Chapter 2

Mathematical formalism of
quantum mechanics

Quantum mechanics is the best theory that we have to explain the physical
phenomena, except for gravity. The elaboration of the theory has been guided
by real experiments as well as thought experiments and conceptual ideas of
a great generation of young physicist [milestones from 1900 to 1930 are:
Planck on black body radiation (1900), Einstein on the photon (1905), Bohr
on the atom (1913), De Broglie on the wave function (1924) , Schroedinger
on the wave function evolution (1926), Born on the interpretation of the
wave function (1926), Heisenberg on his matrix mechanics (1925), Dirac on
relativistic QM (1930)]. Probably half of these persons never completely
accepted their own ideas, although they still form the best theory that we
have today. The (axiomatic) mathematical form of the theory that we find
in modern textbooks has been settled by von Neumann around 1940: the
formalism looks simple and clean but as Feynman said ”if you think you
understand QM then you certainly dont”.

The arena of QM is Hilbert space so we begin with some mathematical
reminders on linear algebra in such spaces. Our goal is also to carefuly
introduce the reader to Dirac’s bra and ket notation. Then we introduce 5
basic postulates that define the theory and introduce two genuine quantum
notions, namely, entangled states and the no cloning theorem.

2.1 Linear algebra in Dirac’s notation
A Hilbert space 'H is a vector space over the field of complex numbers C,
with an inner product. For a finite dimensional Hilbert space that is all. For

an infinite dimensional Hilbert space we require that it is complete (com-
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plete means that all Cauchy sequences converge in the norm induced by the
inner product). In quantum information theory we will almost always deal
with Hilbert spaces of quantum bits which are discrete by nature, hence our
Hilbert spaces are finite dimensional and we do not have to worry about
completeness.

The vectors will be denoted |¢) (pronounced ket psi). The hermitian
conjugate (transpose and complex conjugate) is denoted by (| (pronounced
bra psi). The inner product is denoted (¢|¢)). This is the inner product of the
vectors |¢) and |¢) and is called a bracket (for bra-ket). The inner product
must satisfy:

1. Positivity: (¢|¢) > 0 with equality if and only if |¢) = 0.
2. Linearity: (¢|(alyr) + Bl2)) = a{tn) + B(dlyn)

3. Skew symmetry: (oY) = (¥|¢) where the bar denotes complex conju-
gation.

4. Completeness: the space is complete in the norm ||| = /(¥ |¢) (for
finite dimensional spaces one can forget this condition).

A ray is an equivalence class of vectors of the form A|i) where A € C
and [1) is a specified vector. This specified vector is a representative of the
equivalence class.

Example 1: Qbit or two level system. H = C? = {(g) with o, 5 € C'}.

The inner product is (7, §) (g) = Fa 4 0. In Dirac notation we have

(5) a0+

where |0) = ((1)), 1) = ((1)) Moreover

(%,0) = 7(0[ + o(1]
and

(0] +6(1[)(a]0) + BI1)) = F(0]0) +73(0|1) +0a(1]0) + 65(1]1) = Fa + /3



2.1. LINEAR ALGEBRA IN DIRAC’S NOTATION 3

Example 2: particle in three dimensional space. H = L?(R3) = {f :
R® — O, [dz|f(x)]> < oo}. The inner product is (f|g) = [ d*zf(x)g(z)
and the induced norm || f||s = (f|f)¥/? = [ d*z|f(x)|>. This space plays a
fundamental role in quantum mechanics but we will not need it in this course.

