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Evaluating capacities of bosonic Gaussian channels
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We show how to compute or at least to estimate various capacity-related quantities for bosonic Gaussian
channels. Among these are the coherent information, the entanglement-assisted classical capacity, the one-shot
classical capacity, and a quantity involving the transpose operation, shown to be a general upper bound on the
quantum capacity, even allowing for finite errors. All bounds are explicitly evaluated for the case of a one-
mode channel with attenuation or amplification and classical noise.
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I. INTRODUCTION

In the past several years impressive progress
achieved in the understanding of the classical and quan
capacities of quantum communication channels~see, in par-
ticular, Refs.@1–6#, where the reader can also find furth
references!. It appears that a quantum channel is charac
ized by a whole variety of different capacities depend
both on the kind of the information transmitted and the s
cific protocol used.

Most of this literature studies the properties of syste
and channels described in finite dimensional Hilbert spa
Recently, however, there has been a burst of interest~see
e.g., Ref.@7#! in other kinds of systems, sometimes called t
‘‘continuous variable’’ quantum systems, whose basic va
ables satisfy Heisenberg’s canonical commutation relati
~CCR!. There are two reasons for this new interest. On
one hand, such systems play a central role in quantum op
the canonical variables being the quadratures of the fi
Therefore some of the current experimental realizations@8#
of quantum information processing are carried out in su
systems. In particular, the bosonic Gaussian channels stu
in this paper can be seen as basic building block of quan
optical communication systems, allowing us to build
complex operations from ‘‘easy, linear’’ ones and a few b
sic ‘‘expensive, nonlinear’’ operations, such as squeez
and parametric down converters.

The other reason for the interest in these systems is th
spite of the infinite dimension of their underlying Hilbe
spaces they can be handled with techniques from fin
dimensional linear algebra, much in analogy to the fini
dimensional quantum systems on which the pioneering w
on quantum information was done. Roughly speaking t
analogy replaces the density matrix by the covariance ma
of a Gaussian state. Then operations like the diagonaliza
of density matrices, the Schmidt decomposition of pu
states on composite systems, the purification of mixed sta
the computation of entropies, and the partial transpose op
tion on states and channels, which are familiar from the us
finite-dimensional setup, can be expressed once again by
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erations on finite-dimensional matrices in the continuo
variable case. The basic framework for doing all this is n
new, and goes under the heading ‘‘phase-space quantum
chanics’’ or, in the quantum field theory and statistical m
chanics communities, ‘‘quasifree Bose systems’’@9#. Both
authors of this paper have participated in the developmen
this subject a long time ago@10–12#. In this paper, continu-
ing @13# and@14#, we make further contributions to the stud
of information properties of linear bosonic Gaussian ch
nels. We focus on the aspects essential for physical com
tations and leave aside a number of analytical subtleties
lated to infinite dimensionality and unboundedne
unavoidably arising in connection with bosonic systems a
Gaussian states.

The paper is organized as follows. In Sec. II we recap
late some notions of capacity, which are currently under
vestigation in the literature, and what is known about the
Naturally this cannot be a full review, but will be limited t
those quantities that we will evaluate or estimate in the s
sequent sections. An addition to the spectrum of capacity
quantities is discussed in Sec. II B: an upper bound on
quantum capacity~even allowing finite errors!, which is both
simple to evaluate and remarkably close to maximized
herent information, a bound conjectured to be exact. In S
III we summarize the basic properties of Gaussian sta
Although our main topic is channels, we need this to get
explicit handle on the purification operation, which is need
to compute the entropy exchange, and hence all entr
based capacities. Bosonic Gaussian channels are studi
Sec. IV. Here we introduce the techniques for determin
the capacity quantities introduced in Sec. I, deriving gene
formulas where possible. In Sec. V we apply these te
niques to the case of a single-mode channel comprising
tenuation or amplification and a classical noise. Some te
nical points are treated in the Appendixes.

II. NOTIONS OF CAPACITY

A. Basic entropy and information quantities

Consider a general quantum system in a Hilbert spacH
5HQ . Its states are given by density operatorsr on H. A
channel is a transformationr→T@r# of quantum states o
the system, which is given by a completely positive, tra
preserving map on trace class operators. This view of ch
nels corresponds to the Schro¨dinger picture. The Heisenber

8,
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picture is given by the dual linear operatorX→T* @X# on the
observablesX, which is defined by the relation

Tr T@r#X5Tr rT* @X#,

and has to be completely positive and unit preserving~cf.
@15#!.

It can be shown~see, e.g.,@16#! that any channel in this
sense arises from a unitary interactionU of the system with
an environment described by another Hilbert spaceHE
which is initially in some staterE ,

T@r#5TrE U~r ^ rE!U* ,

where TrE denotes partial trace with respect toHE , and vice
versa. The representation is not unique, and the staterE can
always be chosen pure,rE5ucE&^cEu. The definition of the
channel has obvious generalization to the case where i
and output are described by different Hilbert spaces.

Let us denote by

H~r!52Tr r logr ~2.1!

the von Neumann entropy of a density operatorr. We callr
the input state, andT@r# the output state of the channe
There are three important entropy quantities related to
pair (r,T), namely, the entropy of the input stateH(r), the
entropy of the output stateH(T@r#), and the entropy ex-
changeH(r,T). While the definition and the meaning of th
first two entropies is clear, the third quantity is somewh
more sophisticated. To define it, one introduces thereference
system, described by the Hilbert spaceHR , isomorphic to the
Hilbert spaceHQ5 H of the initial system. Then accordin
to Refs.@17# and@3#, there exists apurificationof the stater,
i.e., a unit vectoruc&PHQ^ HR such that

r5TrRuc&^cu.

The entropy exchangeis then defined as

H~r,T!5H„~T^ id!@ uc&^cu#…, ~2.2!

that is, as the entropy of the output state of the dilated ch
nel (T^ id) applied to the input which is purification of th
stater. Alternatively,

H~r,T!5H~rE8 !,

whererE85TE@r# is the final state of the environment, an
the channelTE from HQ to HE is defined as

TE@r#5TrQ U~r ^ rE!U* ,

provided the initial staterE of the environment is pure
@17,3#.

From these three entropies one can construct severa
formation quantities. In analogy with classical informatio
theory, one can definequantum mutual informationbetween
the reference systemR ~which mirrors the inputQ) and the
output of the systemQ8 @17,4# as
03231
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I ~r,T!5H~rR8 !1H~rQ8 !2H~rRQ8 !

5H~r!1H~T@r#!2H~r,T!. ~2.3!

