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Entanglement-Assisted Capacity of a Quantum
Channel and the Reverse Shannon Theorem

Charles H. Bennett, Peter W. Shddember, IEEEJohn A. Smolin, and Ashish V. Thapliyal

Abstract—The entanglement-assisted classical capacity of agquantum information theory. In this paper, we advance quantum
noisy quantum channel Cg) is the amount of information per information theory by proving a capacity formula for quantum
channel use that can be sent over the channel in the limit of many channels which holds when the sender and receiver have ac-
uses of the channel, assuming that the sender and receiver have . .
access to the resource of shared quantum entanglement, whichC€SS to shargd quantum entangled states which ca_n be used in
may be used up by the communication protocol. We show that the communication protocol. We also present a conjecture that
the capacity Cg is given by an expression parallel to that for would imply that, in the presence of shared entanglement, to
the capacity of a purely classical channel: i.e., the maximum, first order this entanglement-assisted capacity is the only quan-
over channel inputs p, of the entropy of the channel input plus i+ jetermining the asymptotic behavior of a quantum channel.

the entropy of the channel output minus their joint entropy, the A | ¢ icati h | b
latter being defined as the entropy of an entangled purification (memoryless) quantum communications channel can be

of p after half of it has passed through the channel. We calculate Viewed physically as a process wherein a quantum system in-
entanglement-assisted capacities for two interesting quantum teracts with an environment (which may be taken to initially be
channels, the qubit amplitude damping channel and the bosonic in a standard state) on its way from a sender to a receiver; it may
channel with amplification/attenuation and Gaussian noise. hq gefined mathematically as a completely positive, trace-pre-
We discuss how many independent parameters are required to o .

completely characterize the asymptotic behavior of a general serving Ilnlea.r map on density operators. The theory of q“a”tEJm
quantum ChanneL alone or in the presence of anci”ary resources channels is richer and less well understood than that of classical
such as prior entanglement. In the classical analog of entangle- channels. For example, quantum channels have several distinct
ment-assisted communication—communication over a discrete capacities, depending on what one is trying to use them for, and

memoryless channel (DMC) between parties who share prior \yna; aqditional resources are brought into play. These include
random information—we show that one parameter is sufficient, the following

i.e., that in the presence of prior shared random information, - . . ) )
all DMCs of equal capacity can simulate one another with unit e The ordinary classical capacify, defined as the maximum
asymptotic efficiency. asymptotic rate at which classical bits can be transmitted reli-

Index Terms—Channel capacity, entanglement, quantum infor- ably through the channel, with the help of a quantum encoder
mation, Shannon theory. and decoder.

e The ordinary quantum capacity, which is the maximum
asymptotic rate at which qubits can be transmitted under similar
|. INTRODUCTION circumstances.

HE formula for the capacity of a classical channel was de- ¢ The classically assisted quantum capa€lty which is the

rived in 1948 by Shannon. Ithas long been known that thigaximum asymptotic rate of reliable qubit transmission with
formula is not directly applicable to channels with significane help of unlimited use of a two-way classical side channel
quantum effects. Extending this theorem to take quantum effegtsyween sender and receiver.
into account has been harder than might have been anticipateq The entanglement-assisted classical capagifywhich is
despite much recent effort, we do not yet have a comprehensig maximum asymptotic rate of reliable bit transmission with
theory for the capacity of quantum channels. The book [28] agge help of unlimited prior entanglement between the sender and
the survey paper [8] are two sources giving good overviews gceiver.

