennett et al in 1989 over a
distance of 32 cm) and later outside the lab on distances of few tens of kilo-

1completed by a number of authors around 1993-1996

1
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Figure 3.1: Alice and Bob exchange a private key over an optic fiber

meters (Geneva, Los Alamos ...). Nowadays there exist companies proposing
commercial systems2. These technological implementations require extensive
knowledge of optics and will not be discussed here.

3.1 Key generation according to BB84

There are four essential phases: encoding procedure of Alice, a decoding
procedure of Bob, a public discussion between the two parties and finaly the
common secret key generation.

Encoding procedure of Alice. She generates a classical random binary
string x1, ..., xN , xi ∈ {0, 1} that she keeps secret (the common key will be
a subset of these bits). She also generates a second classical random binary
string e1, ..., eN , ei ∈ {0, 1} that she keeps secret for the moment. Alice then
encodes the classical bits into Qbits as follows:

• For ei = 0 she generates a Qbit in the state |xi〉. Concretely this can
be done by sending a beam through a polarizer in the Z basis (figure
1)

{|0〉, |1〉}

If the polarizer is oriented horizontaly (resp. verticaly) only photons
in polarization state |0〉 go through, and if it is oriented verticaly only
photons in polarization state |1〉 go through. A single photon is then
selected from the outgoing beam (this of course is an idealisation)

• For ei = 1 she generates a Qbit in the state*3 H|xi〉. Concretely this

2Idquantique, MagiQ

3We remind the reader that H is the Hadamard matrix

(

1 1

1 −1

)
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Figure 3.2: preparation of photons in Z basis

Figure 3.3: preparation of photons in X basis

can be done by sending a photon through a polarizer in the X basis

{ 1√
2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉)}

If the polarizer is rotated to the right (resp. verticaly) only photons in
polarization state 1

√

2
(|0〉 + |1〉) go through, and if it is rotated to the

left only photons in polarization state 1
√

2
(|0〉 − |1〉) go through.

Summarizing, Alice sends a string of Qbits |Aei,xi
〉 = Hei|xi〉, i = 1, ..., N

through a channel (in pratice the channel is an optical fiber).
Decoding procedure of Bob. Bob generates a random classical binary
string d1, ..., dN , di ∈ {0, 1} that he keeps secret for the moment. He decodes
the received Qbits of Alice as follows:

• If di = 0 Bob performs a measurement of the received Qbits |Aei,xi
〉 in

the Z basis
{|0〉, |1〉}.

The result of the measurement is

|yi〉 ∈ {|0〉, |1〉}.

and he records the bit yi. To do this concretely he uses the analyser-
detector apparatus described in the first chapter: the analyser is placed
horizontaly (figure 3); if the detector clicks this means the photons state
has collapsed in the |0〉 state and if the detector does not click, it means
that the photon state has collapsed to |1〉. We stress that, according to
the measurement postulate, these outcomes are truly random and that
only Bob observes them.
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D

Figure 3.4: measurement of polarization in Z basis

D

Figure 3.5: measurement of polarization in X basis

• If di = 1 Bob performs a measurement of the received Qbits |Aei,xi
〉 in

the X basis

{ 1√
2
(|0〉 + |1〉, 1√

2
(|0〉 − |1〉}.

The result of the measurement is in { 1
√

2
(|0〉+ |1〉), 1

√

2
(|0〉− |1〉)} if the

output is H|yi〉 and he records the bit

yi ∈ {0, 1}

To do this concretely he uses the analyser-detector apparatus described
in the first chapter: the analyser is rotated to the right (figure 4) at 45
degrees; if the detector clicks this means the photons state has collapsed

in the H|0〉 state while if the detector does not click it means that the
photon state has collapsed to H|1〉. We stress again that, according to
the measurement postulate, these outcomes are truly random and that
for the moment only Bob observes them.

In summary Bob has decoded the Qbits sent by Alice to a classical binary
string y1, ..., yN . This string is the outcome of measurements of Bob and can-
not be predicted (God does play with dice ... the statistics of these outcomes
can however be calculated according to the measurement postulate).

Public discussion. Alice has at her disposal two binary strings: e1, ..., eN

used to choose the encoding basis, and x1, ..., xN that was mapped to Qbits.
Bob also has two binary strings: d1, ..., dN used to choose a measurement
basis and y1, ..., yN that are his measurement outcomes.

Alice and Bob compare e1, ..., eN and d1, ..., dN over a public channel, but
keep their two other strings x1, ..., xN and y1, ..., yN secret. We will see that
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it is important that the public discussion starts only after Bob has finihed

his measurements. They can deduce the following information (and anybody
else also can):

• If di = ei, i.e. if they used the same basis, then it must be the case that
yi = xi (the reader should convince himself of that by going through
some examples with polarizer, analyser pairs - basicaly if Bob and Alice
used the same basis it is as if they lived in a classical world).

