
Chapter 1

Experiments with light

1.1 Electromagnetic waves

According to Maxwell light is an electromagnetic wave of electric E(x, t)
and magnetic B(x, t) fields freely oscillating in vacuum. The solutions of
Maxwell’s equations in empty space are superpositions of monochromatic
modes of frequency ω. A mode, or plane wave, propagating along the z axis,
is given by

E(x, t) = ReE0 e
i(kz−ωt), B(x, t) =

1

c
ẑ× E(x, t), ω = ck (1.1)

The amplitude vector E0 (thus E and B also) always belongs to the (x, y) ⊥ z
plane,

E0 = E0

cos θeiδx

sin θeiδy

0

 (1.2)

The energy per unit time per unit surface that would be imparted to a
material object by the wave, is given by the norm of the Poynting vector

S = ε0c
2E×B (1.3)

A convenient measure of the intensity I of the wave is given by the norm of
S averaged over a period T = 2π

ω
,

I =
1

2
ε0c|E0|2 =

1

2
ε0cE

2
0 (1.4)

From (1.1), (1.2) it follows in general that the tip of the electric (and
hence also magnetic) field vector describes, as a function of time, an ellipse
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Figure 1.1: Preparation of beam polarized along θ

in the (x, y) plane. There are two degenerate cases of special importance.
Linear polarization corresponds to δx − δy = mπ (m integer) and the tip of
the field oscillates in the (x, y) plane on a line making the angle θ with x (m
even/odd). For θ = π

4
(so that cos θ = sin θ = 1√

2
) and δx − δy = mπ

2
(m odd

integer) the polarization is left/right circular which means that the tip of the
field rotates along a circle of radius E0. A light beam can be easily prepared
in a state of linear polarization with the help of a filter which transmits only
the component of the electric field along θ. All our subsequent discussion
does not rely on a detailled explanation of the phenomenon and we do not
need to know more about it1. Such a device is called a polarizer with axis θ
(figure 1.1).

Assume that a source of light has been prepared in a state of linear
polarization along θ as in figure 1.1.

Ein(x, t) = E0

cos θ
sin θ

0

Re ei(kz−ωt) (1.5)

The intensity of the prepared beam (1.5) is proportional to E2
0 . Suppose

now that this ray is transmitted through a second polarizer at an angle α.
This second polarizer is called the analyzer. The light is then collected by
a detector2 and its intensity measured (see figure 1.2). The electric field of
the final beam is obtained by projecting the incoming electric field on the

1In fact so-called absorptive polarizers are made of sheets of anisotropic crystals allow-
ing electron motion preferentially in the θ⊥ direction. The θ⊥ component of the electric
field sets electrons into a state of oscillation which produces the emission of an emitted
antiphase electromagnetic wave polarized along θ⊥. The later cancels the progressive θ⊥
component of the wave so that the net effect is to leave out a θ transmitted component
and a θ⊥ reflected component.

2This can be a photoelectric cell which transforms the electromagnetic energy into a
current.
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Figure 1.2: analyzer-detector measurement apparatus

analyzer axis eα

Eout = (Ein · eα) eα = E0 cos(θ − α)

cosα
sinα

0

Re ei(kz−ωt) (1.6)

and the intensity received in D is proportional to E2
0 cos2(θ − α). To sum-

marize, when a beam polarized along θ is transmitted through an analyzer
at an angle α, the outgoing beam is polarized along α and the fraction of
intensity collected by the detector (average power per unit surface) is3

Iout

Iin
= cos2(θ − α) (1.7)

In particular if α − θ = 0, π all the light passes through the analyzer, while
if α − θ = ±π

2
none of it is transmitted. The analyzer-detector system can

be used as a measurement apparatus to determine the polarization of a wave
(assuming we know a priori that it is linear) by adjusting the angle α such
that the collected intensity varies from 0 to its maximal value. Let us now
describe two simple experiments with electromagnetic waves.