Somewhat unexpectedly, the last of these has turned out to be
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TABLE | We conjecture that prior entanglement so simplifies the com-
CAPACITIES OF SEVERAL QUANTUM CHANNELS plex landscape of quantum channels that only a single free pa-
Channel Q Q. c Cr rameter remains. Specifically, we conjecture that in the presence
Noiseless qubit channel 1 1 1 2 of unlimited prior entanglement, any two quantum channels of
50% erasure qubit channel 0 1/2 1/2 1 equalCg could simulate one another with unit asymptotic effi-
2/3 depolarizing qubit channel | 0 0 0.0817* 02075  cjency. Section IV proves a classical analog of this conjecture,
Noiseless bit channel = 0 0 1 1

namely, that in the presence of prior random information shared
between sender and receiver, any two discrete memoryless clas-
sical channels (DMCs) of equal capacity can simulate one an-
other with unit asymptotic efficiency. We call this the classical

thatQ, < C, but this has not been proved to date. Except feverse Shannon theorem because it establishes the ability of

special cases, it is not possible, without knowing the paramfé—noIseless classical DMC to simulate noisy ones of equal ca-

ters of a channel, to infer any one of its four capacities from ﬂp@qty, whereas the ordinary Shannon theorem establishes that

other three. This independence is illustrated in Table I, whidlP'sY DMCs can simulate noiseless ones of equaj capacny.

compares the capacities of several simple channels for Whic:HA‘nc.)Fher ancillary resource—classical communication—also
they are known exactly. The channels incidentally illustrate foﬁ}mphﬂes the landscape of q”a_”t“_m channels, but proba_bly _not
different degrees of qualitative quantumness: the first can cal much. The presence of unlimited classical communication

qubits unassisted, the second requires classical assistance t '&?I atllow certamthothefrvv IS€ meqluwalent_ pallrs of cginnhels tol
so, the third has no quantum capacity at all but still exhipigmu'ate one another (for example, a noiseless qubit channe

0 D . .
guantum behavior in that its capacity is increased by entang?éld a 50% erasure channel on four-dimensional Hilbert space),

ment, while the fourth is completely classical, and so unaﬁectQUt !t does not render all channels of eqdal asymptotically
by entanglement. equivalent. So-called bound-entangled channels [21], [15] have

. . 2 = 0, but unlike classical channels (which also h&e= 0)
Contrary_to an earlier conjecture of ours, we haye found Chatﬂ'ey can be used to prepare bound-entangled states, which are
nels for whicht) > 0 butC’ = C’g. One example is a channelgnangled but cannot be used to prepare any pure entangled
mapping three qubits to two qubits which is switched betweefyies Because the distinction between bound-entangled and
two different behaviors by the first input qubit. The channel op;nentangled states does not vanish asymptotically, even in the
erates as follows. The first qubitis measured inje 1) basis. -, esence of unlimited classical communication [32], bound-en-

If the result is|0), then the other two qubits are dephased (i-6angled and classical channels must be asymptotically inequiv-
measured in thgh), |1) basis) and transmitted as classical bits;jo ¢ despite having the sarfs.

if the result _is!l), the first qubit is transmitted i'ntact and the' The various capacities of a quantum chankemay be de-
second qubit is replaced by the completely mixed state. ThiSeq within a common framework
channel hag) = @; = 1 (achieved by setting the first qubit to
|1>_?_§”d0 _ICE _t 2.t' turally rai th ti fh Cx M)
is complex situation naturally raises the question of how = m

many independent parameters are needed to characterize tha L2 h,lfi,solip {E: FadsVer,, (1, A, B, N)>1_6}'
important asymptotic, capacity-like properties of a general (1)
guantum channel. A full understanding of quantum channels
would enable us to calculate not only their capacities, but motgyre Cx is a generalized capacity is an encoding subpro-
generally, for any two channeld4 and \, the asymptotic (ocol, to be performed by Alice, which receivesrarqubit state
efficiency (possibly zero) with which\ can simulateN,  ; pelonging to some sét,, of allowable inputs to the entire pro-
both _alone and in_the_ presence of ancillary resources such[@@ﬂ, and produces possibly entangled inputs to the channel
classical communication or shared entanglement. N; Bis a decoding subprotocol, to be performed by Bob, which