We will need the notion of tensor product. Let H; and H, be two
Hilbert spaces with two finite basis. Let the basis of the first space be |i)y,
i =1,..,ny, dimH; = n; and that of the second space |j)1, j = 1,...,na,
dim Hs = ny. We can form the tensor product space

Hi ® Ha
which is simply the new Hilbert space spanned by the basis vectors
1)1 ® [7)2
(also denoted |7, j) or |i)1|7)2). There are niny such vectors so
dimH; ® Hy = ning

A general element of the tensor product space is of the form

ny n2 ni n2

) = ZZ%‘MJ) = ZZczj!i)l ®17)2

i=1 j=1 i=1 j=1

Lastly we have to say what is the inner product in the product space:

(@, 51, 5) = ('l @ (G'2) ([0 @ 15)2) = ('10)1(5"]5)-

Example 3. For one Qbit the Hilbert space is C2. We will see that the
Hilbert space of two Qbits is C? ® C%. The basis vectors of C? ® C? are
[10) @ [0), [0) @ [1), [1) @ [0), [1) @ [1)} or {]0,0), [0, 1), [1,0), 1, 1)}. A
general state is

‘w> = 0600’0, O> + 0601‘0, 0> + 0610‘07 0> + 0611’1, 1>

We have dim C?®C? = 4 and of course C?®C? is isomorphic to C*: However
it is important to stress that in QM the meaning of the first space is really
that two Qbits are involved : in general it is too difficult (meaningless in
some sense) to do physics in a bad representation. Here a few inner products
are (0,0[0,0) = (0/0)(00) = 1, (0,1]0,1) = (0]0)(1]1) = 1, (0,1]1,1) =
(0|]1)(1]1) = 0 ect... From these on can compute the inner product of [¢))
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and |¢) = B0[0,0) + Bo1|0,0) + B10]0,0) + Bii[1,1). We find the natural
product of C*, (¢|1) = Byyaoo + Boror + Broio + Briai. It is often useful
to work in the canonical basis of C*

:|070> :|071> - |170> - |171>

[l el S
o OO = O
OO = OO
_ o O O O

Once this (conventional) correspondence is fixed we can infer the rules for
tensoring vectors in their coordinate representation

e[ -0
GRORNORCR|

You can see that in this course the convention is that you multiply the first
set of coordinates by the second vector (do not attempt to ask questions with
another convention in mind). All these rules generalize to C? @ C*® C? ect...

Cauchy-Schwarz inequality. As usual:

()| < (ploy ()2

Closure relation. Let |i), ¢ = 1,...,n be an orthonormal basis of the n-
dimensional Hilbert space. Any vector |¢) can be expanded as

n

0) = aili), = {(ilg)

i=1

where the components ¢; are obtained by projecting |¢) over the basis vectors.
The above expansion can be rewritten as

9) = > li)ile)
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We can view Y |i)(i| as the identity operator acting on ¢. Thus we have

the closure relation .
> Ly =1
i=1

This turns out to be very useful for doing practical calculations in Dirac
notation. Note that this identity is simply the spectral decomposition of the
identity.

Observables. In QM observable quantities are represented by linear opera-
tors on ‘H. Let us briefly review a few important facts. The map A : H — H,
|) — Aly) is linear if

Alalgr) + Blda)) = a(Aldr)) + 5(Alda))

The matrix elements of A in a basis {|i),i = 1,...,n} of H are denoted by
(i|Alj) or A;;. Given A, the adjoint of A is denoted A" and defined by

(@lAT|v) = (V] A[9)

So the adjoint (or hermitian conjugate) is the operator which has transposed
and conjugate matrix elements. We say that A is self-adjoint (or hermitian)
if A = A'. The later type of operators play a very central role in QM because
observable quantities are represented by self-adjoint operators: the reader can
guess that this must be so because any physical measurement is expressed

by a real number (why ?) and self-adjont operators have real eigenvalues.
The reader can check that (A + B)l = AT + BT and (AB)! = BTAT.
We will also need the following notations for the commutator

[A,B] = AB — BA
and the anticommutator

{A,B} = AB + BA

Projectors in Dirac notation. The linear operator |i){(i| = P; is the
projector on the basis vector |i). To check that P; is a projector we need to
verify that PZ»T = P, and P? = P,. Here is how one does it in Dirac notation

Pl = (|0 = (@D = i)l = P
P? = (i) () (19) () = [a) (i) (il) = i) {i| = P
Since |i) and |j) are orthogonal for i # j we have P,P; = P;P, = 0. Indeed

FiPi(1a) (1) () = 19) (@l (a]) = 0
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B P(15) G ) (Gl = 1) (e E]) = 0
Note that In general if |¢) is a vector of the Hilbert space, then P, = [¢)(®|
is the projector on |¢).

