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Evaluating capacities of bosonic Gaussian channels
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We show how to compute or at least to estimate various capacity-related quantities for bosonic Gaussian
channels. Among these are the coherent information, the entanglement-assisted classical capacity, the one-shot
classical capacity, and a quantity involving the transpose operation, shown to be a general upper bound on the
guantum capacity, even allowing for finite errors. All bounds are explicitly evaluated for the case of a one-
mode channel with attenuation or amplification and classical noise.
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[. INTRODUCTION erations on finite-dimensional matrices in the continuous
variable case. The basic framework for doing all this is not
In the past several years impressive progress wasew, and goes under the heading “phase-space quantum me-
achieved in the understanding of the classical and quantughanics” or, in the quantum field theory and statistical me-
capacities of quantum communication chanrieke, in par- chanics communities, “quasifree Bose systeni§]. Both
ticular, Refs.[1-6], where the reader can also find further authors of this paper have participated in the development of
referenceks It appears that a quantum channel is characterthis subject a long time agd0-12. In this paper, continu-
ized by a whole variety of different capacities dependingind [13] and[14], we make further contributions to the study
both on the kind of the information transmitted and the speof information properties of linear bosonic Gaussian chan-
cific protocol used. nels. We focus on the aspects essential for physical compu-
Most of this literature studies the properties of systemdations and leave aside a number of analytical subtleties re-
and channels described in finite dimensional Hilbert spacedated to infinite dimensionality and unboundedness
Recently, however, there has been a burst of intefgme Unavoidably arising in connection with bosonic systems and
e.g., Ref[7]) in other kinds of systems, sometimes called theGaussian states.
“continuous variable” quantum systems, whose basic vari- The paper is organized as follows. In Sec. Il we recapitu-
ables satisfy Heisenberg’s canonical commutation relationkte some notions of capacity, which are currently under in-
(CCR). There are two reasons for this new interest. On thevestigation in the literature, and what is known about them.
one hand, such systems play a central role in quantum optichlaturally this cannot be a full review, but will be limited to
the canonical variables being the quadratures of the fieldhose quantities that we will evaluate or estimate in the sub-
Therefore some of the current experimental realizati@®s sequent sections. An addition to the spectrum of capacitylike
of quantum information processing are carried out in suctfluantities is discussed in Sec. 11B: an upper bound on the
systems. In particular, the bosonic Gaussian channels studiéiantum capacityeven allowing finite errogs which is both
in this paper can be seen as basic building block of quanturimple to evaluate and remarkably close to maximized co-
0ptica| communication systems, a||owing us to build upherent information, a bound conjectured to be exact. In Sec.
complex operations from “easy, linear” ones and a few ba-lll we summarize the basic properties of Gaussian states.
sic “expensive, nonlinear” operations, such as squeezerdlthough our main topic is channels, we need this to get an
and parametric down converters. explicit handle on the purification operation, which is needed

The other reason for the interest in these systems is that #¢ compute the entropy exchange, and hence all entropy
spite of the infinite dimension of their underlying Hilbert based capacities. Bosonic Gaussian channels are studied in
spaces they can be handled with techniques from finiteSec. IV. Here we introduce the techniques for determining
dimensional linear algebra, much in analogy to the finite-the capacity quantities introduced in Sec. I, deriving general
dimensional quantum systems on which the pioneering worormulas where possible. In Sec. V we apply these tech-
on quantum information was done. Roughly speaking thiliques to the case of a single-mode channel comprising at-
ana]ogy rep|aces the density matrix by the covariance matrii@nuation or amplification and a classical noise. Some tech-
of a Gaussian state. Then operations like the diagonalizatiopical points are treated in the Appendixes.
of density matrices, the Schmidt decomposition of pure
states on composite systems, the purification of mixed states, Il. NOTIONS OF CAPACITY
the computation of entropies, and the partial transpose opera-
tion on states and channels, which are familiar from the usual
finite-dimensional setup, can be expressed once again by op- Consider a general quantum system in a Hilbert spdce

=Hq. Its states are given by density operatpren H. A
channelis a transformatiorp— T[ p] of quantum states of
*Permanent address: Steklov Mathematical Institute, Gubkina &he system, which is given by a completely positive, trace-
117966 Moscow, Russia. Electronic address: holevo@mi.ras.ru preserving map on trace class operators. This view of chan-
TElectronic address: r.werner@tu-bs.de nels corresponds to the Schionger picture. The Heisenberg

A. Basic entropy and information quantities
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picture is given by the dual linear operad T*[ X] on the 1(p, T)=H(pg) +H(ps) —H(pko)
observables(, which is defined by the relation
=H(p)+H(T[p]) —H(p,T). 2.3

The quantityl (p,T) has a number of “natural” properties,
and has to be completely positive and unit preserficfy  in particular, positivity, concavity with respect to the input
[15)). statep and additivity for parallel channe[g]. Moreover, the

It can be showr(see, e.g.[16]) that any channel in this maximum ofl (p,T) with respect tgp was argued recently to
sense arises from a unitary interactiorof the system with  be equal to theentanglement-assisted classical capaafy
an environment described by another Hilbert spa¢e  the channe[6,18], namely, the classical capacity of the su-

TrT[p]X=TrpT*[X],

which is initially in some stateg, perdense coding protocol using the noisy channdt was
shown that this maximum is additive for parallel channels,
Tlpl=Tre U(p@pg)U*, the one-shot expression thus giving the fialsymptoti¢ ca-
_ _ _ pacity.
where Tg denotes partial trace with respect’ , and vice It would be natural to compare this quantity with than-

versa. The representation is not unique, and the p@a®n  assistei classical capacit€(T) (the definition of which is
always be chosen purpe=|4e)(e|. The definition of the  outlined in Sec. 11 B; however, it is still not known whether
channel has obvious generalization to the case where inpis capacity is additive for parallel channels. This makes us

and output are described by different Hilbert spaces. focus on the one-shot expression, emerging from the coding
Let us denote by theorem for classical-quantum channi$
H(p)=—Trplogp 2.1
Cy(T)=max H| 2, piTlpil| = 2 PH(TIpD)|,

the von Neumann entropy of a density operatoWe callp (2.4)

the input state, and[p] the output state of the channel.