One motivation for studying communication in the presenaeceives: (possibly entangled) channel outputs and produces an
of ancillary resources is that it can simplify the classification ef:-qubit output for the entire protocol; finall§'(+, A, B, N)
channels’ capacities to simulate one another. This is so becaissthe fidelity of this output relative to the inpup, i.e., the
if a simulation is possible without the ancillary resource, theprobability that the output state would pass a test determining
the simulation remains possible with it, though not necessarilhether it is equal to the input (more generally, the fidelity of
vice versaFor exampleg andC represent a channel’'s asymp-one mixed state relative to anotheo is ' = tr(\/p o/p)).
totic efficiencies of simulating, respectively, a noiseless qutiifferent capacities are defined depending on the specification
channel and a noiseless classical bit channel. In the absencefdf, A, andB. The classical capaciti€s andCFg, are defined
ancillary resources these two capacities can vary independenilyrestrictingy to a standard orthonormal set of states, without
subject to the constrain < C, but in the presence of un-loss of generality the “Boolean” states labeled by bit strings
limited prior shared entanglement, the relation between thdry, = {|0), |1)}*™; for the quantum capaciti€3 andQ-, I',,,
becomes fixedCr = 2Q, because shared entanglement ais the entire2™-dimensional Hilbert spacy™ . For the simple
lows a noiseless 2-bit classical channel to simulate a noiseleapacities) andC, the Alice and Bob subprotocols are com-
1-qubit channel andlice versgvia teleportation [6] and super- pletely positive trace-preserving maps frdi§™ to the input
dense coding [9]). space ofV®™, and from the output space &f“™ back toH5 ™.

100% dephasing qubit channel
*Proved in [24].

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 30, 2009 at 10:58 from IEEE Xplore. Restrictions apply.



BENNETT et al: ENTANGLEMENT-ASSISTED CAPACITY OF A QUANTUM CHANNEL 2639

For Cg and(@-, the subprotocols are more complicated, in the pR R

first case, drawing on a supply of ebits (maximally entangled o P } NeT (@ )RQ
pairs of qubits) shared beforehand between Alice and Bob, and P R N

in the latter case making use of a two-way classical channel be- E U E

tween Alice and Bob. The definition 6J» thus includes interac- 0 I ()]

tive protocols, in which the channel uses do not take place all
at once, but may be interspersed with rounds of classical cohig 1. Aquantum syste in mixed statg is sent through the noisy channel
P N, which may be viewed as a unitary interactibnwith an environmenf.
munication. Meanwhile, a purifying reference systenis sent through the identity channel
The classical capacity of a classical DMC is also given ly. The final joint state ofQ) has the same entropy as the final stétg) of
an expression of the same form, withrestricted to Boolean the environment.
values; the encoded, decoders3, and channel\V" all being
restricted to be classical stochastic maps; and the fidélity System@, initially in mixed statep, is sent through the channel,
being defined as the probability that the (Boolean) output @merging in a mixed stat® (p). It is useful to think of the initial
BN®"(A(%))) is equal to the inpu. We will sometimes in- mixed state as being part of an entangled pure Qﬁt‘é where
dicate these restrictions implicitly by using upper case italic lef is some reference system that is never operated upon physi-
ters (e.g.,V) for classical stochastic maps, and lower case ital@@lly. Similarly, the channel can be thought of as a unitary inter-
letters (e.g.z) for classical discrete data. The definition of clasactionl/ between the quantum systéprand some environment
sical capacity would then be subsystent’, which is initially supplied in a standard pure state
0%, and leaves the interaction in a mixed stétg)~“. Thus,\
CN) m and¢ are completely positive maps relating the final states of the
= lim limsup {—: 3438 VYaeqo, 13 F(z, A, B,N)>1 —e}. channel output and environment, respectively, to the initial state
0 nmeo AR of the channel input, when the initial state of the environment is
@ held fixed. The mnemonic superscrigis R, E indicate, when
A classical stochastic map, or classical channel, may be defiregtessary, to what system a density operator refers.
in guantum terms as one that is completely dephasing in theUnder these circumstances, three useful von Neumann en-
Boolean basis both with regard to its inputs and its outputs.tropies may be defined: the input entropy
channel, in other words, is classical if and only if it can be rep- H (pQ) — —trp?log, p°

resented as a composition
the output entropy

N =D'GD 3)
Q
of the completely dephasing chanriglon the input Hilbert H (N(p) )
space, followed by a general quantum charfhefoliowed by 4 theentropy exchange
the completely dephasing chanri®l on the output Hilbert or o
space (a completely dephasing channel is one that makes a von H ((N @1)%; ) =H (5(0) ) .