Spectral decomposition. Self adjoint operators on a Hilbert space have a
spectral decomposition or spectral representation,

A= Z&"P"

where a, € R are the eigenvalues and P, the eigenprojectors of A. The
eigenspaces of A are spanned by the orthonormal eigenvectors |¢,;) associ-
ated to the eigenvalue a,,:

Albug) = anl@ng), Pn = Z |Pnj) (Dng)

The index j takes into account the possible degeneracy of a,. From the
orthonormality of the eigenvectors one sees that P,P,, = P,P, = 0 for
n # m. Note that for given n one always has the liberty to rotate the basis
{|¢n;)} in the subspace of P,,. Moreover we have the closure relation

I = ZP” = Z |Pnj) (Pnj)

We will often write the spectral decomposition as

A= Z n|Onj) (Pnj)

n7j

In the non-degenerate case this becomes simply A =) a,|¢n)(¢n)-

2.2 Principles of quantum mechanics

In this paragraph we explain the 5 basic postulates of QM: their meaning,
interpretation and soundness has been debated over the 20 th century by
the founding fathers of QM and by their followers, specialy the 4th postulate
(measurement psotulate). In fact it can be argued that the first 3 psotulate
do not depart very much form classical physics; the heart of the theory lies
in the 4th and 5th postulate.

Here we adopt the traditional Copenhagen interpretation®™! accepted by
most physicist today: it has not yet been challenged by any experiment nor
is there a simpler theory in adequation with all known experiments.

1

Istrongly advocated by Niels Bohr in his Copenhagen school, and strongly opposed, by
many, and in particular Einstein during all his life
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The basic objects of study are states of a system. The states evove with
time. We measure observable quantities. Measurement is not a distinct pro-
cess (from time evolution). Systems can be brought together and composed.

Postulate 1: states. The state of a quantum system - that is isolated
from the rest of the universe - is completely*? described by a ray in a Hilbert
space. We require that the representative vector |¢) € H is normalized to

one, (Y[¢) = 1.
Example 4.

e The polarization of the photon has the H = C?. States are vectors
in C? |¢) = «a|0) + B]1), |a]* + |3]*> = 1. For a linearly polarized
state |0) = cos@|0) + sinf|1), for a circularly polarized state |§) =
cos 0]0) +isin @|1), and for elliptic polarization cos #]0) + €% sin §]1).

e The spin % of an electron (say) is described by the same Hilbert space.

e For a Benzene molecule the Hilbert space is again the same and is
spanned by the two valence bond states (see chapter 1):

) = all) +612)

e For a particle in R* we have H = L?(R?) as explained before. These
are called wavefunctions and are normalized [ d®z|¢(x)|* = 1.

Remark. If [¢) is a description of a system then e*|¢)) is an equally good
description. The global phase A € R is not an observable quantity and
can be fixed arbitrarily. This is why QM states should really be defined as
rays. However the relative phase of states is observable (through interference
effects). You might also wonder what is the difference between spin one-half
and photon polarization. In fact photon polarization states and spin one-
half states behave very differently under spatial rotations of the coordinate
system (or the lab). Under a 27 rotation around the propagation axis of
the propagation direction of the photon its state is invariant (it is a vector).
On the other hand for spin one-half a 27 rotation around the ”spinning
axis” does not leave the state invariant but reverses its sign (it is a hal-
vector or a spinor). In QM the representations of the rotation group (and
any other group) on the Hilbert space does not have to satisfy R(27) = 1,
precisely because states are rays. Therefore a phase is allowed for R(27)|¢) =
ew). All these aspects of QM will not mater too much in this course so

2Einstein challenged the assertion that it is complete
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we omit more explanations on what "spin” and ”photon polarization” really
are. In fact a meaningful discussion of these aspects require to explain the
representation theory of the Lorentz group of special relativity.