There are three important entropy quantities related to thehere the maximum is taken over all probability distribu-
pair (p,T), namely, the entropy of the input statp), the  tions{p;} and collections of density operatdjs;} (possibly
entropy of the output statel(T[p]), and the entropy ex- satisfying some additional input constraint€,(T) is equal
changeH (p,T). While the definition and the meaning of the to the capacity off for classical information, if the coding is
first two entropies is clear, the third quantity is somewhatrequired to avoid entanglement between successive inputs to
more sophisticated. To define it, one introducesréfierence  the channel. The full capacity is then attained as the length
systemdescribed by the Hilbert spagé;, isomorphic to the  of the blocks, over which encoding may be entangled, goes
Hilbert spaceHq= H of the initial system. Then according to infinity, i.e.,

to Refs.[17] and[3], there exists urification of the statep,

i.e., @ unit vectolt4) e Ho® Hg such that C(T)= lim £C1(T®”). 2.5
n—oo
p=Trel )¢l _ . ,
An important component df(p,T) is thecoherent infor-
The entropy exchanges then defined as mation
H(p,T)=H((Teid)[|){¥|]), (2.2 J(p, T)=H(T[pD) —H(p,T), (2.9

that is, as the entropy of the output state of the dilated chant-he maximum of which has been conjectured to be(tre-

nel (T®id) applied to the input which is purification of the Z?:Dn%ltjasr;tunr}lecaﬁagg %fetr;]iCzﬁcgéi[tlsg’csg'nczxﬁ)tr()p?gleesrties
statep. Alternatively, : g ; y prop

with respect top are not known, and its maximum was
H(p, T)=H(pl) shown to be strictly supgradditive for certain paralle] chan-

' B nels[20], hence the conjectured full quantum capacity may
be greater than the one-shot expression, in contrast to the
case of the entanglement-assisted classical capacity. In this
paper we shall also compare this expression with a new up-
Telp]=TrqU(p®pe)U*, 2§gr”bigu§gc.olr: IE;he quantum capaci®(T) (as introduced,

wherepg=Tg[p] is the final state of the environment, and
the channelle from Hg to He is defined as

provided the initial statepg of the environment is pure _
[17.3. B. A general bound on quantum channel capacity

From these three entropies one can construct several in- In this section we will establish a general estimate on the
formation quantities. In analogy with classical information quantum channel capacity, which will then be evaluated in
theory, one can definguantum mutual informatiobetween  the Gaussian case, and will be compared with the estimates
the reference systeiR (which mirrors the inpuQ) and the  of coherent information. Let us recall first a definition of the
output of the systen®’ [17,4] as capacityQ(T) of a general channdl for quantum informa-

032312-2



EVALUATING CAPACITIES OF BOSONIC GAUSSIAN ... PHYSICAL REVIEW A3 032312

tion. Intuitively, it is the number of qubits that can be faith- completelypositive. A similar phenomenon happens for the
fully transmitted per use of the channel with the best possibl@orm of ®: we have|®| 4> 1 unless the system is classical.
error correction. The standard of comparison is the idealn fact,
1-qubit channel ig, where iq, denotes the identity map on 10, ]|p=n 2.8
the nXn matrices. Then theguantum capacity QT) of a nileb™ 5 '
channelT (possibly between systems of different typé&s  where ®, denotes the transposition on tine<n matrices
defined as the supremum of all numberswhich are “at-  [21]. We note that since we do not distinguish the transpose
tainable rates” in the following sens&or any pair of se- on different systems in our notation, the observation that
guences p,m, with lim(n,/m,)=c we can find encoding tensor products can be transposed factor by factor is ex-

operations E, and decoding operations Psuch that pressed by the equatiéh= 0 ® ®. Moreover, although for a
channelT, the operato® may fail to be completely posi-
||id£®na_DaT®m“Ea”Cb—>0. tive, ®TO is again a channel, and, in particular, satisfies
10TO[p=1.

Here||- || is the so-called “norm of complete boundedness” The main result of this section is the estimate

(cb) [21], which is defined as the supremum with respect to Q.(T)=<Ilog|TO|,=Qe(T), (2.9
of the normd|(T®id,)|. It is equal to the “diamond metric” _ o

introduced in[22]. We use this norm because, on the one/©" @ny channelT. The proof is quite simple. Suppose
hand, it leads to the same capacity as analogous deﬁnitior%r/.ma_)CSQ?(T)' and encoding=,, and decoding),, are
based on other error criter{a.g., fidelitieq 3,5]) and, on the as in the definition oQ,(T). Then by Eq.(2.8) we have
other hand, it has the best properties with respect to tensor Zna:”idma” )

products, which are our main concern. In particular, 2 ¢

IT@Sleo=Tlleo[Sllcp- Completely positive maps  satisfy <|/(idy"*~ D, T®*ME ) O|| o+ [|D , T*™E 0|
K . . 2 a a cb a a cb
[Tlew=IIFl, whereF=T*[1] is the normalization operator
(we denotel the unit operator In particular,|T| =1 for <||®2na|\cb||idf"“—DaT®maEa||Cb
any channel. We also note another kind of capacity, in which om
a much weaker requirement is made on the errors, namely, +[Do(TO)*MOE, 8|

Con sZ”as+||T®||2";,

| “Ya “Eallcb=¢€ .

[id,"*—D,T®ME [ p=<e<1 (2.7

where at the last inequality we have used bgtand® E O

are channels, and that the cb norm is exactly tensor multipli-
cative, so|X®™|.,=[X|I%,- Hence, by taking the logarithm
and dividing bym,,, we get

for all sufficiently large«, and some fixed:. We call the
resulting capacity the-quantum capacityand denote it by
Q.(T). Of course,Q(T)<Q.(T), and by analogy with the
classical casdstrong converse of Shannon’s coding theo- n, log(1—¢)
rem) one would conjecture that equality always holds. m. log2+ m—Sk’g”T@”cb-

The unassisted classical capac{{T) can be defined “ “
similarly with the sole difference that both the domain of If we take base 2 logarithms, as is customary in information
encodingsE and the range of decodingd should be re- theory, we have log21. Then in the last inequality we can
stricted to the state space of the Abelian subalgebra of o0 to the limit a—, obtainingc<Qe(T), and Eq.(2.9)
erators diagonalizable in a fixed orthonormal basis. In thafollows by taking the supremum over all attainable rates
case there is no need to use the cb norm, as it coincides Wi{Note that base 2 Iogarithms are built into the above definition
the usual norm. According to recently proven strong con-Of capacity, because we are using the ideal qubit channel as
verse to the quantum coding theoref@3,24, C,(T) the standard of comparison. This amounts only to a change
=C(T) whereC,(T) is defined similarly toQ,(T). of units. If another base for logarithms is chosen, this should