Neumann measurement in the Boolean basis and resends thghe complicated left-hand side of the last equation represents

result of the measurement). Dephasing only the inputs, or ofe entropy of the joint state of the subsystémwhich has

the outputs, is in general insufficient to abolish all quantu§een through the channel, and the reference sygtemhich

properties of a quantum chanrl has not, but may still be more or less entangled with it. The
The_notion of capacity may be further generalized to dgfine@nsity operatot\’ @ Z)®,, is the quantum analog of a joint

capacity of one channdl” to simulate another chann&. This  jnput : output probability distribution, because it h&%p) and

may be defined as p as its partial traces. Without the reference system, the notion
Cx(N, M) = lim Iimsup{ﬂ' =P o of a joint input : output mixed state would be problematic, be-
’ =0 g L B TweHET cause the input and output are not present at the same time, and

I (/\/t®m(z/;), A, B, /\/) > 1 C} (4) the no-cloning theorem prevents Alice from retaining a spare
copy of the input to be compared with the one sent through
where4 andB are, respectively, Alice’s and Bob’s subprotocolshe channel. The entropy exchange is also equal to the final en-
which together enable Alice to receive an inguin H§;™ (the tropy of the environmenll (£(p)), because the tripartite system
tensor product ofn copies of the input Hilbert spacH,; of QRFE remains throughout in a pure state; making its two com-
the channeM to be simulated) and, makingforward uses of plementary subsystenisand@ R always isospectral. The rela-
the simulating channel/, allow Bob to produce some outputtions between these entropies and quantum channels have been
state, and”"(M@™ (), A, B, ) is the fidelity of this output well reviewed by Schumacher and Nielsen [30] and by Holevo
state with respect to the state that would have been generatedig Werner [18].
sending the input throughA1&™, By Shannon’s theorem, the capacity of a classical chaNnel
These definitions of capacity are all asymptotic, depending @the maximum, over input distributions, of the input: output
the properties alV®™ in the limitn — co. However, several of mutual information; in other words, the input entropy plus the
the capacities are given by, or closely related to, nonasymptatigtput entropy less the joint entropy of input and output. The
expressions involving input and output entropies for a singtpiantum generalization of mutual information for a bipartite
use of the channel. Fig. 1 shows a scenario in which a quantumixed states* 2, which reduces to classical mutual information
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whenp“® is diagonal in a product basis of the two subsystemthieorem [19], [31], which says that if the signals that Bob

is receives are constrained to lie in a set of quantum stgtes
where Alice chooses (for example, by supplying input state
A B AB
H (p*) + H (p”) = H (p*") pi to the channelN) then the capacity is given by
where

A —tepp ™ and pB = trpiB, Cu({ri}) =H <Z pmé) - Z piH(pi).  (8)
In terms of Fig. 1, the classical capacity of a classical chanrnBhis gives a means to calculate a constrained classical capacity
(cf. (3)) can be expressed as for a quantum channeV if the sender is not allowed to use