Polarizing beamsplitter experiment. There exist prisms4 that have the
property of splitting a beam in two linearly polarized ones, one is polarized
perpendicular to the incidence plane while the other is polarized parallel
to that plane. In figure 1.3 the incidence plane is (x, z) so one ray has y
polarization while the other one has x polarization. Two detectors Dx and
Dy measure the outgoing intensities of each beam. Note that the polarization
degree of freedom is coupled to the orbital (path of ray) degree of freedom.

3Malus law.
4These are made of quartz or calcite crystals whose refraction index are different for

polarization perpendiclar to, versus into, the incidence plane. Such crystals are called
birefringent, one ray is called ordinary because the direction of refraction obeys the usual
Snell law, while the other ray is called extraordinary.
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Figure 1.3: polarizing beamsplitter experiment

Before the polarizing beam splitter the electric filed is given by (1.5) and has
intensity proportional to E2

0 . After the beam splitter the x-polarized ray has
an electric field

Ex = E0

cos θ
0
0

Re ei(kz−ωt) (1.8)

and the intensity detected at Dx is proportonal to E2
0 cos2 θ, while the y-

polarized ray has a field

Ey = E0

 0
sin θ

0

Re ei(kz−ωt) (1.9)

and its intensity measured by Dy is proportional to E2
0 sin2 θ. Both detectors

collect a fraction of the intensity,

Iout,x

Iin
= cos2 θ,

Iout,y

Iin
= sin2 θ (1.10)

In this experiment absorption and reflection by the prism are negligible so
that the sum of the these two fractions equals 1.

Decomposition-recombination experiment. Once we have decomposed
light with a polarizing beamsplitter, we can recombine it with a symmetric
prism. We analyze the recombined beam with an analyzer-detector appara-
tus (see figure 1.4). Let us carefully review the situation. Before the first
beamsplitter we have one ray with electric field given by (1.5). The first
beamsplitter splits the ray in two parts with electric fields given by (1.8) and
(1.9). After the second beamsplitter the two rays interfere and the electric
field of the recombined beam is the sum of (1.8) and (1.9), which equals
(1.5). The fraction of intensity collected by the analyzer-detector system is

cos2(θ − α) (1.11)

a fact consistent with the first experiment.
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Figure 1.4: decomposition-recombination experiment

1.2 Photons

Einstein’s explanation of the photoelectric effect, assumes that the interac-
tion of light with matter occurs through discrete quanta (quantities) of en-
ergy and momentum that are absorbed and emitted. These quanta are called
photons, and each photon carries an energy h̄ω and momentum h̄k (where
ω = ck still holds). If we think of the beam as a collection of independent
photons, its intensity is h̄ωcN

V
where N

V
is the number of photons per unit

volume5. Identifying this quantity with (1.4) we find a relation between the
electric field and the number of photons associated to the electromagnetic
wave.

If we diminish sufficiently the intensity of the source we arrive at a situ-
ation where in principle photons are emitted one by one. We will repeat the
experiments with such a single photon source, that prepares them in a state
of polarization θ.

Let us first discuss how the analyzer-detector measurement apparatus
works. We repeat the experiment of figure 1.2 and collect photons at the
detector D. When a photon hits the detector the later clicks (an electric
pulse is triggered) - we record this event as a 1, otherwise we record 0. This
experiment produces a sequence

1001111000101010011101... (1.12)

that looks random and where the empirical fraction of 1’s is cos2(θ − α).
From this experiment we infer

probability of detecting a photon = cos2(θ − α) (1.13)

In particular if α− θ = 0, π all photons are detected while if α− θ = ±π
2

no
photon is detected.

5cN
V is the number of photons par unit time per unit surface that hit a detector.
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This experiment shows that photons carry a polarization. However we
already see that they behave in a peculiar way, indeed for general angles it
is not possible to predict the precise outcome for each individual photon.
We will see that this is a fundamental feature of the measurement process
for quantum systems and that it is not at all obvious to reconcile this fact
with our classical intuitions. One could attempt a classical interpretation6

- which is wrong - by saying that the photon is particle-like object that
undergoes complicated but otherwise deterministic collision processes within
the analyzer, which result in a probability cos2(θ − α) of being transmitted.
In view of (1.7) and (1.13) this idea even seems compatible with the picture
of a wave being a collection of independent photons.