The criterion we will formulate makes essential use of thealso be done consistently in all entropy expressions, and Eg.
transpose operation, which we will denote by the same lettef2-9) holds once again without additional constants.
in any system. For matrix algebra, can be taken as the ~ The upper boun®@¢(T) computed in this way has some
usual transpose operation. However, it makes no differencéémarkable propertiegroved in Appendix A, which make
to our considerations, if any other antiunitarily implementedit @ capacitylike quantity in its own right. For example, it is
symmetry(e.g., time reversalis chosen. In an abstract*  exactly additive,
algebra setting is best taken as the “op” operation, which _
maps every algebra to its “opposite.” This algebra has the Qo(S®T)=Qe(S)*+Qe(T), (2.19
same underlying vector space, but all produbB are re- for any pairS,T of channels, and satisfies the “bottleneck
placed by their oppositBA. Obviously, a commutative al- inequality” Qg (ST)<miN{Qe(S),Qe(T)}. Moreover, it coin-
gebra is the same as its opposite, so on classical syfleisis cides with the quantum capacity on ideal channels:
the identity. Although the transpose maps density operator®g(id,) = Q(id,)=logn, and it vanishes whenever® is
to density operators, it is not an admissible quantum channetompletely positive. In particulaQg(T) =0, whenevef is
because positivity is lost, when coupling the operation withseparablein the sense that it can be decomposedTas
the identity transformation on other systems, i@.js not =PM into a measuremer¥l and a subsequent preparation
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P based on the measurement results. We note @@t Most of the results below are valid for the case where the
is also closely related to the entanglement quantitycommutation matrix is an arbitrargnondegenerajeskew-
log|l(id® ®)[ p]ll;, i.e., the logarithm of the trace norm of the symmetric matrix, not necessarily of the canonical form
partial transpose of the density operator, which enjoys analo3.4).
gous properties. A density operatorp has finite second moment#
Tr(quz)<oc and Tr(op12)<oo for all j. In this case one can
. QUANTUM GAUSSIAN STATES define the vectomeanand thecorrelation matrixa by the
formulas
A. Canonical variables and Gaussian states
In this section we recapitulate some results from _ . L T
[10,13,14 for the convenience lgf the reader. Our approach to M=TrpR; « 2A—Tr(R mp(R=m)". @39
guantum Gaussian states is based on the characteristic func- ] ]
tion of the state which closely parallels classical probabilityThe mean can be an arbitrary real vector. The correlation
[11,12, and is perhaps the simplest and most transparerffalrix « is real and symmetric. A givea is the correlation
analytically. An alternative approach can be based on th&atrix of some state if and only if it satisfies tmeatrix
Wigner “distribution function” [25]. uncertainty relation
Let g;,p; be the canonical observables satisfying the i
Heisenberg CCR a— EABO' (3.6

Ldj.pel=i65hl, [d;,ad]=0, [pj.pk]=0. o
We denote by2 (m,«) the set of states with fixed mean

We introduce the column vector of operators and the correlation functiom. The density operatop is
called Gaussian if its quantum characteristic function
R=[01.,P1,- .. Os.Ps]", #(2)=Tr pV(z) has the form
the real column 8 vector z=[xy,Y1, ... Xs,Ys]', and the p(z)=expim'z—32"az), (3.7

unitary operators i ) _ )
wherem is a column (3) vector anda is a real symmetric

s (2s) X (2s) matrix. One then can show thatis indeed the
V(z)=expi2 (X;9;+Y;p;j) mean, andv is the correlation matrix, and E¢3.7) defines
=1 the unique Gaussian state ¥{m,«). In what follows we

(3.1 will be interested mainly in the case=0.

=expiR'z. The correlation matrixy describes a quadratic form rather
i than an operator. Therefore its eigenvalues have no intrinsic
These “Weyl operators” satisfy the Weyl-Segal CCR significance, and depend on the choice of basi&.i®n the
| other hand, the operater defined byz'az=A(z,az) has a
V(Z)V(Z')IeXF{EA(Z,Z') V(z+2'), (3.2  basis free meaning. In matrix notation itds= A " 'a. This

operator is always diagonalizable, and its eigenvalues come
in pairs +iy; . Diagonalizing this operator is essentially the

where same as th@ormal mode decompositiasf the phase space,
s when the formz'az is considered as the Hamiltonian func-
A(Z,Z’):ﬁz (Xj'yj _ijj') (3.3)  tion of a system of oscillators. It leads to a decomposition of
=1 the phase space into two-dimensional subspaces, such that on

. ) ) the j" subspace we havgn some new canonical variables
is the canonical symplectic form. The spageof real 25

vectors equipped with the formi(z,z’) is what one calls a aPy)
symplectic vector spac&Ve denote by Y [0 1
a="h ., A=h , (3.8
-0 & . 0 -1 0
—-h O and all terms between different blocks vanish. The matrix
A= (3.4) uncertainty relation now requireg=1/2, in which equality

holds if and only ifp; is the pure(minimum-uncertainty

0 % state. Hence a general Gaussian spai pure if and only if
| —h 0 all yj=1/2, or
the (2s) X (2s)-skew-symmetric commutation matrix of (A~ Lg)2=— EI 3.9
components of the vectdr, so that @) =" :
A(z,2)=—-2"AZ". in which case(m,«) reduces to a single point.
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B. Gauge-invariant states 1 y—1/2\"

y+1/2

[n)(n| (3.19

We shall be interested in the particular subclass of Gauss- Py= y+1/2 nEo
ian states most familiar in quantum optics, namely, the states

having aP . representation in the number basif), with the mean photon numbét.

- [ 10t 310

C. Computation of entropy

where uy(d?5¢) is the complex Gaussian probability mea- _ 10 compute the von Neumann entropy of a general
sure with zero mean and the correlation mabixsee, e.g. Gaussian state one can use the normal mode decomposition.
[26], Sec. V.5.1). Here e CS, |¢) are the coherent vectors FOF @ single mode, the density operaggrwith the correla-

in M, al)=¢|¢), N is the positive Hermitian matrix such tion matrix (3.8), settingy, =y for convenience, is unitarily