_ _ entangled inputs: the channel’s Holevo capac€ity(A) being

c@v) hea Hp) + HIN(p) - H(N @ 1)(®,)) (9 defined as the maximum @&f ({V (p;)}) over all possible sets

where A is the class of density operators on the channeld input states p; }. We will be using this theorem extensively
input Hilbert space that are diagonal in the Boolean basis.the proof of our entanglement-assisted capacity bound.
The third term (entropy exchange), for a classical chamhel  Inour original paper [7], we proved the formula (6) for certain
is just the joint Shannon entropy of the classically correlategpecial cases, including the depolarizing channel and the era-
Boolean input and output, because the von Neumann entrogese channel. We did this by sandwiching the entanglement-as-
reduce to Shannon entropies when evaluated in the Schnsigted capacity between two other capacities, which, for certain
basis of®,, with respect to which all states are diagonal. Thehannels, turned out to be equal. The higher of these two capaci-
restriction to classical inputs € A can be removed, becausdies we called the forward classical communication cost via tele-
any nondiagonal elements sgnwould only reduce the first term, portation ¢CCCr;), which is the amount of forward classical
while leaving the other two terms unchanged, by virtue of th@mmunication needed to simulate the chavidly teleporting

diagonality-enforcing properties of the channel. over a noisy classical channel. The lower of these two bounds
Thus, the expression we calledCs,4, which is the capacity obtained by using the noisy
ax H(p)+ HIN _H(N @ 1) g) duantum channeV inthe superdenseT coding protocol. We have
mmax Hp)+ HWN(p)) = H(( 120 O e < Op < FCCCr,. Thus, ifCsg = FCCCr, for

is a natural generalization to quantum channélsf a classical a channel, we have obtained the entanglement-assisted capacity
channel’s maximal input : output mutual information, and it ief the channel. In order for this argument to work, we needed the
equal to the classical capacity whenewéris classical, as de- classical reverse Shannon theorem, which says that a noisy clas-
fined previously in this section. sical channel can be simulated by a noiseless classical channel
One might hope that this expression continues to give théthe same capacity, as long as the sender and receiver have ac-
classical capacity of a general quantum chaoviebut that is cess to shared random bits. We needed this theorem because the
not so, as can be seen by considering the simpleffaseZ of causality argument showing that EPR pairs do not increase the
a noiseless qubit channel. Here, the maximum is attained onapacity of a classical channel appears to work only for noise-
uniform input mixed state = /2, causing the first two terms less channels. We sketched the proof of the classical reverse
each to have the value 1 bit, while the last term is zero, givirShannon theorem in our previous paper, and give it in full in
a total of 2 bits. This is not the ordinary classical capacity ahis paper.
the noiseless qubit channel, which is equal to 1 bit, but rather itsin our previous paper, the bounds,; and#'CCCr, are both
entanglement-assisted capadity (V). In the next section, we computed using single-symbol protocols; that is, both the su-
show that this is true of quantum channels in general, as stapegtidense coding protocol and the simulation of the channel by
by the following theorem. teleportation via a noisy classical channel are carried out with
a single use of the channel. The capacity is then obtained using
the classical Shannon formula for a classical channel associated
with these protocols. In this paper, we obtain bounds using mul-
tiple-symbol protocols, which perform entangled operations on
Cp= Inax H(p)+ HWN(p)) — H(N ®ZI)®,). (7) many uses of the channel. We then perform the capacity compu-
tations using the Holevo—Schumacher—-Westmoreland formula
Here, the capacit§ ¢ is defined as the supremum of (1) wher{8).
1 ranges over Boolean states addi5 over all protocols where

Theorem 1: Given a quantum channgal, then the entangle-
ment-assisted capacity of the quantum chaidielis equal to
the maximal quantum mutual information

Alice and Bob start with an arbitrarily large number of shared . FORMULA FOR ENTANGLEMENT-ASSISTED
EPR pairg, but have no access to any communication channels CLASSICAL CAPACITY
other thanwV..