Let us now repeat the two previous experiments with photons that are
sent one by one.

Polarizing beamsplitter experiment. Each single photon (polarized at
an angle θ) goes through the prism. We observe that either Dx clicks (the
upper detector register a 1 and the lower a 0) or Dy clicks (the upper detector
registers a 0 and the upper a 1); but they never click simultaneously. We
record two random complementary sequences with respective fractions of 1
equal to cos2 θ. Empirically,

prob detect photon at Dy = sin2 θ, prob detect photon at Dx = cos2 θ
(1.14)

The sum is equal to one which means that the photon has certainly passed
through the beamsplitter.

The fact that the detectors never click at the same time, contrarily to
what happens with waves, suggests the same (wrong) classical interpretation,
alluded to above. A photon is a sort of particle, which due to complicated
but otherwise deterministic collisions with the crystal, is deflected towards
the lower path with probability sin2 θ or through the upper path with prob-
ability cos2 θ. This seems again consistent with the observed intensities of
the experiment with waves if we assume the wave is a collection of photons.

Decomposition-recombination experiment. let us consider again the
setting of figure 1.4. When photons are sent one by one we again record a
sequence of random clicks, and we infer from this sequence

prob detect photon at D = cos2(θ − α) (1.15)

This should comes as a great surprise to the reader. Indeed this result is
not consistent with the particle-like picture of a photon, but rather with a
wave-like picture, as we now show.

6in the spirit of statistical mechanics, say
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If a photon takes the lower path in figure 1.4 its polarization is horizontal
before the second beamsplitter and comes out of it in a horizontal state.
Therefore the probability of transmission of such a lower-path photon through
the analyzer is cos2(π

2
− α) = sin2 α. Therefore

prob(D clicks | lower path) = sin2 α (1.16)

If the photon takes the upper path its polarization is vertical just before
the second beamsplitter and comes out in a state of vertical polarization.
Therefore the probability of transmission of such an upper-path photon is
cos2(0− α) and

prob(D clicks | upper path) = cos2 α (1.17)

Now, we have

prob(D clicks) =prob(D clicks | lower path)prob(lower path)

+ prob(D clicks | upper path)prob(upper path) (1.18)

Thus because of (1.14), (1.16), (1.17)

prob detect photon at D = sin2 θ sin2 α+ cos2 θ cos2 α (1.19)

This contradicts the experimental result (1.15) and is therefore wrong ! The
term that is missing is precisely

2 cos θ cosα sin θ sinα (1.20)

which, in wave theory, appears because of the interference between the x and
y components of the electric field.

We thus face the following situation. The decomposition experiment 1.3
suggests that photons behaves in a particle-like manner (like a billiard ball)
choosing the upper or lower path according to some underlying complicated
collision process. The recombination experiment (1.4) suggests that photons
behave in a wave-like fashion. As for most dilemmas, the resolution offered
by quantum theory teaches us that both pictures are a partial reflection of a
more subtle reality.

1.3 The quantum setting: first encounter

In fact all known forms of matter7 display this particle/wave duality. As we
will now see quantum mechanics offers us a picture which accomodates both

7For example photons, electrons, nuclei and their constituents ...
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behaviors and superseedes the classical pictures of wave and particle8.
We will illustrate how the rules of quantum theory consistently explain

the three experiments. The situation will be modelled in the simplest possible
way which retains the basic essence of quantum mechanics.

The state of a photon is described by two degrees of freedom, an orbital
degree of freedom and a polarization degree of freedom. Let us first concen-
trate on polarization. The state of polarization is described by a unit vector e
perpendicular to the direction of motion. Following Dirac we call these state
vectors kets and denote them as |e〉. Since the polarization vector lies in the
x, y plane it can be described in a orthonormal basis | l〉, | ↔〉,corresponding
to the two linear states of polarization along x and y

|e〉 = λ| l〉+ µ| ↔〉, |λ|2 + |µ|2 = 1 (1.21)

A state of linear polarization along θ corresponds to λ = cos θ and µ = sin θ,
so that (1.29) becomes

|θ〉 = cos θ| l〉+ sin θ| ↔〉 (1.22)