that equivalent to the stat€8.15. From this one readily gets the
von Neumann entroph (p,) by a summation of the geomet-
N=Tr(apa') (3.11 ric series, and for general Gaussjafty summing over nor-
mal modes.
(we use here vector notations, where[ay, ... as]" is a To write the result in compact form, one introduces the
column vector anda’=[al, ... ,al] is a row vectoy, and  function
= (1N2R) (g +ipy).
These states respect the natural complex structure in the g(x)=(x+1)log(x+1)—xlogx, x>0
sense that they are invariant under the gauge transformations
a—aexple). As shown in[13], the quantum correlation g(0)=0. (3.1
matrix of such states is
ReN+1/2 —ImN Then
a=h .
ImN ReN+1/2 s 1
With Pauli matriced ,, oy, the real X 2s matrices of such H(p)= 2 (Iy, ) 3.19
form can be rewritten as complex s matrices, by using the
correspondence where y; runs over all eigenvalue pairsiy; of A la
A —-B One can also write this more compactly, using the follow-
B A :|:|2A—ig'yB<—)A+iB, ing notations, which we will also use in the sequel. For any

diagonalizable matrixM = Sdlag(mJ)S‘ , we set abd{l)
=Sdiag(m, [YS™1, analogously for other continuous func-
tions on the complex plane. Then E®.17 can be written
as[13]

which is an algebraic isomorphism. Obviously,

1 A —-B
258 A
where by “Sp” we denote the trace of matrices, as opposed H(p)= 2 Spg

to the trace of Hilbert space operators, which is denoted by
“Tr.” By using this correspondence, we have

—SpA+iB),

absA la)— %) (3.18

For gauge-invariant state, by usit® 13, this reduces to the
acsh(N+1/2), Aes—ihl, (3.12 well-known formula

and H(p)=Spg(N).

A ta—i(N+1/2). (3.13
D. Schmidt decomposition and purification
For the case of one degree of freedom we shall be inter-

ested in the last sectioN is just a non-negative number, and
p is an elementaryGaussian state with the characteristic
function

Forming a composite systems out of two systems de-
scribed by CCR relations is very simple: one just joins the
two sets of canonical operators, making operators belonging
to different systems commute. The symplectic space of the
composite system is a direct suty,=Z,®Z,, which means
(3.19 that elements of this space are pairsg,¢,) with components
zieZi. In terms of Weyl operators one can write
where we sefz|?=(x?+y?). This state has a correlation V,4(z;,2,)=V1(z;)®V,(z,). By definition, the symplectic
matrix of the form(3.8) in the initial variablesg,p, with y  matrix A, is block diagonal with respect to the decomposi-
=N+1/2, and is just the temperature state of the harmonition Z=Z,®Z,. However, the correlation matrixx;, is
oscillator block diagonal if and only if the state is a product. The

1
N+ |z|?],

h
d(z)=ex -3

2=
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restriction of a bipartite Gaussian stateo the first factor is IV. LINEAR BOSONIC CHANNELS
determined by the expectations of the Weyl operators

. A. Basi ti
V1(z1) ® 1=V,,(2,,0), hence according t8.7), by the cor- asic properties

relation matrixa; with z] a;z;=(2;,0)Ta1(2,,0), which is ‘The characteristic property of the channels considered in
just the first diagonal block in the block matrix decomposi- this paper is their simple description in terms of phase-space
tion structures. The key feature is that Weyl operators go into
Weyl operators, up to a factor. That is, the channel map in
a; P Ay the Heisenberg picture is of the form
2 T*\V'(Z2'))=V(K'Z)f(Z), 4.7

As in the case of bipartite systems with finite-dimensional

Hilbert spaces there is a canonical form fpurestates of the  \whereK:Z— 7' is a linear map between phase spaces with

composite system, the Schmidt decomposition. Like the disymplectic formsA andA’, respectively, and(z') is a sca-

agonalization of a one-site density operator, it can be carriegyr factor satisfying certain positive definiteness condition to

out for Gaussian states at the level of correlation matricesye discussed later. Because of the linearitj<psuch chan-

By writing out equation(3.9) in block matrix form, we find  nels are calledinear bosonic channelgl5], and if, in addi-

in particular that tion, the factorf is GaussianT will be called aGaussian
(Ailal)(Aflﬂ) _ (Al’lﬁ)(Aglaz). (3.20 channel In terms of characteristic functions, Eg.1) can be

written as
Thus (Al’l,B) maps eigenvectors oﬁ(;laz) into eigenvec-
tors of (A[lal), W_ith_ the opposite eig_envalue. H_ence the ¢ (2)=p(K'2Hf(Z'), 4.2)
spectra of the restrictions are synchronized much in the same
way as in the finite-dimensional case, and all the matrices , - ) .
ay.a,,B can be diagonalized simultaneously by a suitableVhere¢ and¢’ are the charactgnstlcfunctlons of input state
choice of canonical coordinates. Evaluating also the diagondl @nd output stat@[ p], respectively. _
part of Eq.(3.9), one gets an equation fg@, so that finally We will make use of the following key properties.
ay, is decomposed into blocks corresponding (& pure (@ Th_e QUaI of a linear bqsomc channel_ tra_msforms any
components belonging to only one subsystem, and not coRClynomial in the operator®” into a polynomial in thek of

related with the other, an¢b) blocks of a standard form the same order, provided the functiérhas derivatives of
which can be written like EQ(3.19 with ay=ay=a, A, " sufficiently high order. This property follows from the defi-

—A,=A from Eq.(3.9), and nition of moments by differentiating the relatidd.1) at the
S pointz' =0.
, 1 1 0 (b) A Gaussian channel transforms Gaussian states into
B=f\/ vy — 20 -1l (3.2 Gaussian states. This follows from the definition of Gaussian

state and the relatio.2).

The purification of a general Gaussian state can easily be (¢) Linear bosonic channels are covariant with
read off from this, by constructing such a standard form forrespect to phase-space translations. That is pif
every normal mode. In order to writg in operator form =V(—A~'2)pV(-A"'2)* is a shift of p by z, T[p] is
without explicit reference to the normal mode decomposi-similarly shifted byKz.

tion, it is most convenient to perform an appropriate reflec- There is a dramatic difference in the capacities of a
tion in the spaceZ,, by which 8 becomes purely off- Gaussian channel for classical as opposed to quantum infor-
diagonal. Then we can choo$27] A,=A=—A, anda, Mmation. Classical information can be coded by using phase-

=a,=a, resulting in space translates of a fixed state as signal states, so the output
. —— signals will also be phase-space translates of each other.
B=—B =AV—(A " a)"— /4. (3.22  Then no matter how much noise the channel may add, if we

take the spacing of the input signals sufficiently large, the
output states will also be sufficiently widely spaced to be
ydistinguishable with near certainty. Therefore the uncon-
strainedclassical capacity is infiniteThe same would be

This also covers cases witB=0 for some modes where,
strictly speaking, no purification would have been necessar
We thus have

A la J=(A"Ta)Z=1/4 true, of course, for a purely classical channel with Gaussian
At ag,= — A-1 . noise. The classical capacity of such channels becomes an
V(A7 ) = 1/4 N @ interesting quantity, however, when the “input power” is