The quantityI (r,T) has a number of ‘‘natural’’ properties
in particular, positivity, concavity with respect to the inp
stater and additivity for parallel channels@4#. Moreover, the
maximum ofI (r,T) with respect tor was argued recently to
be equal to theentanglement-assisted classical capacityof
the channel@6,18#, namely, the classical capacity of the s
perdense coding protocol using the noisy channelT. It was
shown that this maximum is additive for parallel channe
the one-shot expression thus giving the full~asymptotic! ca-
pacity.

It would be natural to compare this quantity with the~un-
assisted! classical capacityC(T) ~the definition of which is
outlined in Sec. II B!; however, it is still not known whethe
this capacity is additive for parallel channels. This makes
focus on the one-shot expression, emerging from the cod
theorem for classical-quantum channels@2#

C1~T!5maxFHS (
i

piT@r i # D 2(
i

piH~T@r i # !G ,
~2.4!

where the maximum is taken over all probability distrib
tions $pi% and collections of density operators$r i% ~possibly
satisfying some additional input constraints!. C1(T) is equal
to the capacity ofT for classical information, if the coding is
required to avoid entanglement between successive inpu
the channel. The full capacity is then attained as the lengn
of the blocks, over which encoding may be entangled, g
to infinity, i.e.,

C~T!5 lim
n→`

1

n
C1~T^ n!. ~2.5!

An important component ofI (r,T) is thecoherent infor-
mation

J~r,T!5H~T@r#!2H~r,T!, ~2.6!

the maximum of which has been conjectured to be the~one-
shot! quantum capacity of the channelT @19,3#. Its properties
are not so nice. It can be negative, its convexity proper
with respect tor are not known, and its maximum wa
shown to be strictly superadditive for certain parallel cha
nels @20#, hence the conjectured full quantum capacity m
be greater than the one-shot expression, in contrast to
case of the entanglement-assisted classical capacity. In
paper we shall also compare this expression with a new
per bound on the quantum capacityQ(T) ~as introduced,
e.g., in Sec. II B!.

B. A general bound on quantum channel capacity

In this section we will establish a general estimate on
quantum channel capacity, which will then be evaluated
the Gaussian case, and will be compared with the estim
of coherent information. Let us recall first a definition of th
capacityQ(T) of a general channelT for quantum informa-
2-2
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tion. Intuitively, it is the number of qubits that can be fait
fully transmitted per use of the channel with the best poss
error correction. The standard of comparison is the id
1-qubit channel id2, where idn denotes the identity map o
the n3n matrices. Then thequantum capacity Q(T) of a
channelT ~possibly between systems of different types! is
defined as the supremum of all numbersc, which are ‘‘at-
tainable rates’’ in the following sense:For any pair of se-
quences na ,ma with lima(na /ma)5c we can find encoding
operations Ea and decoding operations Da such that

i id2
^ na2DaT^ maEaicb→0.

Herei•icb is the so-called ‘‘norm of complete boundednes
~cb! @21#, which is defined as the supremum with respect tn
of the normsi(T^ idn)i . It is equal to the ‘‘diamond metric’’
introduced in@22#. We use this norm because, on the o
hand, it leads to the same capacity as analogous definit
based on other error criteria~e.g., fidelities@3,5#! and, on the
other hand, it has the best properties with respect to te
products, which are our main concern. In particul
iT^ Sicb5iTicb•iSicb. Completely positive maps satisf
iTicb5iFi , whereF5T* @ I # is the normalization operato
~we denoteI the unit operator!. In particular,iTicb51 for
any channel. We also note another kind of capacity, in wh
a much weaker requirement is made on the errors, nam

i id2
^ na2DaT^ maEaicb<«,1 ~2.7!

for all sufficiently largea, and some fixed«. We call the
resulting capacity the«-quantum capacity, and denote it by
Q«(T). Of course,Q(T)<Q«(T), and by analogy with the
classical case~strong converse of Shannon’s coding the
rem! one would conjecture that equality always holds.

The unassisted classical capacityC(T) can be defined
similarly with the sole difference that both the domain
encodingsE and the range of decodingsD should be re-
stricted to the state space of the Abelian subalgebra of
erators diagonalizable in a fixed orthonormal basis. In t
case there is no need to use the cb norm, as it coincides
the usual norm. According to recently proven strong co
verse to the quantum coding theorem@23,24#, C«(T)
5C(T) whereC«(T) is defined similarly toQ«(T).

The criterion we will formulate makes essential use of
transpose operation, which we will denote by the same le
Q in any system. For matrix algebras,Q can be taken as th
usual transpose operation. However, it makes no differe
to our considerations, if any other antiunitarily implement
symmetry~e.g., time reversal! is chosen. In an abstractC*
algebra settingQ is best taken as the ‘‘op’’ operation, whic
maps every algebra to its ‘‘opposite.’’ This algebra has
same underlying vector space, but all productsAB are re-
placed by their oppositeBA. Obviously, a commutative al
gebra is the same as its opposite, so on classical systemsQ is
the identity. Although the transpose maps density opera
to density operators, it is not an admissible quantum chan
because positivity is lost, when coupling the operation w
the identity transformation on other systems, i.e.,Q is not
03231
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completelypositive. A similar phenomenon happens for t
norm ofQ: we haveiQicb.1 unless the system is classica
In fact,

iQnicb5n, ~2.8!

where Qn denotes the transposition on then3n matrices
@21#. We note that since we do not distinguish the transp
on different systems in our notation, the observation t
tensor products can be transposed factor by factor is
pressed by the equationQ5Q ^ Q. Moreover, although for a
channelT, the operatorTQ may fail to be completely posi-
tive, QTQ is again a channel, and, in particular, satisfi
iQTQicb51.

The main result of this section is the estimate

Q«~T!< logiTQicb[QQ~T!, ~2.9!

for any channelT. The proof is quite simple. Suppos
na /ma→c<Q«(T), and encodingEa and decodingDa are
as in the definition ofQ«(T). Then by Eq.~2.8! we have

2na5i id2
^ naQicb

<i~ id2
^ na2DaT^ maEa!Qicb1iDaT^ maEaQicb

<iQ2naicbi id2
^ na2DaT^ maEaicb

1iDa~TQ! ^ maQEaQicb

<2na«1iTQicb
ma,

where at the last inequality we have used thatDa andQEaQ
are channels, and that the cb norm is exactly tensor mult
cative, soiX^ micb5iXicb

m . Hence, by taking the logarithm
and dividing byma , we get

na

ma
log21

log~12«!

ma
< logiTQicb.

If we take base 2 logarithms, as is customary in informat
theory, we have log251. Then in the last inequality we ca
go to the limit a→`, obtainingc<QQ(T), and Eq.~2.9!
follows by taking the supremum over all attainable ratesc.
Note that base 2 logarithms are built into the above definit
of capacity, because we are using the ideal qubit channe
the standard of comparison. This amounts only to a cha
of units. If another base for logarithms is chosen, this sho
also be done consistently in all entropy expressions, and
~2.9! holds once again without additional constants.