• If di 6= ei, i.e. if they did not use the same basis, then quantum
effects came into play when Bob did the measurement. According to
the measurement postulate: yi 6= xi with probability 1

2
; yi = xi with

probability 1

2
. Let us formaly prove this. Bob receives the Qbit

|Aei,xi
〉 = Hei|xi〉

and measures in the basis

{Hdi|0〉, Hdi|1〉}.

The outcome will be one of two possibilities

Hdi|0〉, with prob |〈0|HdiHei|xi〉|2

or
Hdi|1〉, with prob |〈1|HdiHei|xi〉|2

The reader can check that for ei 6= di both probabilities are equal to 1

2

(and that for ei = di they are 0 and 1).

Key generation. Bob and Alice erase all bits xi and yi corresponding to
i such that ei 6= di. They keep the remaining substrings of x1, ..., xn and
y1, ..., yn such that ei = di. They are assured that these two substrings are
equal so this can potentialy constitute the common secret key. The length
of this substring is close to N

2
since prob(ei 6= di) = 1

2
. Finaly Alice and Bob

perform a security test: according to quantum mechanics for this perfect
setting (without noise or Eve) one must have

prob(xi = yi|ei = di) = 1

Alice and Bob test this by exchanging a small fraction of the common sub-
string over the public channel. If the test succeeds they keep the rest of
the common substring secret: they have succeeded in generating a common
secret key.
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3.2 Attacks from Eve

Here we suppose that there is no noise in the channel so that all errors
that Alice and Bob will detect, when performing the security test above,
come from attacks of Eve. Furthermore we suppose that Eve may attack
by performing operations on one Qbit at a time. We consider two possible
attacks : “the measurement” and “unitary” attacks. For each of them we
will see that the basic postulates of QM imply that Eve fails.

Measurement attack. Suppose Eve captures a single photon in the optic
fiber (this is not very hard in principle: when fibers are twisted enough so
that their radius of curvature become small enough some light escapes). The
captured photon is in the state

|Aei,xi
〉 ∈ {|0〉, |1〉, H|0〉, H|1〉}

and she tries to measure it. We consider a “dangerous” situation where
Eve knows that Alice and Bob use the Z and X basis, in other words she
knows what the two parties call the vertical axis. But she does not know the
successive choices Z or X that Alice and Bob do. If Eve uses the Z basis
her outcome is in {|0〉, |1〉} and according to it she records a bit yE

i ∈ {0, 1}.
If she uses the X basis her outcome is in {H|0〉, H|1〉} and she records a
corresponding bit yE

i ∈ {0, 1}. Once she has finished the measurement she
sends the photon to Bob (in the state left over by the measurement) who
does not yet know about her presence. Two possibilities may occur:

• Eve uses the same basis than Alice: then her outcome is yE
i = xi and

the photon state received by Bob is the “correct one“,

• Eve uses a different basis than Alice: then her outcome yE
i = xi only

half of the time, so she sends the ”correct“ photon state to Bob only
half of the time.

Let us see what Alice and Bob find when they perform the security test.
Denote by EA the event ”Eve uses the same basis than Alice“.

prob(xi = yi|ei = di) = prob(xi = yi|ei = di, EA)prob(EA)

+ prob(xi = yi|ei = di, notEA)prob(notEA)

= 1 · prob(EA) +
1

2
· (1 − prob(EA))

=
1

2
(1 + prob(EA))
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where we used

prob(xi = yi|ei = di, EA) = 1, prob(xi = yi|ei = di, not EA) =
1

2
(3.1)

Assuming that Eve has no information about the basis choices of Alice we
take prob(EA) = 1

2
. Then prob(xi = yi|ei = di) = 3

4
so that Alice and Bob

notice that when they used the same basis about a fourth of their bits do
not agree. They conclude that an eavesdropper is at work and abort the
communication.

Unitary attack. The problem of Eve is that when she makes a measurement
she has no information about the basis that Alice chose. One possible solution
would be to copy the travelling Qbits |Aei,xi

〉, then let the original state
go to Bob, and keep the copy. When Alice and Bob enter in the public
discussion phase she learns about the basis of Bob in which to measure the
Qbit and thus for i such that ei = di she gets the same outcome as Bob
yE

i = yi = xi. However the no-cloning theorem (which is a consequence of
the unitary evolution postulate) garantees that there does not exist a unitary
”machine“ such that

U(|Aei,xi
〉 ⊗ |blank〉) = |Aei,xi

〉 ⊗ |Aei,xi
〉

The point here is that |Aei,xi
〉 is one of

{|0〉, |1〉, 1√
2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉)}

which is a set of non-orthogonal states.
Eve could try to use two copy machines: one for copying the two states

of the Z basis and another for copying the two states of the X basis. But
this time she has no way of knowing which machine to use. She will use the
wrong machine half of the time and again Alice and Bob will find that

prob(xi = yi|ei = di) =
3

4

Full proof of security. In a more realistic context there are various prob-
lems with the arguments above. First it is very difficult to produce single
photons. One produces a very low intensity beam and the photon number is
a Poisson random variable with mean related to the intensity. Often more
than one photon is produced and Eve might capture a few of these leav-
ing the others to Bob. In this case she doesnt have to copy anything and
all she does is wait for the public discussion phase. A second problem is
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that Alice and Bob will make errors in their measurements, there is channel
noise also and these have to be distinguished from the perturbations inccured
by the eavesdropper. A third one is that Eve migth perform operations on
many traveling photons at the same time (and not on single ones as assumed
above).