(323 taken to be constrained by a fixed value, which we must take
In the gauge-invariant case, we can use the corresponden@s one of the parameters defining the channel. Then arbi-
_ trarily wide spacing of input signals is no longer an alterna-
i(N+1/2)  NZ+N tive, because an intrinsic scale for this spacing has been in-
JNZEN  —i(N+1/2)

AL : (3249 troduced.
following from Eg.(3.12. channels is that such an intrinsic scale is already there: it is

The remarkable fact of quantum information on Gaussian
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given by7%. As we will show, the quantum information ca- Of course, the operatoR’ need not form a complete set of
pacity is typically bounded even without an energy con-observables irH® Hg, but in any casex’ is the correlation
straint. Loosely speaking, although we send arbitrarily manymatrix of a system containing just the canonical variaBles
well distinguishable quantum signals through the channeland it is this state which we will consider as the output state
coherence in the form of commutator relations is usuallyof the channel.
lost. Surprisingly, in spite of the infinite classical capacity, For fixed statepg (state of the “environment)’ the chan-
the capacity for quantum information may be zewhich  nel transformation taking the input stateo the outputp’ is
means that even joining arbitrarily many parallel channelslescribed most easily in terms of characteristic functions,
with poor coherence properties is not good enough for send-

¢'(2')= (K2 ) pe(KE2'). (4.5

ing a single qubit. This phenomenon will be explained in
some detail in Sec. V.

The choice of the scalar functioi{z’) is crucial for the ~We can write this as a linear Bosonic channel in the form
guantum transmission properties of the channel. Normaliza4.2) with
tion of T requires thatf (0)=1, and it is clear thatf(z')|
<1 for all ', from taking norms in4.1). Beyond that, it is
not so easy to see which choicesfafre compatible with the
complete positivity. Iff decays rapidly,T* maps most op-
erators to operators near the identity, which means that the
is very much noise. On the other hand, there will be a lowe
limit to the noise, depending on the linear transformaton
Only whenK is a symplectic linear map antdis reversible,
the choicef(z)=1 is possible. Otherwise, there is some un-
avoidable noise.

There are two basic approaches to the determination
the admissible functionk The first is the familiar construc-
tive approach already used in Sec. Il, based on coupling the
system to an environment, a unitary evolution and subse-
guent reduction to a subsystem, with all of these operations
in their linear bosonic Gaussian form. Basically this reduce%ssuming thatz=2' and A’=A, one can always choose

the problem to linear transformations of systems of canonica]l_ . o )
S . . L h that th mbin ransformation i nonical
operators. This will be described in Sec. IVB, and used for. " E such that the combined transformation is canonical,

the calculation of entropy exchange in Sec. IV C. Alterna-- Preserves the commutation matrix

tively, one can describe the admissible functidnby a A O

twisted positive definiteness condition, and this will be used [0 A
E

f(z')=pe(KEz ) =Tr peVe(Kiz'). (4.6
Thus the factorf is expressed in terms of the characteristic
Jﬁnction of the initial state of the environment. Obviously,
fhe channel is Gaussian if and only if this state is Gaussian.
If we want to get the state of the environment after the
channel interaction, as required in the definition of exchange
entropy, we have to supplement the linear equatibB) by
a similar equation specifying the environment variati§s
After the interaction

R, =KR+ KERE,

R{E: LR+ LERE, .

for evaluating the boun€¢(T) in Sec. IVD.

B. Bosonic channels via transforming canonical operators

Let R,Rg be vectors of canonical observablestiyHg,
with the commutation matriced,Ac. Consider the linear
transformation

R'=KR+KEgRg, 4.3
whereK,Kg are real matricego simplify notations we write
R,Rg instead ofR®Ig,l ®Rg, etc) Then the commutation
matrix and the correlation with respect ® are computed
via (3.5 with m=0, namely,

i
a' — EA’ZTrR’p’R’T.
We apply this to the special capé=p® pg, wherepg and
p are density operators ifilg and ‘H with the correlation
matricesag and«, respectively. Then using@t.3), we obtain
A'=KAKT+KgAeKL,

a'=KaKT+KgagKg. (4.4)

Then the channelg :p— pg can be defined by the relation
TE[Ve(ze)1= V(L Ze) - de(Lize),

and is thus also linear bosonic.

C. Maximization of mutual information

The estimate for the entanglement-assisted classical ca-
pacity suggested bj18] is the maximum of the quantum
mutual information(2.3) over all states satisfying an appro-
priate energy constraint. Evaluating this maximum becomes
possible by the following resultiet T be a Gaussian chan-
nel. The maximum of the mutual informatiofp) over the
set of states (m,«) with given first and second moments is
achieved on the Gaussian state.

Proof (sketch. By purification (if necessary, we can al-
ways assume thatg is pure Gaussian. Then we can write

1(p)=H(p) +H(T[p]) —H(Telp]).

1The proof of this theorem was stimulated by a question posed to
one of the authorgA.H.) by P. W. Shor.
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Let pg be the unique Gaussian statedifim, ). For simplic- Alternatively, the entropy exchange can be calculated as
ity we assume here that, is nondegenerate. The general the output entropyH(Tg[ p]) if an explicit description ofTg
case can be reduced to this by separating the pure componéstavailable. We shall demonstrate this method in the ex-
in the tensor product decompositiongf. The functionl (p) ample of one-mode channels in Appendix C.

is concave and its directional derivative at the pgigts (cf.

[18]) D. Norms of Gaussian transformations

Vil (po)=TrX(Inpg+1)+TrT[X](InT[po] +1) The transposition operation on a bosonic system can be
realized as the time-reversal operation, i.e., the operation re-
versing the signs of all momentum operators, while leaving
the position operators unchanged. Obviously, the dual
then takes Weyl operators into Weyl operators. So transpo-
Yyl (o) =Tr X{In po+T*(INT[ po]) = TE(IN Te[ po]) +11. sition is just like a linear bosonic channel, albeit without the
scalar factorf (z') in Eq. (4.2). It is this factor which makes
(47 the difference between positivity and complete positivity,

. and also enters the norfi|s,. In this section we will pro-
Now by property (b) of Gaussian channels, the operatorsvide general criteria for deciding complete positivity and