The upper boundQQ(T) computed in this way has som
remarkable properties~proved in Appendix A!, which make
it a capacitylike quantity in its own right. For example, it
exactly additive,

QQ~S^ T!5QQ~S!1QQ~T!, ~2.10!

for any pairS,T of channels, and satisfies the ‘‘bottlenec
inequality’’ QQ(ST)<min$QQ(S),QQ(T)%. Moreover, it coin-
cides with the quantum capacity on ideal channe
QQ(idn)5Q(idn)5 logn, and it vanishes wheneverTQ is
completely positive. In particular,QQ(T)50, wheneverT is
separable in the sense that it can be decomposed asT
5PM into a measurementM and a subsequent preparatio
2-3
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P based on the measurement results. We note thatQQ

is also closely related to the entanglement quan
logi(id^ Q)@r#i1, i.e., the logarithm of the trace norm of th
partial transpose of the density operator, which enjoys an
gous properties.

III. QUANTUM GAUSSIAN STATES

A. Canonical variables and Gaussian states

In this section we recapitulate some results fro
@10,13,14# for the convenience of the reader. Our approach
quantum Gaussian states is based on the characteristic
tion of the state which closely parallels classical probabi
@11,12#, and is perhaps the simplest and most transpa
analytically. An alternative approach can be based on
Wigner ‘‘distribution function’’ @25#.

Let qj ,pj be the canonical observables satisfying t
Heisenberg CCR

@qj ,pk#5 id jk\I , @qj ,qk#50, @pj ,pk#50.

We introduce the column vector of operators

R5@q1 ,p1 , . . . ,qs ,ps#
T,

the real column 2s vector z5@x1 ,y1 , . . . ,xs ,ys#
T, and the

unitary operators inH

V~z!5expi (
j 51

s

~xjqj1yj pj !

~3.1!
5expiRTz.

These ‘‘Weyl operators’’ satisfy the Weyl-Segal CCR

V~z!V~z8!5expF i

2
D~z,z8!GV~z1z8!, ~3.2!

where

D~z,z8!5\(
j 51

s

~xj8yj2xjyj8! ~3.3!

is the canonical symplectic form. The spaceZ of real 2s
vectors equipped with the formD(z,z8) is what one calls a
symplectic vector space. We denote by

D5F 0 \

2\ 0

�

0 \

2\ 0

G ~3.4!

the (2s)3(2s)-skew-symmetric commutation matrix of
components of the vectorR, so that

D~z,z8!52zTDz8.
03231
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Most of the results below are valid for the case where
commutation matrix is an arbitrary~nondegenerate! skew-
symmetric matrix, not necessarily of the canonical fo
~3.4!.

A density operatorr has finite second momentsif
Tr(rqj

2),` and Tr(rpj
2),` for all j. In this case one can

define the vectormeanand thecorrelation matrixa by the
formulas

m5Tr rR; a2
i

2
D5Tr~R2m!r~R2m!T. ~3.5!

The mean can be an arbitrary real vector. The correla
matrix a is real and symmetric. A givena is the correlation
matrix of some state if and only if it satisfies thematrix
uncertainty relation

a2
i

2
D>0. ~3.6!

We denote byS(m,a) the set of states with fixed meanm
and the correlation functiona. The density operatorr is
called Gaussian, if its quantum characteristic function
f(z)5Tr rV(z) has the form

f~z!5exp~ imTz2 1
2 zTaz!, ~3.7!

wherem is a column (2s) vector anda is a real symmetric
(2s)3(2s) matrix. One then can show thatm is indeed the
mean, anda is the correlation matrix, and Eq.~3.7! defines
the unique Gaussian state inS(m,a). In what follows we
will be interested mainly in the casem50.

The correlation matrixa describes a quadratic form rathe
than an operator. Therefore its eigenvalues have no intri
significance, and depend on the choice of basis inZ. On the
other hand, the operatorâ defined byzTaz5D(z,âz) has a
basis free meaning. In matrix notation it isâ5D21a. This
operator is always diagonalizable, and its eigenvalues co
in pairs6 ig j . Diagonalizing this operator is essentially th
same as thenormal mode decompositionof the phase space
when the formzTaz is considered as the Hamiltonian fun
tion of a system of oscillators. It leads to a decomposition
the phase space into two-dimensional subspaces, such th
the j th subspace we have~in some new canonical variable
q̃ j ,p̃ j )

a5\Fg j 0

0 g j
G , D5\F0 1

21 0G , ~3.8!

and all terms between different blocks vanish. The ma
uncertainty relation now requiresg j>1/2, in which equality
holds if and only if r j is the pure~minimum-uncertainty!
state. Hence a general Gaussian stater is pure if and only if
all g j51/2, or

~D21a!252
1

4
I , ~3.9!

in which caseS(m,a) reduces to a single point.
2-4
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B. Gauge-invariant states

We shall be interested in the particular subclass of Ga
ian states most familiar in quantum optics, namely, the st
having aP2 representation

r5E uz&^zumN~d2sz! ~3.10!

wheremN(d2sz) is the complex Gaussian probability me
sure with zero mean and the correlation matrixN ~see, e.g.,
@26#, Sec. V.5.II!. HerezPCs, uz& are the coherent vector
in H, auz&5zuz&, N is the positive Hermitian matrix suc
that

N5Tr~a r a†! ~3.11!

~we use here vector notations, wherea5@a1 , . . . ,as#
T is a

column vector anda†5@a1
† , . . . ,as

†# is a row vector!, and
aj5(1/A2\)(qj1 ip j ).

These states respect the natural complex structure in
sense that they are invariant under the gauge transforma
a→a exp(iw). As shown in @13#, the quantum correlation
matrix of such states is

a5\FReN1I /2 2Im N

Im N ReN1I /2G .
With Pauli matricesI 2 ,sy , the real 2s32s matrices of such
form can be rewritten as complexs3s matrices, by using the
correspondence

FA 2B

B A G5I 2A2 isyB↔A1 iB,

which is an algebraic isomorphism. Obviously,

1

2
SpFA 2B

B A G5Sp~A1 iB !,

where by ‘‘Sp’’ we denote the trace of matrices, as oppo
to the trace of Hilbert space operators, which is denoted
‘‘Tr.’’ By using this correspondence, we have

a↔\~N1I /2!, D↔2 i\I , ~3.12!

and

D21a↔ i ~N1I /2!. ~3.13!

For the case of one degree of freedom we shall be in
ested in the last section,N is just a non-negative number, an
r is an elementaryGaussian state with the characteris
function

f~z!5expF2
\

2 S N1
1

2D uzu2G , ~3.14!

where we setuzu25(x21y2). This state has a correlatio
matrix of the form~3.8! in the initial variablesq,p, with g
5N11/2, and is just the temperature state of the harmo
oscillator
03231
s-
es

he
ns

d
y

r-

ic

rg5
1

g11/2 (
n50

` S g21/2

g11/2D
n

un&^nu ~3.15!

in the number basisun&, with the mean photon numberN.