On the other hand for circular polarization the x and y components of the
polarization vector have a π

2
- phase difference, thus

|L/R〉 =
1√
2
(| l〉 ± i| ↔〉) (1.23)

Given a state vector |Φ〉 its adjoint (also called hermitian conjugate) is ob-

tained by taking the complex conjugate and transposing |Φ〉
T
. This is de-

noted as a bra
〈Φ| = |Φ〉

T
(1.24)

The usual inner product (defined over a complex vector space) is called the
bracket

〈Φ′|Φ〉 = (|Φ〉
T
) · (|Φ〉) (1.25)

As an example consider the inner product between two polarization state
vectors. First the conjugate of a linearly polarized state is

〈α| = 〈l | cosα+ 〈↔ | sinα (1.26)

8According to modern physics, matter is described by relativistic quantum fields. There
are underlying quantum fields (e.g. the quantum electromagnetic field, the quantum elec-
tronic field, the quark field ect...) which may manifest themselves in a wave-like or particle-
like fashion depending on the situation. We will not introduce field theoretical notions in
this course.
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The inner product with |θ〉 then is

〈α | θ〉 = (〈l | cosα+ 〈↔ | sinα) · (cos θ| l〉+ sin θ| ↔〉)
= cosα cos θ + sinα sin θ

= cos(θ − α) (1.27)

To obtain the second equality one expands the braces into four terms, uses
linearity of the bracket and the orthonormality condition,

〈p | p′〉 = δpp′ (1.28)

It is instructive to check that the circularly polarized states (|L〉, |R〉) form
another orthonormal basis.

Let us now introduce the orbital degree of freedom in the picture. For
a freely moving photon, i.e a photon that does not interact with a material
object, the orbital state is entirely described once we know its momentum k,
which has a direction and a norm k = ω

c
. The state vector is now denoted

as |k, e〉. This state freely evolves with time and for a photon of frequency
ω the time evolution simply amounts to a multiplicative phase factor, which
does not change the momentum and the polarization. The photon state at
time t is

|Ψk,e(t)〉 = eiωt|k, e〉 (1.29)

An explanation is order here about the kets indexed by two degrees of fredom.
We will see in the next chapter that the mathematical rule to combine degrees
of freedom is the tensor product; this means that |k, e〉 = |k〉 ⊗ |e〉 and that
the inner product is

〈k′, e′ | k, e〉 = 〈k′ | k〉 · 〈e′ | e〉 (1.30)

Finaly the momentum vectors themselves form an orthonormal basis 〈k′ |
k〉 = δk′,k.

As we will see in the next chapter, in general, the time-evolution of iso-
lated systems is given by a unitary transformation. In (1.29) the unitary
transformation is simply the multiplication by the phase factor. When the
photon interacts with matter (for example with the analyzer, the beamsplit-
ter) one has in principle to describe the unitary evolution of the total system
(photon + analyzer or photon + beamsplitter), which is then more compli-
cated. Here we do not have to discuss such issues as we consider only the
in-going and out-going states which are those of freely moving photons.

When we make a measurement on a system, the system that is observed
cannot be considered as isolated and the state is modified in a non-unitary
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! "MEASUREMENT APPARATUS

Figure 1.5: measurement with initial state |Ψ〉 and outcome |Φ〉.

way. Explaining the mesurement process is a subject that has been (and
sometimes is still) much debated since the early days of quantum mechan-
ics. To this day, the only fully consistent operational rule, to determine the
outcome of a measurement is given by the so-called measurement postulate
in the form advocated by the Copenhagen School and notably Niels Bohr9

(figure 1.5). Here we give it in a rough form, and will be more precise in the
next chapter.

If a system is initialy prepared in the state |Ψ〉 and the outcome of the mea-
surement is a state |Φ〉, the probability of this event is

Prob(|Ψ〉 → |Φ〉) = |〈Φ | Ψ〉|2 (1.31)

One cannot predict the outcome but only its frequency of occurrence during
repeated identical experiments with identical initial states.