Postulate 2: time evolution. An isolated quantum system evolves with
time in a unitary fashion. This means that if [¢)) is the state at time 0,
the state at time ¢ is of the form Uy|¢)) where U, is a unitary operator from
H — H. Here unitary means that UTU = UUT = 1 or equivalently U~! = UT.

Unitary time evolution forms a group (it is a representation of translations
along the time axis) in the sense that

Ui—p = Ia Ut1 Ut2 = Ut1+t2

QM tells us how to compute U, for a given system: one has to solve the
Schroedinger equation or the Heisenberg equations of motion. These are
equivalent in fact. The first one is the quantum mechanical version of the
Hamilton-Jacobi equation of classical mechanics while the second is the quan-
tum version of hamilton’s equations of motion. In quantum computation (at
least in theory) we do not bother too much about these equations : we opti-
miscally assume that if we need a specified U then somebody (a physicist, an
engineer) will be able to construct a device (an electronic device for example)
which realizes the time evolution U. For us a specified time evolution is a
gate that will ultimately part of a quantum circuit.

It is very important to realize that time evolution is linear: this is quite
surprising because in the clasical regime one should get back the classical
equations of motion which are generaly non-linear*?

Example 5. A semi-transparent mirror decomposes an incident ray into a
reflected and a transmitted part (see chapter 1). Let H = C? the Hilbert
space with basis |T'), |R). The semi-transparent mirror acts in a unitary way

1
T) — — H|T) = ﬁm +1R))

1
IR) — — H|R) = —(IT) = |R)

The unitary matrix H is called a Hadamard gate

(Y

3this kind of thing can be done and it has led to a whole discipline called quantum
chaos. On a more philosophical register Einstein thought the basic laws of physics should
be made non-linear. Non linear corrections to Schrodinger’s equation have been proposed
but only experiment will tell if these are realized in nature.
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One checks that HH' = H'H = 1. If we put two beam splitters in series
(see exercises)

W) = H |=[ H |— H’¢) = )

) . 10 .
the output is equal to the input because H? = 0 1) In other words if
the input state below is |T') then the output is also |T'). If we wish to take

more serously into account the effect of the mirrors we insert between the

two Hadamard matrices the gate X = (O 1)

10

W) =alT)+BlR) = | H |- X |=[ H |- HXH)) =a|T) - 8|R)

Postulate 3: observable quantities. In quantum mechanics an observable
quantity (energy, magnetic moment, position, momentum,...) is represented
by a linear selfadjoint operator** on H.

Examples 6.

p2

%, energy or hamiltonian is & + V().

h
i 2m

e Position x, momentum p =
We will not need these.

e However we will need things like the polarization of a photon. Suppose
we send a photon in a polarized beamsplitter (see chapter 1). If D,
clicks we record a —1 while if D, clicks we record a +1. Our observa-
tions can be described by the observable

P = (+1)|z)(z| + (=1)|y){y|

This is the selfadjoint matrix ((1) (1)) (in the |z), |y) basis).

e General observables in H = C? can always be represented by 2 x 2

hermitian matrices
a [
A= (=
(ﬁ v)

A = al0)(0] + B0) (1] + BI1){0] + 7 [1)(1]

or in Dirac notation

4There is a ”correspondence principle” which is a rule of thumb on how to construct
the appropriate self adjoint operator from the classical one; in fact this procedure may
sometimes be a bit ambiguos due to non-commutativity of operators
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All such matrices can be written as linear combinations of

10 10 0 1 0 —i
p)=r 5= 0 0= a)=r

The observables (hermitian matrices !) X, Y, Z are called Pauli ma-
trices. One of their uses is the description of the spin observable for
spin % particles: this is a ”"vector” with 3 components ¥ = (X,Y, 7).
In the physics litterature the notation is ¥ = (0., 0y, 0,). Important
properties of these matrices are

X2=Y?=2°=1] XY =-YX, XZ=-2X,YZ=-2Y

and
X,Y|=2 [V,Z|=X, [Z,X]=Y

This algebra is a special example of spin or Clifford algebras which play
an important role in QM.