C. Computation of entropy

To compute the von Neumann entropy of a gene
Gaussian state one can use the normal mode decompos
For a single mode, the density operatorr j with the correla-
tion matrix ~3.8!, settingg j[g for convenience, is unitarily
equivalent to the state~3.15!. From this one readily gets th
von Neumann entropyH(rg) by a summation of the geome
ric series, and for general Gaussianr by summing over nor-
mal modes.

To write the result in compact form, one introduces t
function

g~x!5~x11!log~x11!2x logx, x.0

g~0!50. ~3.16!

Then

H~r!5(
j 51

s

gS ug j u2
1

2D , ~3.17!

whereg j runs over all eigenvalue pairs6 ig j of D21a.
One can also write this more compactly, using the follo

ing notations, which we will also use in the sequel. For a
diagonalizable matrixM5Sdiag(mj )S

21, we set abs(M )
5Sdiag(umj u)S21, analogously for other continuous func
tions on the complex plane. Then Eq.~3.17! can be written
as @13#

H~r!5
1

2
SpgS abs~D21a!2

I

2D . ~3.18!

For gauge-invariant state, by using~3.13!, this reduces to the
well-known formula

H~r!5Spg~N!.

D. Schmidt decomposition and purification

Forming a composite systems out of two systems
scribed by CCR relations is very simple: one just joins t
two sets of canonical operators, making operators belong
to different systems commute. The symplectic space of
composite system is a direct sumZ125Z1% Z2, which means
that elements of this space are pairs (z1 ,z2) with components
ziPZi . In terms of Weyl operators one can writ
V12(z1 ,z2)5V1(z1) ^ V2(z2). By definition, the symplectic
matrix D12 is block diagonal with respect to the decompo
tion Z5Z1% Z2. However, the correlation matrixa12 is
block diagonal if and only if the state is a product. Th
2-5
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restriction of a bipartite Gaussian stater to the first factor is
determined by the expectations of the Weyl operat
V1(z1) ^ 15V12(z1,0), hence according to~3.7!, by the cor-
relation matrixa1 with z1

Ta1z15(z1,0)Ta12(z1,0), which is
just the first diagonal block in the block matrix decompo
tion

a125Fa1 b

bT a2
G , D125FD1 0

0 D2
G . ~3.19!

As in the case of bipartite systems with finite-dimensio
Hilbert spaces there is a canonical form forpurestates of the
composite system, the Schmidt decomposition. Like the
agonalization of a one-site density operator, it can be car
out for Gaussian states at the level of correlation matric
By writing out equation~3.9! in block matrix form, we find
in particular that

~D1
21a1!~D1

21b!52~D1
21b!~D2

21a2!. ~3.20!

Thus (D1
21b) maps eigenvectors of (D2

21a2) into eigenvec-
tors of (D1

21a1), with the opposite eigenvalue. Hence t
spectra of the restrictions are synchronized much in the s
way as in the finite-dimensional case, and all the matri
a1 ,a2 ,b can be diagonalized simultaneously by a suita
choice of canonical coordinates. Evaluating also the diago
part of Eq.~3.9!, one gets an equation forb, so that finally
a12 is decomposed into blocks corresponding to~a! pure
components belonging to only one subsystem, and not
related with the other, and~b! blocks of a standard form
which can be written like Eq.~3.19! with a15a25a, D1
5D25D from Eq. ~3.8!, and

b5\Ag22
1

4F1 0

0 21G . ~3.21!

The purification of a general Gaussian state can easily
read off from this, by constructing such a standard form
every normal mode. In order to writeb in operator form
without explicit reference to the normal mode decompo
tion, it is most convenient to perform an appropriate refl
tion in the spaceZ2, by which b becomes purely off-
diagonal. Then we can choose@27# D15D52D2 and a2
5a15a, resulting in

b52bT5DA2~D21a!22I /4. ~3.22!

This also covers cases withb50 for some modes where
strictly speaking, no purification would have been necess
We thus have

D12
21a125F D21a A2~D21a!22I /4

A2~D21a!22I /4 2D21a
G .

~3.23!

In the gauge-invariant case, we can use the corresponde

D12
21a12↔F i ~N1I /2! AN21N

AN21N 2 i ~N1I /2!
G , ~3.24!

following from Eq. ~3.12!.
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IV. LINEAR BOSONIC CHANNELS

A. Basic properties

The characteristic property of the channels considered
this paper is their simple description in terms of phase-sp
structures. The key feature is that Weyl operators go i
Weyl operators, up to a factor. That is, the channel map
the Heisenberg picture is of the form

T* „V8~z8!…5V~KTz8! f ~z8!, ~4.1!

whereK:Z→Z8 is a linear map between phase spaces w
symplectic formsD andD8, respectively, andf (z8) is a sca-
lar factor satisfying certain positive definiteness condition
be discussed later. Because of the linearity ofK, such chan-
nels are calledlinear bosonic channels@15#, and if, in addi-
tion, the factorf is Gaussian,T will be called aGaussian
channel. In terms of characteristic functions, Eq.~4.1! can be
written as

f8~z8!5f~KTz8! f ~z8!, ~4.2!

wheref andf8 are the characteristic functions of input sta
r and output stateT@r#, respectively.

We will make use of the following key properties.
~a! The dual of a linear bosonic channel transforms a

polynomial in the operatorsR8 into a polynomial in theR of
the same order, provided the functionf has derivatives of
sufficiently high order. This property follows from the defi
nition of moments by differentiating the relation~4.1! at the
point z850.

~b! A Gaussian channel transforms Gaussian states
Gaussian states. This follows from the definition of Gauss
state and the relation~4.2!.

~c! Linear bosonic channels are covariant wi
respect to phase-space translations. That is ifrz

5V(2D21z)rV(2D21z)* is a shift of r by z, T@r# is
similarly shifted byKz.

There is a dramatic difference in the capacities of
Gaussian channel for classical as opposed to quantum in
mation. Classical information can be coded by using pha
space translates of a fixed state as signal states, so the o
signals will also be phase-space translates of each o
Then no matter how much noise the channel may add, if
take the spacing of the input signals sufficiently large,
output states will also be sufficiently widely spaced to
distinguishable with near certainty. Therefore the unco
strainedclassical capacity is infinite. The same would be
true, of course, for a purely classical channel with Gauss
noise. The classical capacity of such channels become
interesting quantity, however, when the ‘‘input power’’
taken to be constrained by a fixed value, which we must t
as one of the parameters defining the channel. Then a
trarily wide spacing of input signals is no longer an altern
tive, because an intrinsic scale for this spacing has been
troduced.