Po.TLpo], Tel po] are (nondegenerajeGaussian density op- .computing the norm of general linear bosonic transforma-
erators, hence their logarithms are quadratic polynomials i}

the corresponding canonical variablesge the Appendix in tions.
P g o bp . These are by definition the operatdfsacting on Weyl
[13). By property () the expression in curly brackets in operators according to E¢4.1) wheref(z') is a scalar fac-
(4.7) is again a quadratic polynomial R, which is a linear P i gf i lici din vi £ th i
combination of the constraint operators3{m,a). There- tor. we w z;sm;n;le or simp |9|t3(ar;] n xlew of the appli-
fore, the sufficient conditioniB3) in Appendix B is fulfiled o 10" " (¢ folowing sectiosthat the antisymmetric
. . X ; orm
andl(p) achieves its maximum at the poipge > (m,a).
This theorem implies that the maximumIdjp) over a set A"(z,25)=A"(2,,2,) — A(K"z, ,KTZy) 4.9
of density operators defined by arbitrary constraints on the
first and second moments is also achieved on a Gaussia

1 I H n
density operator. In particular, for an arbitrary quadratic!gnondegenerate. This makes the spaCeith the formA

HamiltonianH the maximum ofl (o) over states with con- into a phase space in its own right. With the introduction of
. . P . suitable canonical coordinates it becomes isomorphic to
strained mean energy pH is achieved on a Gaussian state.

The energy constraint is linear in terms of the correlation(Z’A)’ so there exists an invertible linear operataz— 2
matrix: 9y such thatA”(z;,2,) =A(A" 1z, ,A"12,).

If f is continuous and has sufficient decay properties
S ea)<N (which will be satisfied in our applicationghere is a unique
’ trace class operatqr determined by the equation

—TI’TE[X](ln TE[PO]+ I )

By using dual maps this can be modified to

wheree is the diagonal energy matrisee[13]).
When p and T are Gaussian, the quantitigd(p), Tr(pV(2))=f(Az2). (4.9
H(T[p]),H(p,T) and I(p,T),J(p,T) can in principle be
computed by using formulag3.18), (4.4), (3.23. Namely, Then T is completely positive if and onlyyifis a positive
H(TLp]) is given by formula(3.18 with « replaced by« trace class operatorThis is a standard result in the theory of
computed via4.4), and quasifree maps on CCR algeb{a$ It is proved by showing
| that both properties are equivalent to a “twisted positive
abg Al_zlaiz)— _), definiteness condition,” namely the positive definiteness of
2 all matrices of the form

1
H(p,T)=75 Spg

where . .
i i
, a’ KB Mrs:f(zr_zs)ex%_EA,(erZs)"_EA(KTerKTZs) ,
@10~ BKT al
wherez,, ...z, are an arbitrary choice afi phase-space
B=AJ— (A" ta)’—1/4 , points.
If p is a nonpositive Hermitian trace class operator, it has
is computed by inserting4.3) into a unique decomposition into the positive and negative part:
_ , p=p,—p_ such thatp.=0, andp,p_=0. Then|p|=p,
ol I—A’ Ty J[R'T.RI] +p- and the trace norm iboll1=Tr(ps)+Tr(p_). Insert-
12 o712 R, 2d ing p- into Eq. (4.9 instead ofp, we get two functiond -

on phase space and from Edg.1) two linear bosonic trans-
whereR, are the(unchangep canonical observables of the formations T. with T=T,—T_. By the criterion just
reference system. proved,T, andT_ are completely positive. Hence
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ITleo=<ITleot IT-llco= T+ T*[ 1] Let the input statep of the system be the elementary
Gaussian with the characteristic functié®.14). Then the
=f(0)+f_(0)=Tr(p.)+Tr(p-)=[pl:- (4.10  entropy ofp is H(p) =g(N). From Eq.(5.1) we find that the
output stateT[p] is again elementary Gaussian withre-

If the factorf is a Gaussian, i.e., placed by

f(z)=exp—1z"Bz) (4.1

for some positive definite matrig, we can go one step fur-

ther. In this case we may decompag8ento normal modes where

with respect taA”, which decomposes into a tensor prod-

uct of one-mode Gaussian transformatidns, for each of No=max0,(k?— 1)} + N,

which |T,|s may be computed separately by the above

method. This amounts to computing the trace norm of thgs the value of the output mean photon number correspond-

operatorp, given by Eq.(3.15 with arbitrary positivey.  ing to the input vacuum state. Then
The absolute value g, is obtained by taking absolute val-

ues of all the eigenvalues, which still maKgs)|; a geomet- H(T[p])=g(N"). (5.2)
ric series,

N’=k?N+Ng,

_qn 1 Now we calculate the exchange entropl(p,T). The
Y | =max{ 1,_]. (4.12 (pure input statep,, of the extended syster(;®H, is
y+1/2 2y characterized by the 22 matrix (3.24). The action of the

o . ) , extended channell{®id) transforms this matrix into
This is all the information we need for the estimates of quan-

s

”py”l: ,y+ 1/2 =0

[’

tum capacity in the following section. 3 i(N"+1) KVN(NT1)
A agpe . 1 :
V. THE CASE OF ONE MODE KyN(N+1) —i(N+3)
A. Attenuation and amplification channels L
with classical noise From formula (3.17 we deduce H(p,T)=g(|A1|-2)

ation or amplificatior] 14] with additive classical noisglL8]. equation we obtain

It can also be described as the most general one-mode gaug%

invariant channel, or in quantum optics terminology, the i

most general one-mode channel not involving squeezing. N o==[(N'=N)*D], (5.3

Channels of this type were also used 28] as the basis for 2

an analysis of the classical limit of quantum mechanics.
Let us consider the CCR with one degree of freedmm WhereD = \(N+N’+1)?—4k’N(N+1). Hence

=(1/\/2k)(q+ip), and leta, be another mode in the Hilbert

spaceHy="Hg of an “environment.” Let the environment

be initially in the vacuum state, i.e., in the state with the

characteristic functio3.14) with N=0. Let ¢ be a complex

random variable with zero mean and variamedescribing Now using the theorem of Sec. V, we can calculate the

additive classical noise in the channel. The linear attenuatajuantity

with coefficientk<<1 and the noisé\, is described by the

transformation Co(M)=I1(p,T)=H(p)+H(T[p]) —H(p,T)

r_— 1 _ 12
a'=katyl-kaot¢ as a function of the parametdssk,N., and try to compare

H(p,T)=9g (5.9

D+N'-N-1| (D-N'+N-1
2 9 2

coefficientk>1 is described by the transformation nel C4(T) given by expressiof2.4) where the maximum is
taken over all probability distribution§p;} and the collec-
a'=ka+ k2—1ag+ & tions of density operator§p;}, satisfying the power con-

straint 3;p; Trp;a’a<N. It is quite plausible, but not yet
It follows that the corresponding transformatiomgp] of proven that this maximum is achieved on coherent
states in the Schdinger picture both have the characteristic states with the Gaussian probability densitp(z)

function = (7N) ~*exp(—|Z%N), giving the value
ﬁ ’ !
TrT[p]V(z)=Tr pV(kz)ex;{ - E(“‘Z_ 1]/2+Ny)|z|?|. C1(T)=9g(N")—=g(Np).
(5.2 The ratio
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G Entropy
3.5
5
3
4
2.5
3 output exchange
2
2
1.5 = input
1
k
0.5 1 1.5 2 2.5 k

0.5 1 1.5 2 2.5 3
FIG. 1. Gain of entanglement assistance. G&i%) as a func- _
tion of k with N.=0. Parameterinput noiseN. FIG. 3. Entropies. Output entropy from E.2); exchange en-
tropy from Eq.(5.4) with N,=0.