Postulate 4: measurement postulate. This is the most disturbing pos-
tulate: it requires a rather big leap of intuition (or stroke of genius ?7) which
goes back to Max Born (one also speaks of the Born interpretation of the
wave function). Let a system be prepared in a state |¢)). The system is
to be measured with an apparatus. The apparatus is modelled by a set of
orthonormal projectors {P,} satisfying > P, = I. A single measurement
reduces the state 1 of the system to

oy Do) B
RO (@] Pf)

(physicist like to say that the wavefunction collapses). For a single mea-
surement there is no way to predict what will be the specific outcome n:
it is random (in the sense that we cannot predict it)*°. If the experiment
is repeated many times (assuming this is a reproducible experiment) one
finds that the probability (in a frequentist interpretation of the term) of the
outcome n is

Prob(outcome n) = |(¢n|V)|? = (| P.|v)

So the outcome is also random in this frequentist sense.

SEinstein didnt agree: he said ”"God does not play dice”. Bohr didnt care what God
does, and from his point of view it is simply meaningless to ask for more information than
that given by the wave function and its collapse.
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Remark 1. Since ) |, P; = I and [¢) are normalized we have ) | Prob(outcome j) =
1. At least this far it makes sense.

Remark 2. When the eigenprojectors are not degenerate these formulas
look much simpler. If P; = |j)(j| the probability of the outcome j is

Prob(outcome j) = |{j[v)|?

and the state just after the measurement is |7)

Consequences for the measurement of observables. This is a very
important point because ultimately one really measures physical quantities.
The above measurement apparatus {P,} gives the value of any observable
of the form A =, a;P;. The measurement makes |¢)) — |¢,) for some n.
Since A|¢y,) = an|py,) the value of A given by the measurement is precisely
a, when the outcome is n. This means that the value of an observable is
precisely known after the measurement as long as the observable has the
same eigenspaces than the measurement apparatus. In particular we can
know simultaneously the value of many observables as long as they have the
same eigenspaces.

The average value that the measurement, on the state [¢), will yield can
be calculated from the probability distribution above. One finds

> " a; (WP = (W] Al)

J

and the variance is

PIACIAOR (Z a; (1 Pl))* = (6;14%1¢5) — (4l Alg;)*

J

In practice one uses the right hand side of these two formulas. That is
basically all that a theorist can predict.

After a measurement the state vector is reduced [1)) — |¢,), for some n,
and thus the expectation value in the new state becomes a,, and the variance
0. This means that if we repeat the same measurement on the same state we
will get precisely the value a, again and again.

We will return to this point when we will consider the Heisenberg uncer-
tainty principle.

Example 7: measurement of photon polarization. Supose we want to
measure the observable P = |z)(z| — |y)(y| For this we use the apparatus
constituted of an analyser oriented along x and a detector. This apparatus
is the physical realisation of the measurement basis. If a photon is detected
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the state just after the measurement is |z) and if a photon is not detected
(it has been absorbed by the analyser) the state just after the measurement
is |y). The probabilities of these outcomes are

Prob(outcome + 1) = [{z|¢)|?, Prob(outcome — 1) = |(y[¢)[?

If the initial prparation of the beam is [1)) = cos@|z) + sinf|y) these prob-
abilities are simply cos?# and sin®#. Supose that now we rotate the anal-
yser by an angle . This means that we wish to measure the observable
P = |7) (7] — |7L)(yL]- then we can compute again the probabilities of the
outcomes

Prob(outcome + 1) = |(y]¥)|* = cos*(6 — ¥)

Prob(outcome — 1) = [(y,[1))|* = sin®(6 — 7)

Finaly let us note that in the first case the measured observable in matrix

form is
1 0
P=2z= (O —1)