In order to deal with such problems one has to add two more phases
to the original BB84 protocol. These are called information reconciliation
and privacy amplification and are in fact classical protocols that belong to
classical coding and information theory.

3.3 The Bennett 1992 scheme

The analysis of BB84 has shown that the security ultimately relies on the fact
that Alice encodes Qbits in non-orthogonal states. The B92 scheme retains
this very fact and is even simpler than BB84. Below we just sketch the main
idea. There are again four main phases:

Alice encodes. Alice prepares a random binary string e1, ..., eN . She sends
to Bob |Aei

〉 = |0〉 if ei = 0 and |Aei
〉 = H|0〉 = 1

2
(|0〉 + |1〉) if ei = 1. The

encoding is thus Hei|0〉.
Bob decodes. Bob generates a random binary string d1, ..., dN and measures
the received Qbit according to the value of di in the Z or X basis and obtains
an outcome in {|0〉, |1〉} or in {H|0〉, H|1〉}. He decodes the bit as yi = 0 if
the outcome is |0〉 or H|0〉 and yi = 1 if the outcome is |1〉 or H|1〉.
Public discussion. Bob announces over the public channel the bits yi. Note
that when ei = di we have yi = 0 with probability 1. On the other hand
when ei 6= di we have yi = 0 with probability 1

2
and yi = 1 with probability

1

2
. Therefore from the public discussion Alice and Bob deduce that, given

yi = 1, surely di = 1 − ei.

Key generation. Alice and Bob keep the secret bits (ei, di = 1 − ei) for i

such that yi = 1 and discard the rest. The length of this substring is about
N

2
. they perform a security test on a fraction of the substring on the public

channel by checking that

prob(di = 1 − ei|yi = 1) = 1

Again it is not hard to check that this security condition is violated under a
measurement or a unitary attack of Eve. If that is the case Alice and Bob
abort communication.
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3.4 Conjugate coding

In the encoding method of Alice above the two basis that are used correspond
to the basis diagonalizing the two Pauli matrices

Z =

(

1 0
0 −1

)

, X =

(

0 1
1 0

)

(3.2)

These two observables do not commute and are called conjugate observables
by analogy with position and momentum; therefore the two basis are some-
times called conjugate and the corresponding scheme called conjugate coding.

In fact this scheme was first introduced in 1969 by Wiesner then a grad-
uate student. Wiesner, basing himself on the principles of QM, indicated
how to ”fabricate unforgeable bank notes“. Unfortunately nobody took him
seriously, except for Bennett then also a graduate student, and his paper
didnt get published till*4 1983. Bennett was one of the few persons who kept
thinking about such problems and, with Gilles Brassard a computer scientist,
had the idea to reconsider conjugate coding in the context of cryptography.

Let us briefly explain the original idea of Wiesner. One generates a ran-
dom binary string e1, ..., e20, and prepares 20 photons in |0〉, |1〉 or 1

√

2
(|0〉 +

|1〉), 1
√

2
(|0〉−|1〉), polarization states using Z or X polarizers. Then one traps

the 20 photons in 20 small cavities inside the bank note. The bank note also
contains a readable serial number which corresponds to the random string
e1, ..., e20. Only the bank knows what is the mapping from the serial number
to the binary string.

Suppose somebody attempts to copy the bank note. Because of the no-
cloning theorem there is no single machine U which copies simultaneously
vertical and diagonal photon polarizations. If one uses two different machines
one will make mistakes (with prob 1−2−20) because one doesnt know when to
use a UZ or a UX . Moreover the bank can check if a bank note has been forged
or not. Indeed from the serial number it deduces the binary string e1, ..., e20

and therefore knows the sequence of basis used to prepare the photons. A
measurement in the correct basis (for each little cavity) is done to observe
if the photons have the correct polarization. Note that if the bank note has
not been forged it will not be destroyed by such a procedure. To summarize,
one may say that the bank knows what exact sequence of analysers to use so
that the system behaves classicaly for the bank. For any other person that
doesnt possess this information the system behaves quantum mechanicaly.

4around 1982 quantum computation came into fashion because of an equaly pioneering

work of Feynman
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Figure 3.6: unforgeable bank note: it buys one Schroedinger cat