The remarkable fact of quantum information on Gauss
channels is that such an intrinsic scale is already there:
2-6
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given by\. As we will show, the quantum information ca
pacity is typically bounded even without an energy co
straint. Loosely speaking, although we send arbitrarily ma
well distinguishable quantum signals through the chan
coherence in the form of commutator relations is usua
lost. Surprisingly, in spite of the infinite classical capaci
the capacity for quantum information may be zero, which
means that even joining arbitrarily many parallel chann
with poor coherence properties is not good enough for se
ing a single qubit. This phenomenon will be explained
some detail in Sec. V.

The choice of the scalar functionf (z8) is crucial for the
quantum transmission properties of the channel. Normal
tion of T requires thatf (0)51, and it is clear thatu f (z8)u
<1 for all z8, from taking norms in~4.1!. Beyond that, it is
not so easy to see which choices off are compatible with the
complete positivity. Iff decays rapidly,T* maps most op-
erators to operators near the identity, which means that t
is very much noise. On the other hand, there will be a low
limit to the noise, depending on the linear transformationK.
Only whenK is a symplectic linear map andT is reversible,
the choicef (z)[1 is possible. Otherwise, there is some u
avoidable noise.

There are two basic approaches to the determination
the admissible functionsf. The first is the familiar construc
tive approach already used in Sec. II, based on coupling
system to an environment, a unitary evolution and sub
quent reduction to a subsystem, with all of these operati
in their linear bosonic Gaussian form. Basically this redu
the problem to linear transformations of systems of canon
operators. This will be described in Sec. IV B, and used
the calculation of entropy exchange in Sec. IV C. Altern
tively, one can describe the admissible functionsf by a
twisted positive definiteness condition, and this will be us
for evaluating the boundCQ(T) in Sec. IV D.

B. Bosonic channels via transforming canonical operators

Let R,RE be vectors of canonical observables inH,HE ,
with the commutation matricesD,DE . Consider the linear
transformation

R85KR1KERE, ~4.3!

whereK,KE are real matrices~to simplify notations we write
R,RE instead ofR^ I E ,I ^ RE , etc.! Then the commutation
matrix and the correlation with respect toR8 are computed
via ~3.5! with m50, namely,

a82
i

2
D85Tr R8r8R8T.

We apply this to the special caser85r ^ rE , whererE and
r are density operators inHE and H with the correlation
matricesaE anda, respectively. Then using~4.3!, we obtain

D85KDKT1KEDEKE
T ,

a85KaKT1KEaEKE
T . ~4.4!
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Of course, the operatorsR8 need not form a complete set o
observables inH^ HE , but in any casea8 is the correlation
matrix of a system containing just the canonical variablesR8,
and it is this state which we will consider as the output st
of the channel.

For fixed staterE ~state of the ‘‘environment’’! the chan-
nel transformation taking the input stater to the outputr8 is
described most easily in terms of characteristic functions

f8~z8!5f~KTz8!fE~KE
Tz8!. ~4.5!

We can write this as a linear Bosonic channel in the fo
~4.2! with

f ~z8!5fE~KE
Tz8!5Tr rEVE~KE

Tz8!. ~4.6!

Thus the factorf is expressed in terms of the characteris
function of the initial state of the environment. Obviousl
the channel is Gaussian if and only if this state is Gauss

If we want to get the state of the environment after t
channel interaction, as required in the definition of exchan
entropy, we have to supplement the linear equation~4.3! by
a similar equation specifying the environment variablesRE8
after the interaction

R85KR1KERE,

RE85LR1LERE, .

Assuming thatZ5Z8 and D85D, one can always choos
L,LE such that the combined transformation is canonic
i.e., preserves the commutation matrix

FD 0

0 DE
G .

Then the channelTE :r→rE8 can be defined by the relation

TE* @VE~zE!#5V~LTzE!•fE~LE
TzE!,

and is thus also linear bosonic.

C. Maximization of mutual information

The estimate for the entanglement-assisted classical
pacity suggested by@18# is the maximum of the quantum
mutual information~2.3! over all states satisfying an appro
priate energy constraint. Evaluating this maximum becom
possible by the following result:1 Let T be a Gaussian chan
nel. The maximum of the mutual information I(r) over the
set of statesS(m,a) with given first and second moments
achieved on the Gaussian state.

Proof ~sketch!. By purification ~if necessary!, we can al-
ways assume thatrE is pure Gaussian. Then we can write

I ~r!5H~r!1H~T@r#!2H~TE@r#!.

1The proof of this theorem was stimulated by a question pose
one of the authors~A.H.! by P. W. Shor.
2-7
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Let r0 be the unique Gaussian state inS(m,a). For simplic-
ity we assume here thatr0 is nondegenerate. The gener
case can be reduced to this by separating the pure compo
in the tensor product decomposition ofr0. The functionI (r)
is concave and its directional derivative at the pointr0 is ~cf.
@18#!

¹XI ~r0!5Tr X~ ln r01I !1Tr T@X#~ ln T@r0#1I !

2Tr TE@X#~ ln TE@r0#1I !.

By using dual maps this can be modified to

¹XI ~r0!5Tr X$ ln r01T* ~ ln T@r0# !2TE* ~ ln TE@r0# !1I %.

~4.7!

Now by property~b! of Gaussian channels, the operato
r0 ,T@r0#,TE@r0# are ~nondegenerate! Gaussian density op
erators, hence their logarithms are quadratic polynomial
the corresponding canonical variables~see the Appendix in
@13#!. By property ~a! the expression in curly brackets i
~4.7! is again a quadratic polynomial inR, which is a linear
combination of the constraint operators inS(m,a). There-
fore, the sufficient condition~B3! in Appendix B is fulfilled
and I (r) achieves its maximum at the pointr0PS(m,a).

This theorem implies that the maximum ofI (r) over a set
of density operators defined by arbitrary constraints on
first and second moments is also achieved on a Gaus
density operator. In particular, for an arbitrary quadra
HamiltonianH the maximum ofI (r) over states with con-
strained mean energy TrrH is achieved on a Gaussian sta
The energy constraint is linear in terms of the correlat
matrix:

Sp~ea!<N,

wheree is the diagonal energy matrix~see@13#!.
When r and T are Gaussian, the quantitiesH(r),

H(T@r#),H(r,T) and I (r,T),J(r,T) can in principle be
computed by using formulas~3.18!, ~4.4!, ~3.23!. Namely,
H(T@r#) is given by formula~3.18! with a replaced bya8
computed via~4.4!, and

H~r,T!5
1

2
SpgS abs~D12

21a128 !2
I

2D ,

where

a128 5F a8 Kb

bTKT a G ,
b5DA2~D21a!22I /4 ,

is computed by inserting~4.3! into

a128 2
i

2
D128 5TrFR8

R2
Gr@R8T,R2

T#,

whereR2 are the~unchanged! canonical observables of th
reference system.
03231
l
ent

in

e
ian

.
n

Alternatively, the entropy exchange can be calculated
the output entropyH(TE@r#) if an explicit description ofTE
is available. We shall demonstrate this method in the
ample of one-mode channels in Appendix C.