Ce
G=— (5.5 (|k?—1]/2+N,)
1 f(z)=ex;{—f|z|2 .

1O

then gives at least an upper bound for t&n of using , ) )
entanglement-assisted versus unassisted classical capacity. Then A :(1_”k )A, and the operatoA mapping the sym-
particular, when the signal mean photon numNetends to plectic formA” to the standard formA is multiplication by

zero whileN}>0, JIk>’=1], combined fork>1 with a mirror reflection to
change the sign. This leaves
C(T)~NK?I (N‘3+1> (|k2—1]/2+N,)
ath)~ 0g ) — c 2
— N f(Az)=exp — —— 7|7 |, 5.6
: (A2) p< e ||> (5.6

Ce(T)~—=NIlogN/(No+1), i.e., p=p, with Egs. (3.15 and (4.9, where y=1/2

o +N¢/|k?—1]. This is the verification of the complete posi-
andG tends to infinity as—logN. tivity of T by the methods of Sec. VA. Of course, this is,
_ The plots ofG as function ofk for N;=0, and as a func-  strictly speaking, unnecessary, becadsevas constructed
tion of N for k=1 are given in Figs. 1 and 2, respectively. expjicitly as a completely positive operator in terms of its
The behavior of the entropig¢s$(T[p]),H(p,T) as functions  dilation in Sec. IV A.
of k for N.=0 is clear from Fig. 3. For alN the coherent But let us now consideT®. It is also a bosonic linear
information H(T[p]) —H(p,T) turns out to be positive for  transformation, in whict® only has the effect of changing

k>1/J2 and negative otherwise. It tends toH(p) for k  the sign of the symplectic form, without changifigThus
—0, is equal toH(p) for k=1, and quickly tends to zero as A”=(1+k?A, and

k—o (see Fig. 4

([K?=1|2+N)
B. Estimating the quantum capacity f(Az)=exp — WM .
Going back to the upper bound for quantum capacity in
Sec. IV, we see thak is given by Eq(4.1) with Kz=kz and Q
5
¢ 4
3 Qe Qe
2.6
N=.1 9 Qc
2.4
1 J
2.2|/ wN=.2 k
. : 0. Z 1 1.5 2
N=. 3 - 1 /
N -
0.5 1 ¢ 2
1.8 - FIG. 4. Bounds for quantum capacitj.=0. J is the coherent

information (5.8) with N=0.7; Qg is the bound maximized over
FIG. 2. Gain of entanglement assistance. G&i) as a func- Gaussiang5.9); Qg is the bound on this quantity from transposi-
tion of N, with k=1. Parameterinput noiseN. tion (5.7); Z is the zero ak= 1/\/2, common to all curves of typ&
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APPENDIX A: PROOF OF PROPERTIES OF Qg
1. Exact additivity

We use the facts that the transpose on a tensor product is
the tensor product of the transposé€s®@=0®0,” see
above, and the fact that the cb-norm is multiplicative, i.e.,
[T®S|e=lTleolS|ep, for arbitrary linear operatord,S.
Hencel(T® 9)0lle,=(TO) @ (SO) o= TO 4l SO cp-

2. If Tis a channel, so iDTO

Indeed, for anyn, (0@TO)®id,=(0T0O)®(0,0,)
=(0®0,)(Teid,)(0®0,) is the product of three positive
(although not completely positiyemaps. Hence®TO is
completely positive. It is also normalized as a channel, be-
cause® leaves the unit operator and the trace invariant.

FIG. 5. Gaussian maximized coherent informat@g(T) as a

function ofk andN.. The shaded area is the area, wh@g=0. ) .
3. The bottleneck inequality
which seems like a rather minor change over &of). How- We use the inequalityT S| o< T||cu|Sllcp, Which follows
ever, we now gep=p, with y=(|k?=1[/2+N.)/(k*+1)  because the cb-norm is defined in terms of an operator norm.
which is not necessarily greater than or equal to 1/2T€@  Thus [ TSO||,=<|Tllcn|SO|cp=<[SO||c,, because||T|/;,=1
is not necessarily completely positive. Taking the logarithmfor any channel. On the other hand|TSO|,
of Eq. (4.12 we get =|(TO)(OSO||,=<|TO| s, becaus® SO is also a channel
by Appendix A2. Taking the logarithm of these upper

Qo(T)<max0,logk?+1)—log(|k2— 1|+ 2N,)}. (5.7  bounds orf|TS®|,, we find the desired inequality.

In particular, fory=1/2, i.e., forN.=(|k?+ 1| —|k?—1])/2 4. Qe(T)=0 for separable channels
=max1k?}, the capacitieQe(T), and henceQ,(T) and For a commutative algebrd O is the identity. There-
Q(T), all vanish. fore, if id, denotes the identity €ideal channel) on a

This upper bound on the quantum capacity is interestinglassical system, we get|id.®|.=|iddl,=1, hence
to compare with the quantitQg(T)=supJ(p,T), where  Qg(id;)=0. By the bottleneck inequality a factorizatidh
J(p, T)=H(T[p]) —H(p,T), and the supremum is taken =PM into preparation and measurement impli@g(T)
over all Gaussianinput states. Since the coherent informa- = Qg (P id,M)<min{Qg(P),Qe(id),Qe(M)}=0. More
tion generally, we findQo(T) =0 for any “entanglement binding

channel,” in the sense 0of30] which are precisely those
D+N'—N-— 1) ( D—N"+N- 1) channels, for whiciT® is completely positive.
-9