_[cos2y  smm2y \ .
P = (sin 2y — cos 27) = (c0s2y)Z + (sin2v)X

and in the second

Uncertainty principle Suppose that we have a system in a state ¢ and
we consider two observables A and B. We assume that these have spectral

representations
A=) 4P, B=Y bQ,
J J

As discussed previously in a general state |1)) each of these is not fixed but
has an average value (¢|A|Y), (¥|B|Y) and a standard deviation AA =

V@1A4210) — (W] AR)2, AB = \/(]B2w) — (4| Blv)®. The Heisenberg un-

certainty relation states that

AA-AB 2 S(lA, B0)

The interpretation of this inequality as first discussed by Heisenberg is that
when [A, B] # 0 it is not possible to measure A and B simultaneously with
infinite precision. If we manage to make AA = 0 then we will have AB =
oo0. The prototypical and most striking example is A = = (position) and
B=p= %a% (momentum). In this case AzAp > 2= and we cannot measure
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simultaneously with infinite precision the position and the momentum of a
particle: this is not a technological limitation but ultimately a ”god given”
limitation.

Note that if [A, B] = 0 then there exist a common basis of the Hilbert
space in which A and B are both diagonal. Then by measuring in this basis,
the measurement postulate tells us that both observables can be determined
with infinite precision. There is no clash with the uncertainty relation be-
cause the right hand side of the inequality vanishes.

There is a related principle called the ”entropic uncertainty principle”
which we now state. Suppose A and B have non degenrate eigenvalues

A= Z ny |T00) (al

B =" by|my)(my

Set
H(A)==> p(na)Inp(ny),  H(B)=—=>_ p(my)np(m)
where
p(na) = [(nal) [* p(ms) = [{my|)]?
We have

1+ max,, m, |(1al1m) I)

H(A)+ H(B) > —21n( .

Postulate 5: composite quantum systems. This is also a highly non
trivial postulate as will be seen from its consequences throughout the course*®.
Suppose we have two systems A and B with Hilbert spaces H 4 and Hg. The
Hilbert space of the composite system AB is given by the tensor product
space

Ha® Hpg

The states of AB are vectors [1)) € H4 ® Hp. The previous postulates apply
to the composite system.

Example 8. Two photons with polarization degrees of freedom have Hilbert
space C?® C?. Examples of states are |2) 4®|y)p or |2) 4R |y)5+[0) 4R |0) 5.

6In a famous paper Einstein, Podolsky, Rosen were the first to make a sharp analysis
of its consequences and this has ultimately led to Bell inequalities, teleportation, ect...
Einstein called such effects ”spooky”
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N Qbits live in the space

CeC’C°® .0 C*

N copies

If |0), |1) is a canonical basis for C?, a basis for the composite system is given
by

|b1) ® |b2)... ® |bn) = |b1, ..., by)
where b; = 0,1. There are 2V such states and they are in one to one corre-
spondence with the 2V classical bit strings of length N. A general N Qbit
state is a linear superposition of the basis states:

2.3 Tensor product versus entangled states

States of a composite system AB lie in H4 ® Hz. We say that a state is a
tensor product state (or is not entangled) if it can be written as

[¥) = 19) 4 @ |0)5

An entangled state |¢) € H4 ® Hp is one for which it is impossible to find
) 4, € Ha and |¢), € Hp such that ¢ is of the tensor product form.
Entangled states have very special correlations between their parts A and
B. These are guenuine quantum correlations with no classical counterpart
and as we will see later in the course they play a very important role (for ex-
ample in teleportation). These definitions generalize to mutipartite systems.

example 9. Two Qbit system with A ® B = C? ® C?. Some product
states are : |0)4 ® [0)g = [0,0), [0)4 @ [1)g = ]0,1), [1)4 ® |0)s = |1,0),
1) 4 ® |1)p = |1,1). Two less trivial ones are

1

~(10)4+ [1)8) @10)s = 5(10,0) +11,0)

5

and

(0t L)) © =

1
5 \/5(|0>s— [1)s) = 5(10,0) =10, 1) +1,0) = [1,1))