Another capacity theorem which has been proven f%r Ai;?(migvz:;\;\i?gﬁsg::? gzgnh@w{héfgmigstﬁ:gf:
guantum channels is the Holevo—Schumacher—Westmorelahg oo tin PaCout. - .
Sical capacity of the channel when the sender and receiver have
11tis sufficient to use standard Einstein—Podolsky—Rosen (EPR) pairs—magin unbounded supply of EPR pairs to use in the communication

mally entangled 2-qubit states—as the entanglement resource because any B‘f@[ocol. This section proves that the entanglement-assisted ca-
entangled state can be efficiently prepared from EPR pairs by the process of en-

tanglement dilution using an asymptotically negligib{e:) amount of forward PaCity Of_ a channel is the maximum quantum mutual informa-
classical communication [27]. tion attainable between the two parts of an entangled quantum
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state, one part of which has been passed through the channelhe coding protocol we use for the special case given above,
That is, restating (7) wherep = 5[ , is essentially the same as the protocol used for

quantum superdense coding [9], which procedure yields the en-

CrWN) = previa H(p) + HN(p)) —~H(NV @D)%,) (9) tanglement-assisted capacity in the case of a noiseless guantum
hannel. The proof that the formula (11) holds for= 1/d,

%owever, is quite different from and somewhat more compli-
cated than the proof that superdense coding works. Our proof
uses Holevo’s formula (8) for quantum capacity to compute the
capacity achieved by our protocol. This protocol is the same as
that given in our earlier paper afig [7], although our proof is

whereH (p) denotes the von Neumann entropy of a density m
trix p € Hin, HN(p)) denotes the von Neumann entropy o
the output whem is input into the channel, anl (N ®Z)®,)
denotes the von Neumann entropy of a purificatfpp of p
over a reference systeM,., half of which(H;,) has been sent
through the channel” while the other half#,.;) has been sent diff tth i tonl lied t i ¢ han-
through the identity channgl(this corresponds to the portion of erent, the earlier proot only applied to certain quantum chan

the entangled state that Bob holds at the start of the protoc&?@és:gg datsothZzetgzatgr?é?;?ui.\évr:tré;?:]nggaf.'omnétr.C ok 1o
Here, we haved, € Hin ® Hier andTr,+®, = p. All pu- u 9 Izall ull :

rifications of p give the same entropy in this formuiaso we dimensions. These are the matrices used indtdeamensional

need not specify which one we use. As pointed out earlier, trﬁgantum teleportation scheme [6]. There dfeof these ma-

right-hand side of (9) parallels the expression for capacity o }%CGS’ which are given b/;, j, = 77", for the matrice§” and

classical channel as the maximum, over input distributions, © defined by their entries as
the input : output mutual information. Tob =60 p—1moda and R, , = 2™/, , (12)
Lindblad [26], Barnumet al. [3], and Adami and Cerf [12]
characterized several important properties of the quant
mutual information, including positivity, additivity, and the
data processing inequality. Adami and Cerf argued that t
right-hand side of (9) represents an important channel prope
calling it the channel's “von Neumann capacity,” but they di
not indicate what kind of communication task this capacit%‘vr
represented the channel’'s asymptotic efficiency for doing. No

in [2]. To achieve the capacity given by (11) with= I/d,
Alice and Bob start by sharing&dimensional maximally en-
gled state. Alice applies one of thé” transformationg’;
her part ofp, and then sends it through the chansélBob
ts one of thel? quantum stateN @ Z)(U; @ I)¢. Itis
aightforward to show that averaging over the matrides
ectively disentangles Alice’s and Bob'’s pieces, so we obtain

we know that it is the channel's efficiency for transmitting d
classical information when the sender and receiver share prior Z NeD)U;reI)p=N(Ttp¢) @ Trag
entanglement. 3, k=1

In our demonstration that (9) is indeed the correct expres- =N(p)@p (13)

sion for entanglement-assisted classical capacity, the first S'ﬁmiere — 17 The entropy of this quantity is the first term
section gives an entanglement-assisted classical communicagp P .
protocol which can asymptotically achieve the rate RHSfor
anye. The second subsection gives a proof of a crucial lemma N ; ; e

. : . . : ®I)(®,)), since each of thel/; , ®Z)(¢) is a purifica-
typical subspaces needed in the first subsection. The third s h(of 0. 'szaisp()a)ntropy is the seco% term 2)(f I—)|olevo's formula
section shows that the right-hand side of (9) is indeed an up 13