The transition between the initial and final state is also called ”reduction”
or ”collapse” of the state. We will see in the next chapter that given a
measurement apparatus, or a quantity that is being measured, there are a
number of possible outcomes and that the transition probabilities sum to
one.

The re-interpretation of the three experiments in the next section should
make this rather abstract postulate a bit more natural.

1.4 Quantum interpretation of experiments.

We assume that the source prepares single photons in the linearly polarized,
freely moving state

|Ψk,θ(t)〉 = ei(kz−ωt)|k, θ〉 (1.32)

If the measurement apparatus is the analyzer-detector system of figure 1.2,
the measurement postulate tells us that the probability to find the photon

9Einstein never agreed that one could not predict the outcome and thought that the
probabilities are an effective description. In his words ”God does not play with dice”.
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in state |k, α〉 is

|〈k, α | Ψk,θ(t)〉|2 = |〈α | θ〉|2 = cos2(θ − α) (1.33)

This is consistent with the experimentaly measured frequency of clicks in D.

Polarizing beamsplitter experiment. Before the beam splitter the pho-
ton state is (1.32), which can be written as

ei(kz−ωt)(cos θ|k, l〉+ sin θ|k,↔〉) (1.34)

After the beamsplitter it becomes

ei(kz−ωt)(cos θ|ku, l〉+ sin θ|kl,↔〉) (1.35)

where ku and kl label the upper and lower paths10. Notice that contrary
to (1.34), in (1.35) we cannot separate the orbital and polarization degrees
of freedom into a tensor product: it can be shown that for (1.35) this is an
intrinsic property that does not depend on the basis. We say that the or-
bital and tensor degrees of freedom have been entangled by the beamsplitter.
Entangled states depart fundamentally from the classical picture and retain
quantum correlations that are missing in the classical interpretation. As we
will see in this course they play a very impotant role in quantum information
and computation because they may offer ressources that are non-classical.

Now we consider the two detectors as our measurement apparatus. The
measurement postulate tells us that the probability to observe the photon in
state |ku, l〉 is

|〈ku, l| ei(kz−ωt)(cos θ|ku, l〉+ sin θ|kl,↔〉)|2 = cos2 θ (1.36)

Similarly the probability to observe it in the state |kl,↔〉 is

|〈kl,↔| ei(kz−ωt)(cos θ|ku, l〉+ sin θ|kl,↔〉)|2 = sin2 θ (1.37)

This is consistent with the experimental fractions of clicks at Dx and Dy.
with probability cos2 θ and sin2 θ.

Recombination experiment. The second polarizing beamsplitter trans-
forms the entangled state (1.35) back to (1.32). The later state enters the
measurement apparatus constituted by the analyzer-detector system. There-
fore the probability of observing |k, α〉 is simply given by (1.33) and we
correctly recover. This is the experimental frequency of clicks at D ! The
quantum interpretation does not loose track of the interference term (1.20).

10Here we may imagine that the paths are not quite in the same direction so that these
two labels are different. In principle one should make a more complete description of the
orbital part of the state that takes into account the finite width of the beams.
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1.5 Notion of quantum bit

There exist many quantum systems in nature that can be described by state
vectors which belong to the vector space C2, the two dimensional complex
vector space. If we call |0〉 and |1〉 two orthonormal basis states a general
state vector takes the form

|ψ〉 = λ|0〉+ µ|µ〉, |λ|2 + |µ|2 = 1 (1.38)

It will often be convenient to identify

|0〉 =

[
1
0

]
(1.39)

and

|1〉 =

[
0
1

]
(1.40)

and in quantum information theory it is customary to call this canonical
basis the computational basis. Of course one can represent the quantum bit
|ψ〉 in any other basis, and one that we will often use one that is obtained
by a standard 45 degree real rotation

|+〉 =
1√
2
(|0〉+ |1〉), |−〉 =

1√
2
(|0〉 − |1〉) (1.41)

This basis will be called the Hadamard basis. Since the vector space is
complex we can make more general unitarity transformations. For example

|L〉 =
1√
2
(|0〉+ i|1〉), |R〉 =

1√
2
(|0〉 − i|1〉) (1.42)