Sl
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In the same space there are also entangled states that cannot be written as
a tensor product form no mater how hard you try

7(|0> A®0)s+1)a®|1)p) = 7(|0 ,0) +11,1))
7<ro> A® 1005 — )4 ® [1)s) = 7(10 0)— |1, 1))
ﬁmm\omﬂom 1)) = 701 0)+10,1))
(004 ® [0)s — [1)4® [0)s) = —=(]0, 1) + [1,0))

Sl
Sl

As we will see these four particular states play a special role and are called
Bell states. The reader can check that they form a basis of the 2 Qbit space.

Production of entangled states. Suppose we have a composite system
in an initial tensor product state |p)4 ® |x)5. These could for example be
two electrons in the spin state | 1) ® | |). if we let them evolve separately
and without interaction the unitary operator for the time evolution is of the
form Uy ® U and

Ua®@Us(| 1)@ 1)) =Ual 1) @ Up| 1)

so that the system remains in a tensor product state.

Thus to produce entangled states systems A and B must interact at some
point in time in order to have an evolution Uy # Uygq ® Ug. With an
appropriate interaction we might be able to achieve

Uas(| T) @] 1))

All known physical interactions are local: this means that in order to interact
(in a non-negligible way) two systems must be ”close in space-time”. In
particular if we are presented with an entangled state we know that the two
parties have interacted in the past, i.e they have been ”sufficiently close in
the past”.

2.4 No cloning theorem

Classical bits can be copied. For example any latex file can be duplicated or
any text can be copied with a (universal) Xerox machine.

Suppose we have quantum states ¢ € H and we want to build a (uni-
versal) ”quantum Xerox machine” to copy |¢). This machine should be able
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to copy any state of H. A quantum Xerox machine should be described by
some unitary operator U (this is true for any physical process except mea-
surement). The Hilbert space is composite H 4 ® Hg where A is the quantum
file to be copied and B the duplicated file. We start from the state

|1) ® |blank)

and we feed it in the Xerox machine

[) @ [blank) —[ U |- |¢) @

In mathematical terms the question is: can one find a unitary operator such
that for a reasonably large set of 1

U([) @ [blank)) = [¢) @ |¢)

The answer is NO and this is sometimes called the "no cloning theorem”.
However it is possible to copy a set of orthogonal states (with an appropriate
U depending on the set).

Proof. Suppose there exists U such that UTU = UUT = 1 with
U([¢1) @ [blank)) = [¢1) ® [¢1)
U(|¢2) © [blank)) = [¢2) @ |¢2)

conjugating the second equation

({2 @ (blank|)UT = (¢s| @ (5

Taking the inner product with the first equation

(62| ® (blank|U'U|¢1) @ [blank) = (2] @ (¢a])(|¢1) @ 1))

which implies
(¢2]p1) (blank|blank) = (@s|p1)?

SO
(P2]¢1) = 0 or (d2]¢1) =1

We conclude that we cannot copy states that are not identical or orthogonal.
In fact it is possible to copy a given orthogonal basis . To see this the reader
has to construct a unitary operation that does the job.

Non orthogonal states cannot be perfectly distinguished. There are
many variants and refinements of the no-cloning theorem. let us just show
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one such variant. Suppose we have two states 1)) and |¢) and we want to
build a (unitary) machine to distinguish them. We sek a U such that

Ulg) @ la) = [¢) @ |v)
Ulg) ® |a) = |} © [v)

where the outputs |v) and [v') give some information about [¢)) and |¢).
Taking the inner product of these two equations yields

(¢l ® (alUTU1Y) @ |a) = ({¢] @ (W'D ([¥)) ® [v))

This implies
(o9} (ala) = (o) (v'|v)
If |¢) is not orthogonal to |¢)) we have (¢p|1)) # 0 thus
(v'|v) = (ala) =1

Thus |v) = |v') so there is no information in |v) and |v") distinguishing |¢))
and |¢).