D. Norms of Gaussian transformations

The transposition operation on a bosonic system can
realized as the time-reversal operation, i.e., the operation
versing the signs of all momentum operators, while leav
the position operators unchanged. Obviously, the dualT*
then takes Weyl operators into Weyl operators. So trans
sition is just like a linear bosonic channel, albeit without t
scalar factorf (z8) in Eq. ~4.2!. It is this factor which makes
the difference between positivity and complete positivi
and also enters the normiTicb. In this section we will pro-
vide general criteria for deciding complete positivity an
computing the norm of general linear bosonic transform
tions.

These are by definition the operatorsT acting on Weyl
operators according to Eq.~4.1! where f (z8) is a scalar fac-
tor. We will assume for simplicity~and in view of the appli-
cations in the following sections! that the antisymmetric
form

D9~z1 ,z2!5D8~z1 ,z2!2D~KTz1 ,KTz2! ~4.8!

is nondegenerate. This makes the spaceZ8 with the formD9
into a phase space in its own right. With the introduction
suitable canonical coordinates it becomes isomorphic
(Z,D), so there exists an invertible linear operatorA:Z→Z
such thatD9(z1 ,z2)5D(A21z1 ,A21z2).

If f is continuous and has sufficient decay propert
~which will be satisfied in our applications!, there is a unique
trace class operatorr determined by the equation

Tr„rV~z!…5 f ~Az!. ~4.9!

Then T is completely positive if and only ifr is a positive
trace class operator. This is a standard result in the theory
quasifree maps on CCR algebras@9#. It is proved by showing
that both properties are equivalent to a ‘‘twisted positi
definiteness condition,’’ namely the positive definiteness
all matrices of the form

Mrs5 f ~zr2zs!expS 2
i

2
D8~zr ,zs!1

i

2
D~KTzr ,KTzs! D ,

where z1 , . . . ,zn are an arbitrary choice ofn phase-space
points.

If r is a nonpositive Hermitian trace class operator, it h
a unique decomposition into the positive and negative p
r5r12r2 such thatr6>0, andr1r250. Thenuru5r1

1r2 and the trace norm isiri15Tr(r1)1Tr(r2). Insert-
ing r6 into Eq. ~4.9! instead ofr, we get two functionsf 6

on phase space and from Eq.~4.1! two linear bosonic trans-
formations T6 with T5T12T2 . By the criterion just
proved,T1 andT2 are completely positive. Hence
2-8
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iTicb<iT1icb1iT2icb5iT1* @ I #i1iT2* @ I #i

5 f 1~0!1 f 2~0!5Tr~r1!1Tr~r2!5iri1 . ~4.10!

If the factor f is a Gaussian, i.e.,

f ~z!5exp~2 1
2 zTbz! ~4.11!

for some positive definite matrixb, we can go one step fur
ther. In this case we may decomposeb into normal modes
with respect toD9, which decomposesT into a tensor prod-
uct of one-mode Gaussian transformationsTl , for each of
which iTl icb may be computed separately by the abo
method. This amounts to computing the trace norm of
operatorrg given by Eq.~3.15! with arbitrary positiveg.
The absolute value ofrg is obtained by taking absolute va
ues of all the eigenvalues, which still makesirgi1 a geomet-
ric series,

irgi15
1

g11/2 (
n50

` Ug21/2

g11/2U
n

5maxH 1,
1

2gJ . ~4.12!

This is all the information we need for the estimates of qu
tum capacity in the following section.

V. THE CASE OF ONE MODE

A. Attenuation and amplification channels
with classical noise

The channel we consider in this section combines atte
ation or amplification@14# with additive classical noise@18#.
It can also be described as the most general one-mode g
invariant channel, or in quantum optics terminology, t
most general one-mode channel not involving squeez
Channels of this type were also used in@28# as the basis for
an analysis of the classical limit of quantum mechanics.

Let us consider the CCR with one degree of freedoma
5(1/A2\)(q1 ip), and leta0 be another mode in the Hilber
spaceH05HE of an ‘‘environment.’’ Let the environmen
be initially in the vacuum state, i.e., in the state with t
characteristic function~3.14! with N50. Let j be a complex
random variable with zero mean and varianceNc describing
additive classical noise in the channel. The linear attenu
with coefficientk,1 and the noiseNc is described by the
transformation

a85ka1A12k2a01j

in the Heisenberg picture. Similarly, the linear amplifier w
coefficientk.1 is described by the transformation

a85ka1Ak221a0
†1j.

It follows that the corresponding transformationsT@r# of
states in the Schro¨dinger picture both have the characteris
function

Tr T@r#V~z!5Tr rV~kz!expF2
\

2
~ uk221u/21Nc!uzu2G .

~5.1!
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Let the input stater of the system be the elementa
Gaussian with the characteristic function~3.14!. Then the
entropy ofr is H(r)5g(N). From Eq.~5.1! we find that the
output stateT@r# is again elementary Gaussian withN re-
placed by

N85k2N1N08 ,

where

N085max$0,~k221!%1Nc

is the value of the output mean photon number correspo
ing to the input vacuum state. Then

H~T@r#!5g~N8!. ~5.2!

Now we calculate the exchange entropyH(r,T). The
~pure! input stater12 of the extended systemH1^ H2 is
characterized by the 232 matrix ~3.24!. The action of the
extended channel (T^ id) transforms this matrix into

D12
21ã12↔F i ~N81 1

2 ! kAN~N11!

kAN~N11! 2 i ~N1 1
2 !

G .

From formula ~3.17! we deduce H(r,T)5g(ul1u2 1
2 )

1g(ul2u2 1
2 ), wherel1 ,l2 are the eigenvalues of the com

plex matrix in the right-hand side. Solving the characteris
equation we obtain

l1,25
i

2
@~N82N!6D#, ~5.3!

whereD5A(N1N811)224k2N(N11). Hence

H~r,T!5gS D1N82N21

2 D1gS D2N81N21

2 D . ~5.4!

Now using the theorem of Sec. V, we can calculate
quantity

Ce~T!5I ~r,T!5H~r!1H~T@r#!2H~r,T!

as a function of the parametersN,k,Nc , and try to compare
it with the one-shot unassisted classical capacity of the ch
nel C1(T) given by expression~2.4! where the maximum is
taken over all probability distributions$pi% and the collec-
tions of density operators$r i%, satisfying the power con-
straint ( i pi Tr r ia

†a<N. It is quite plausible, but not ye
proven that this maximum is achieved on cohere
states with the Gaussian probability densityp(z)
5(pN)21exp(2uzu2/N), giving the value

C1~T!5g~N8!2g~N08!.