We have already seen a physical realization of a quantum bit, namely the
photon polarization. If we identify the computational basis with horizon-
tal/vertical polarized photon states, then the Hadamard basis corresponds
to polarized states at 45 degree angle, and the last basis obtained by a uni-
tary transformation is physically realized by circularly left/right polarized
photons. A physicaly meaningful parametrization of general polarization
state is

|ψ〉 = eiδx cos θ| l〉+ eiδy sin θ| ↔〉 (1.43)

This is a vector representation of the two dimensional rotation group around
the axis of propagation (z axis say). This means that we rotate our reference
frame (around z) by angle β, then the state vector is obtained from the above
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Figure 1.6: Bloch sphere. Computational (z), Hadamard (x), circular (y)
basis states

expression by the replacement θ → θ−β. In particular if the reference frame
is rotated by 2π we recover the same state vector.

Another very common but physically different quantum bit is the spin 1
2
.

The most famous elementary particle (of obvious importance in our everyday
life since it transports electricity, interacts with sunlight ...) that has spin 1

2

is the electron11. There exist also many composite systems, such as nuclei or
atoms that carry a total spin of 1

2
. A very rough intuitive way of thinking

about spin is to view the particle (the electon say) as having intrinsic spinning
motion around some axis. If the particle spins around the z axis its spin is
| ↑〉 or | ↓〉 according to its direction of rotation. These two states form a
basis and the most general spin state is

|ψ〉 = λ| ↑〉+ µ| ↓〉, |λ|2 + |µ|2 = 1 (1.44)

Spin 1
2

states are two dimensional complex representations of the three dimen-
sional rotation group. For this reason a physically meaningful parametriza-
tion is

|ψ〉 = ei φ
2 cos

θ

2
| ↑〉+ e−i φ

2 sin
θ

2
| ↓〉 (1.45)

These states can be represented by the tip of a vector on the Bloch sphere
(figure 1.6) with the usual spherical coordinates (θ, φ). We have the following
correspondence (up to phase factors):

θ = 0, π | ↑〉, | ↓〉, particle spin along z (1.46)

11Constituents of nuclei, protons and neutrons also have spin 1
2 . In partcular the interac-

tion of the proton spin with magnetic fields is at the basis of Nuclear Magnetic Resonance,
used for example in medical imagery.
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Figure 1.7: possible arrangements of chemical bonds

θ =
π

2
, φ = 0, π | ↑〉 ± | ↓〉, particle spin along x (1.47)

θ =
π

2
, φ = ±π

2
| ↑〉 ± i| ↓〉, particle spin along y (1.48)

The polarization and spin 1
2

quantum bits are different representations
of the rotation group in quantum mechanics (ultimately coming from the
representation of the Lorentz group of relativity). But there exist also other
realizations of the quantum bit that have nothing to do with the represen-
tations of the rotation group in quantum physics. An example is given by
the benzene molecule C6H6 that can be in the two states that differ in the
arrangement of single and double electronic bonds (figure 1.7). But the
molecule can also be found in a resonating state such as

|ψ〉 =
1√
2
(|1〉+ |2〉) (1.49)

What is the difference between a bit and a quantum bit ? A classical
bit is an abstraction of a physical quantity that can be reasonably well de-
scribed by a two valued quantity. Examples are the charge in a capacitor, a
voltage difference, or the magnetization of a Weiss domain. Classical infor-
mation theory is sufficiently universal so that it does not have to account for
the detailled physical properties of the classical bits. The only underlying
assumption is that these exist in two definite values 0 or 1 (let us pretend
that noise is absent). Suppose a classical bit is given to you and that you
have no information whatsoever about its value. To gain information about
its value you can observe it (measure the charge, the voltage difference) and
its value is then discovered. By discovered we mean that it already had the
observed value before the measurement, and that the measurement has not
destroyed it. In this sense the information that we gain, or the uncertainty
that is removed, is by definition 1 bit.