2 2

J(p,T)=g(N")—g

5. Connection with an entanglement measure

(5.9 Let

increases with the input pow&, we obtain Ee(p)=log|(ide®)[p]l, (A1)

denote the entanglement measure mentioned in the text. Us-
ing exactly the same techniques as above, one shows that this
is a strictly additive upper bound on the distillation rates of
=logk?—loglk?*—1|—g(N./|k®—1|), (5.9  pure singlets fronp. The connection witQ arises from

the problem of estimating the entanglement of a state after

which is in a good agreement with the upper bo®d) (see  One of the subsystems has been sent through a noisy channel

Qg(T)= lim J(p,T)

N—oo

Figs. 4 and & T, i.e., the entanglement of a state of the formz(d)[p].
We get
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Eo(T®id)[p])=<Qea(T). (A2)

Moreover, since the operator norm of any Hermiticity pre-
serving operatoil can be written adT||=sup,|T[o]l1, @

PHYSICAL REVIEW A63 032312

APPENDIX C: QUANTUM SIGNAL PLUS CLASSICAL
NOISE

Let us consider CCR with one degree of freedom de-
scribed by one mode annihilation opera@ (1/1/2%)(q

supremum over pure states, we find that the supremum of the ip), and consider the transformation

left-hand side in Eq(A2) over all pure states equals the
right-hand side. In other word€)g can bedefinedas the
maximal entanglemer(as measured b) of states trans-
mitted throughT.

APPENDIX B: MINIMIZING CONVEX FUNCTIONS
OF A DENSITY OPERATOR

There is a useful lemma in classical information theory

which gives necessary and sufficient conditions for the glo-

bal minimum of a convex function of probability distribu-
tions in terms of the first partial derivativg29]. This can be
generalized to functions depending on density operator
rather than probability distributions.

a'=a+¢,

where ¢ is a complex random variable with zero mean and
varianceN.. This is a transformation of the typgd.3) with
Ag=0, which describes the quantum mode in a classical
Gaussian environment. The action of the dual channel is

T*[f(a,a*)]=J flatz,(a+2)uy (d?2),

where z= (1/\/24) (x+iy) is now a complex variable, and
éLNC(dZZ) is a complex Gaussian probability measure with

zero mean and variandé,, while the channel itself can be

Let F be a convex function on the set of density operatorgiescribed by the formula

>, andpg a density operator. In ordétto achieve minimum

on po, it is necessary and sufficient that for arbitrary density

operatoro the convex functiorF((1—t)py+to) of the real
variablet achieves minimum &t=0. For this, it is necessary
and sufficient that

d
VxF(po)= gili-oF (L-Dpotto)=0,  (BY)

whereX=o—p,, andVxF(pg) is the directional derivative
of F in the directionX, assuming that the derivatives exist. If
o=2ip; oi, then VxF(po)=Zip; VxF(po), where X
=o0;—pg- Therefore it is necessary and sufficient that Eq.
(B1) holds for pureo.

If (1 —t)po+to=0 for small negative, then we say that

the directiona_p)o is inner. In that case Eq(B1) takes the
form

VxF(po)=0. (B2)

If po is nondegenerate, then the directio_;f))O is inner for
arbitrary pureo in the range ofyp,, and the necessary and
sufficient condition for the minimum is that E¢B2) holds
for arbitrary sucho.

Let A;,i=1,...r be a collection of self-adjointon-
straint operators Assume that for some real constaints

ViF(po)=TrXX NA. (B3)

It follows that the convex functionF(p)—TrpZ\A;
achieves minimum at the poip, hence the functiofir(p)
achieves minimum at the poini, under the constraints
TrpAi=TrpgA;, i=1,...r.

T[ﬂ]Zf D(2)pD(2)* un (d?2), (C1

whereD(z) =exfi(za' —za)] is the displacement operator.

The entanglement-assisted classical capacity of the chan-
nel (C1) was first studied irf18] by using a rather special
way of purification and the computation of the entropy ex-
change. A general approach following the method 1]
was described in Secs. IV and V; here we give an alternative
solution based on the computation of the environment en-

tropy.
For this we need to extend the environment to a quantum

system in a pure state. Consider the environment Hilbert
space‘HE:LZ(MNC) with the vector{W ) given by the func-

tion identically equal to 1. The tensor prodd¢® Hg can be
realized as the spad;ét(,uNc) of KN -Square integrable func-

tions (z) with values inH. Define the unitary operatds in
HQ Hg by

(U)(2)=D(2)§(2).
Then
TLol=Tr U (| Wo) (Wl U,
while
Telp]=Try U(p@|Wo)(Wo|)U*.

This means thaf¢[p] is an integral operator irILZ(,uNC)
with the kernel

K(z,z2')=TrD(z)poD(z")*
=exdiImz' z— (E+1/2)|z—2'|%].

Let us define the unitary operatov§z,,z,) in LZ(MNC) by
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V(z1,2)2) = W(z+2,) p['R— +Z [Ne 0 00 N
21,2 z)=y(z+z,)expi Rezy| z+ =
(21.22) ¢ U 2 1 > 0 N, -N, 0
1 1z , h B D?
—N—CRGZZ Z+? . aE_E 0 NC N_c 0
2
The operatorsV(z;,z,) satisfy the Weyl-Segal CCR with N. O 0 D_
two degrees of freedom with respect to the symplectic form L Ne |
L Thus
A((ZlIZZ)y(Zi1Zé)):RquZZ_ZlZé)' r D2 b
0 —-N. — O
Ne
Passing over to the real variablgsy one finds the corre- 1 D2
sponding commutation matrix Aglaézi N¢ 0 0 N
C
-N 0 0 —N
00 -1 0 ¢ ‘
0 —Ng N, O
0 0 0 -1 - -
Ae=hl 0 9 o0 o By using the Pauli matrixr,, we can write it as
D2
01 0 0 1| —ioyNe v
The characteristic function of the operaffi po] is 2 oc
—N¢ —ioyN¢
I 0 CioN D2 I 0
T TelpoV(21,22) = [ Viz1, 20K (225 s, (672), L oNe oy |
0 oyl —oyN; —ioyNcJLO oy

whereV(z,,2z,) acts onK as a function of the argumeﬁt
Evaluating the Gaussian integral, we obtain that it is equal tdience the absolute values of the eigenvalued ptaf are
the same as that of the matrix

1 5 o D2 ) N D2
exp{—Z<NC|zl| +2N¢Imz,z,+ N—C|zz| , INe NG|
. o _ N, N
(where nowD = \/(N.+1)?+4N.N), which is a Gaussian
characteristic function with the correlation matrix which coincide with Eq(5.3) in the casek=1.
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