The ratio
2-9



ity

y.

s

i

i-
s,

its

r
i-

A. S. HOLEVO AND R. F. WERNER PHYSICAL REVIEW A63 032312
G5
Ce

C1
~5.5!

then gives at least an upper bound for thegain of using
entanglement-assisted versus unassisted classical capac
particular, when the signal mean photon numberN tends to
zero whileN08.0,

C1~T!;Nk2 logS N0811

N08
D ,

Ce~T!;2N logN/~N0811!,

andG tends to infinity as2 logN.
The plots ofG as function ofk for Nc50, and as a func-

tion of Nc for k51 are given in Figs. 1 and 2, respectivel
The behavior of the entropiesH(T@r#),H(r,T) as functions
of k for Nc50 is clear from Fig. 3. For allN the coherent
information H(T@r#)2H(r,T) turns out to be positive for
k.1/A2 and negative otherwise. It tends to2H(r) for k
→0, is equal toH(r) for k51, and quickly tends to zero a
k→` ~see Fig. 4!.

B. Estimating the quantum capacity

Going back to the upper bound for quantum capacity
Sec. IV, we see thatT is given by Eq.~4.1! with Kz5kz and

FIG. 1. Gain of entanglement assistance. Gain~5.5! as a func-
tion of k with Nc50. Parameter5input noiseN.

FIG. 2. Gain of entanglement assistance. Gain~5.5! as a func-
tion of Nc with k51. Parameter5input noiseN.
03231
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f ~z!5expS 2
~ uk221u/21Nc!

2
uzu2D .

ThenD95(12k2)D, and the operatorA mapping the sym-
plectic formD9 to the standard formD is multiplication by
Auk221u, combined fork.1 with a mirror reflection to
change the sign. This leaves

f ~Az!5expS 2
~ uk221u/21Nc!

2uk221u
uzu2D , ~5.6!

i.e., r5rg with Eqs. ~3.15! and ~4.9!, where g51/2
1Nc /uk221u. This is the verification of the complete pos
tivity of T by the methods of Sec. V A. Of course, this i
strictly speaking, unnecessary, becauseT was constructed
explicitly as a completely positive operator in terms of
dilation in Sec. IV A.

But let us now considerTQ. It is also a bosonic linear
transformation, in whichQ only has the effect of changing
the sign of the symplectic form, without changingf. Thus
D95(11k2)D, and

f ~Az!5expS 2
~ uk221u/21Nc!

2uk211u
uzu2D .

FIG. 3. Entropies. Output entropy from Eq.~5.2!; exchange en-
tropy from Eq.~5.4! with Nc50.

FIG. 4. Bounds for quantum capacity,Nc50. J is the coherent
information ~5.8! with N50.7; QG is the bound maximized ove
Gaussians~5.9!; QQ is the bound on this quantity from transpos
tion ~5.7!; Z is the zero atk51/A2, common to all curves of typeJ.
2-10



m

tin

n
a

nt
.
th
o
old

ct is

.,

be-

rm.

l
er

Us-
t this
of

fter
nnel

EVALUATING CAPACITIES OF BOSONIC GAUSSIAN . . . PHYSICAL REVIEW A63 032312
which seems like a rather minor change over Eq.~5.6!. How-
ever, we now getr5rg with g5(uk221u/21Nc)/(k

211)
which is not necessarily greater than or equal to 1/2, soTQ
is not necessarily completely positive. Taking the logarith
of Eq. ~4.12! we get

QQ~T!<max$0,log~k211!2 log~ uk221u12Nc!%. ~5.7!

In particular, forg>1/2, i.e., forNc>(uk211u2uk221u)/2
5max$1,k2%, the capacitiesQQ(T), and henceQ«(T) and
Q(T), all vanish.

This upper bound on the quantum capacity is interes
to compare with the quantityQG(T)5supJ(r,T), where
J(r,T)5H(T@r#)2H(r,T), and the supremum is take
over all Gaussianinput states. Since the coherent inform
tion

J~r,T!5g~N8!2gS D1N82N21

2 D2gS D2N81N21

2 D
~5.8!

increases with the input powerN, we obtain

QG~T!5 lim
N→`

J~r,T!

5 logk22 loguk221u2g~Nc /uk221u!, ~5.9!

which is in a good agreement with the upper bound~5.7! ~see
Figs. 4 and 5!.
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FIG. 5. Gaussian maximized coherent informationQG(T) as a
function of k andNc . The shaded area is the area, whereQQ>0.
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APPENDIX A: PROOF OF PROPERTIES OF QQ

1. Exact additivity

We use the facts that the transpose on a tensor produ
the tensor product of the transposes~‘‘ Q5Q ^ Q,’’ see
above!, and the fact that the cb-norm is multiplicative, i.e
iT^ Sicb5iTicbiSicb, for arbitrary linear operatorsT,S.
Hencei(T^ S)Qicb5i(TQ) ^ (SQ)icb5iTQicbiSQicb.

2. If T is a channel, so isQTQ

Indeed, for any n, (QTQ) ^ idn5(QTQ) ^ (QnQn)
5(Q ^ Qn)(T^ idn)(Q ^ Qn) is the product of three positive
~although not completely positive! maps. HenceQTQ is
completely positive. It is also normalized as a channel,
causeQ leaves the unit operator and the trace invariant.

3. The bottleneck inequality

We use the inequalityiTSicb<iTicbiSicb, which follows
because the cb-norm is defined in terms of an operator no
Thus iTSQicb<iTicbiSQicb<iSQicb, becauseiTicb51
for any channel. On the other hand,iTSQicb
5i(TQ)(QSQicb<iTQicb, becauseQSQ is also a channe
by Appendix A 2. Taking the logarithm of these upp
bounds oniTSQicb, we find the desired inequality.

4. QQ„T…Ä0 for separable channels

For a commutative algebraC, Q is the identity. There-
fore, if idC denotes the identity (5 ideal channel) on a
classical system, we geti idCQicb5i idCicb51, hence
QQ(idC)50. By the bottleneck inequality a factorizationT
5PM into preparation and measurement impliesQQ(T)
5QQ(P idCM )<min$QQ(P),QQ(idC),QQ(M )%50. More
generally, we findQQ(T)50 for any ‘‘entanglement binding
channel,’’ in the sense of@30# which are precisely those
channels, for whichTQ is completely positive.