. , and gives the third t f (11). We thus obtain the f I
bound forCg(N). The fourth subsection proves several entro 5an gives the third term of (11). We thus obtain the formula

inequalities that d in the third subsecti henp = 4.
Inequaiiies that are used in the third subsection. The next step is to note that the inequality (11) also holds if

the density matrix is a projection onto any subspace’df,,.
_ _ _ _ _ The proof is exactly the same as for= 4I. In fact, one can
In this section, we will prove the inequality prove this case by using the above result. By restrictiagto

Cp(N) > max H(p) + HN _HN@I(®.)). (10 the support op, which we can denote b¥’, and by restricting
BN 2 ;?%X 2 W) ( (). (10) N to act only onH’, we obtain a channe\/” for which p’ =

We first show the inequality (%I

We now must show that (11) holds for arbitraryThis is the

Ce(N) 2 H(p) + HN(p) - HIN ©T(2,)) (11) most difficult part of the proof. For this step we need a little more

for the special case whepe— 51, whered = dim H,,,, I isthe notation. Recall that we can assume that any quantumhap
identity matrix, andb,, is a maximally entangled state. We thertan be implemented via a unitary transformatibacting on the
use this special case to show that the inequality (11) still holdgstem?{;, and some environment systet,,,, whereH.,,,
whenp is any projection matrix. We finally use the case where starts in some fixed initial state. We introdu€ewhich is the
is a projection matrix to prove the inequality in the general casempletely positive map takirdi, to He,, by first applyingt/
of arbitrary p, showing (10); we do this by taking to be the and tracing out everything bé.,.. We then have

i ) " o
projection onto the typical subspace @f", and usingy’ and H(E(p) = H(N @ 1)®,) (14)

N@™ in the inequality (11).
. - _ wherep is a density matrix ovel{(;, and®,, is a purification of
2This is a consequence of the fact that any two purifications of a given density

matrix can be mapped to each other by a unitary transformation of the refereﬁcé:‘_)?cal_l (from fOOt_nOte 2) that this does not depend on which
system [22]. purification ®,, of p is used.

Bolevos formula (8), and gives the first two terms of (11).
The entropy of each of thé? states(N @ Z)(U; , @ I)¢ is

A. Proof of the Lower Bound
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As our argument involves typical subspaces, we first giie a pure state. As it turns out, the lower bound proof does not
some facts about typical subspaces. For technical redseas, actually require construction df, itself, but merely a sequence
use frequency-typical subspaces. For aapdé there is a large of maximally entangled states on high-dimensional typical sub-
enoughn such the Hilbert spac&“" contains a typical sub- spaced;, of tensor powers of,. These maximally entangled
spacel’ (which is the span of typical eigenvectors g@fsuch states can be prepared from standard ebits with arbitrarily high

that fidelity and no classical communication [5].
1) Tellpp® Iy > 1 — ¢ B. Proof of Lemma 1
2) The eigenvalues of II;p®"II; satisfy In this section, we prove the followng statement.

2 nHTE) < ) < o (0)=0), Lemma 1: Supposg is a density matrix over a Hilbert space

oy ) s ‘H of dimensiond, andA” and€ are two trace-preserving com-
3) (1 —)2rH=9 < dim T" < 2nH+9), pletely positive maps. Then there is a sequence of frequency-
LetT, c H®" be the typical subspace correspondings, typical subspaces,, ¢ H®" corresponding t@®" such that
: : : : 1
and Iet_7rTn_ be the normalized density matrix proportional to lim - dim7, = H(p) (19)
the projection ontd,. It follows from well-known facts about n—oo n

typical subspaces that 1
1 lim = H (N9 (7r,)) =HWN(p)) (20)
. n—oo n
nlgrolo " H(rr,) = H(p). and
We can also show the following lemma. We delay giving the lim 1 H (5®"(7FTH)) =H(E(p)) (21)

proof of this lemma until after the proof of the theorem. nTmeen o ) )
wherenp, is the projection matrix ont@;, normalized to have