A quantum bit is also an abstraction of physical quantities as the above
examples have shown. It is well described by a two dimensional complex
vector. In the same spirit than in the classical case, quantum information
theory is sufficiently universal so that many of its aspects are independent
of the concrete physical realization. However the point is that it takes into
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account the general underlying laws of quantum mechanics. This means in
particular that extracting information from quantum bits is quite different
than in the classical case. Suppose that a quantum bit is given to you in some
state |ψ〉 on which you do not have any information whatsoever. In order to
determine |ψ〉, we have to observe it (agree ?). To perform a measurement we
have to select an apparatus, in other words an orthonormal basis |b1〉, |b2〉.
The measurement process then reduces the quantum bit to |b1〉 or to |b2〉. So
we have lost the original state (forever) and have not gained any information
because the final state depends on our own choice of basis. We will see
later in this course, that the quantum analog of Shannon’s entropy, the Von
Neumann entropy, associated to a state like |ψ〉 is zero. Note however that
if we are given many copies of |ψ〉 we can measure all of them in the same
basis and get a hold of the probabilities |〈b1 | ψ〉|2, |〈b2 | ψ〉|2.

1.6 A random number generator

At this point the reader may well wonder if quantum laws offer any useful
ressource in order to process information. In this course we will see that this is
so. Here we illustrate this with a very simplified model for a random number
generator. A corresponding technology working along the lines explained
here exists, and is being commercialized.

A source sends a beam of photons on a semi-transparent mirror (figure
1.8). The later splits the beam in two parts, the transmitted and reflected
beams. If the source is classical we observe that the two detectors each
collect a fraction of the incoming intensity of the beam. Assuming that the
semi-transparent mirror is perfect each detector collects half of the intensity.

When the intensity of our source is lowered sufficiently so that it becomes
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a single photon source. Photons go through the mirror one at a time, we
observe that either DH or DV clicks, never the two at the same time. We
obtain a sequence of clicks 01000111010101000110111100 that looks Bernoulli
with parameter p = 1

2
.

The interpretation of this experimental setup, in the framework of quan-
tum mechanics, is as follows. We drop the polarization index as it plays no
role here. A single photon is incoming in the semi-transparent mirror and
the state of the photon after the mirror is,

eiωt 1√
2
(|kH〉+ |kV 〉) (1.50)

This state is a superposition. The outcome of the measurement by the de-
tectors cannot be predicted. The probability that the photon is observed in
state |kH〉 is

|〈kH | eiωt 1√
2
(|kH〉+ |kV 〉)|2 =

1

2
(1.51)

and similarly the probability that it is observed in state kV is

|〈kV | eiωt 1√
2
(|kH〉+ |kV 〉)|2 =

1

2
(1.52)

So the measurement process produces a perfectly random sequence. What
do we mean by ”perfectly random sequence”? Of course, the sequence is
perfectly random only in principle, because in the real experiment there are
imperfections, for example, the source is only approximately a single photon
source and the semi-transparent mirror has a small bias ect.... But the point
here is that, according to the standard interpretation of quantum mechanics,
the measurement process produces ”true randomness” and not ”pseudoran-
domness”: the clicks are not the result of some underlying deterministic
process. This point has been much debated by the founding fathers of 20-th
century physics and notably by Einstein and Bohr. According to Einstein
”God does not play dice”, a view that Bohr dismissed. Until today, no
other theoretical framework has, succesfully described as many phenomena
as quantum theory does, and we have so far no experiment that forces us to
abandon the standard quantum framework. It is in this sense that we declare
the sequence perfectly random.

A slitghly more abstract representation in quantum information theory
language of this experiment is depicted on figure 1.9. We prepare and mea-
sure states in the computational basis |0〉, |1〉. The initial state is |0〉 goes
through a Hadamard gate

H =
1√
2

[
1 1
1 −1

]
(1.53)
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Figure 1.9: Hadamard gate as a model for a semi-transparent mirror

which produces the state

H|0〉 =
1√
2
(|0〉+ |1〉) (1.54)

When we perform a measurement on (1.54) the outcome is |0〉 with proba-
bility

|〈0|H|0〉|2 =
1

2
(1.55)

or |1〉 with probability

|〈1|H|0〉|2 =
1

2
(1.56)