5. Connection with an entanglement measure

Let

EQ~r!5 logi~ id^ Q!@r#i1 ~A1!

denote the entanglement measure mentioned in the text.
ing exactly the same techniques as above, one shows tha
is a strictly additive upper bound on the distillation rates
pure singlets fromr. The connection withQQ arises from
the problem of estimating the entanglement of a state a
one of the subsystems has been sent through a noisy cha
T, i.e., the entanglement of a state of the form (T^ id)@r#.
We get

i~ id^ Q!~T^ id!@r#i15i~T^ Q!@r#i1

<iT^ Qi iri1

5i@~TQ! ^ id#~Q ^ Q!i

5i~TQ! ^ idi<iTQicb,

and hence
2-11
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EQ„~T^ id!@r#…<QQ~T!. ~A2!

Moreover, since the operator norm of any Hermiticity pr
serving operatorT can be written asiTi5supsiT@s#i1, a
supremum over pure states, we find that the supremum o
left-hand side in Eq.~A2! over all pure statess equals the
right-hand side. In other words,QQ can bedefinedas the
maximal entanglement~as measured byEQ) of states trans-
mitted throughT.

APPENDIX B: MINIMIZING CONVEX FUNCTIONS
OF A DENSITY OPERATOR

There is a useful lemma in classical information theo
which gives necessary and sufficient conditions for the g
bal minimum of a convex function of probability distribu
tions in terms of the first partial derivatives@29#. This can be
generalized to functions depending on density opera
rather than probability distributions.

Let F be a convex function on the set of density operat
S, andr0 a density operator. In orderF to achieve minimum
on r0, it is necessary and sufficient that for arbitrary dens
operators the convex functionF„(12t)r01ts… of the real
variablet achieves minimum att50. For this, it is necessar
and sufficient that

¹XF~r0![
d

dt
u t50F„~12t !r01ts…>0, ~B1!

whereX5s2r0, and¹XF(r0) is the directional derivative
of F in the directionX, assuming that the derivatives exist.
s5( i pi s i , then ¹XF(r0)5( i pi ¹Xi

F(r0), where Xi

5s i2r0. Therefore it is necessary and sufficient that E
~B1! holds for pures.

If (1 2t)r01ts>0 for small negativet, then we say that
the directionsr0

W is inner. In that case Eq.~B1! takes the
form

¹XF~r0!50. ~B2!

If r0 is nondegenerate, then the directionsr0
W is inner for

arbitrary pures in the range ofAr0, and the necessary an
sufficient condition for the minimum is that Eq.~B2! holds
for arbitrary suchs.

Let Ai ,i 51, . . . ,r be a collection of self-adjointcon-
straint operators. Assume that for some real constantsl i

¹XF~r0!5Tr X(
i

l iAi . ~B3!

It follows that the convex functionF(r)2Tr r( il iAi
achieves minimum at the pointr0, hence the functionF(r)
achieves minimum at the pointr0 under the constraints
Tr rAi5Tr r0Ai , i 51, . . . ,r .
03231
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APPENDIX C: QUANTUM SIGNAL PLUS CLASSICAL
NOISE

Let us consider CCR with one degree of freedom d
scribed by one mode annihilation operatora5(1/A2\)(q
1 ip), and consider the transformation

a85a1j,

wherej is a complex random variable with zero mean a
varianceNc . This is a transformation of the type~4.3! with
DE50, which describes the quantum mode in a class
Gaussian environment. The action of the dual channel is

T* @ f ~a,a†!#5E f „a1z,~a1z!†
…mNc

~d2z!,

wherez5(1/A2\)(x1 iy) is now a complex variable, and
mNc

(d2z) is a complex Gaussian probability measure w

zero mean and varianceNc , while the channel itself can be
described by the formula

T@r#5E D~z!rD~z!* mNc
~d2z!, ~C1!

whereD(z)5exp@i(za†2z̄a)# is the displacement operator.
The entanglement-assisted classical capacity of the c

nel ~C1! was first studied in@18# by using a rather specia
way of purification and the computation of the entropy e
change. A general approach following the method of@14#
was described in Secs. IV and V; here we give an alterna
solution based on the computation of the environment
tropy.

For this we need to extend the environment to a quan
system in a pure state. Consider the environment Hilb
spaceHE5L2(mNc

) with the vectoruC0& given by the func-

tion identically equal to 1. The tensor productH^ HE can be
realized as the spaceLH

2 (mNc
) of mNc

-square integrable func

tionsc(z) with values inH. Define the unitary operatorU in
H^ HE by

~Uc!~z!5D~z!c~z!.

Then

T@r#5TrHE
U~r ^ uC0&^C0u!U* ,

while

TE@r#5TrH U~r ^ uC0&^C0u!U* .

This means thatTE@r# is an integral operator inL2(mNc
)

with the kernel

K~z,z8!5Tr D~z!r0D~z8!*

5exp@ i Im z̄8z2~E11/2!uz2z8u2#.

Let us define the unitary operatorsV(z1 ,z2) in L2(mNc
) by
2-12
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V~z1 ,z2!c~z!5c~z1z2!expF i Rez̄1S z1
z2

2 D
2

1

Nc
Rez̄2S z1

z2

2 D G .
The operatorsV(z1 ,z2) satisfy the Weyl-Segal CCR with
two degrees of freedom with respect to the symplectic fo

D„~z1 ,z2!,~z18 ,z28!…5Re~ z̄18z22 z̄1z28!.

Passing over to the real variablesx,y one finds the corre-
sponding commutation matrix

DE5\F 0 0 21 0

0 0 0 21

1 0 0 0

0 1 0 0

G .

The characteristic function of the operatorTE@r0# is

Tr TE@r0#V~z1 ,z2!5E V~z1 ,z2!K~ ž,z!u ž5zmNc
~d2z!,

whereV(z1 ,z2) acts onK as a function of the argumentž.
Evaluating the Gaussian integral, we obtain that it is equa

expF2
1

4 S Ncuz1u212NcImz̄1z21
D2

Nc
uz2u2D G ,

~where nowD5A(Nc11)214NcN), which is a Gaussian
characteristic function with the correlation matrix
. A

.

l,

J.

th

03231
to

aE85
\

2 3
Nc 0 0 Nc

0 Nc 2Nc 0

0 2Nc
D2

Nc
0

Nc 0 0
D2

Nc

4 .

Thus

DE
21aE85

1

2 3
0 2Nc

D2

Nc
0

Nc 0 0
D2

Nc

2Nc 0 0 2Nc

0 2Nc Nc 0

4 .

By using the Pauli matrixsy , we can write it as

1

2 F 2 isyNc
D2

Nc

2Nc 2 isyNc

G
5

1

2 F I 0

0 sy

GF 2 isyNc sy

D2

Nc

2syNc 2 isyNc

GF I 0

0 sy

G ,

hence the absolute values of the eigenvalues ofDE
21aE8 are

the same as that of the matrix

F iNc 2
D2

Nc

Nc iNc

G ,

which coincide with Eq.~5.3! in the casek51.
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