Lemma 1: Let A be a noisy quantum channel amd density trace1.
matrix on the input space of this channel. Then we can find a ) o ) ) ) ]
sequence of frequency typical subspaggscorresponding to For simplicity, we will prove this lemma with only_the condl—.
p@7, such thatifry, is the unit trace density matrix proportionaitions (19) and (20). Altering the proof to also obtain the condi-
to the projection ontd’,, then tion (21) is straightforward, as we treat the nfam exactly the
1 ’ same manner as the mAf and need only make sure that both
lim = H (N9 (nz,)) = HN(p)). (15) formulas (20) and (21) converge.
nmeen Our proof is based on several previous results in qguantum in-
Applying the lemma to the map onto the environment simformation theory. For the proof of th€ direction in (20), we

larly gives show that a source producing states with average density matrix
1 N (zy ) can be compressed intoH (V' (p)) + o(n) qubits
JLim . H (E9" (7)) = H(E(p)). (16) per state, with the property that the original source output can

be recovered with high fidelity. Schumacher’s theorem [23],
[29] shows that the dimension needed for asymptotically faithful
1 [H(rr,)+ H (N"(rz,)) — H (€9 (x,))]  (17) encoding of a quantum source is equal to the entropy of the
n density matrix of the source; this gives the upper bound on
we see that it converges to H(N®(n1,)) For the proof of the> direction of (20), we
H(p) + HWN(p)) — H(E(p)) (18) nee_d the t_heorem of Ha_lurslade'nal. [17] that the cla_ssical ca-
pacity of signals transmitting pure quantum states is the entropy
which the identity (14) shows is equal to the desired quantipf the density matrix of the average state transmitted (this is
(9). This concludes the proof of the lower bound. a special case of Holevo's formula (8)). We give a communi-
One more matter to be cleared up is the form of the prior egation protocol which transmits a classical message containing
tanglement to be shared by Alice and Bob. The most standa{g(/\/(p)) — o(n) bits using pure states. By applying the the-
form of entanglement is maximally entangled pairs of qubitsrem of Hausladeet al. to this communication protocol, we

(*ebits”), and it is natural to use them as the entanglement r§aduce a lower bound on the entrop™ (rz,. ).
source in defining’z . However, (9) involves the entangled state "

@, which is typically not a product of ebits. This is no problem, ~ Proof: We first need some notation. Let the eigenvalues
because, as Lo and Popescu [27] showed, many copies of & €igenvectors qf be A; and|v;), with 1 < j < d. Let the
entangled pure states having an equal entropy of entanglenfégy channel\’ map ad-dimensional space to @.;-dimen-
can be interconverted not only with unit asymptotic efficiencyional space. Choose a Krauss representatiafViaso that

but in a way that requires an asymptotically negligible amount ¢ i

of (one-way) classical communication, compared to the amount N(o) = Z Apo Ay,

of entanglement processed. Thus, the definitiof'gfis inde- k=1

pendent of the form of the entanglement resource, so long awiterec < d? and3";_, Al A; = I. Then we have

Thus, if we consider the quantity

. d c
30ur proof of Lemma 1 does not appear to work for entropy-typical subspaces
unless these subspaces are modified by imposing a somewhat unnatural-looking N(p) = Z Z )\jAk |Uj><vj |A}:
extra condition. This will be discussed later. j=1 k=1
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We let where§’ = §dlog(Amax/Amin)s AN A pax (Amax) IS the
1 maximum (minimum) eigenvalue of;
|uj, x) = Ao Arlv) (22) , ,
| Arlv;)] 3) (1 — )2 H@=8) < dimT, 5 , < 2MHEH),

and T

= A '>|2 (23) The property 1) follows from the law of large numbers, and 2),

Hi,de = 1K1Y 3) are straightforward consequences of 1) and the definition of

so that typical subspace.

4 e We first prove an upper bound that for &ll, and for suffi-

N(p) = Z g, kg, 1) (gl (24) ciently largen
j=1 k=1

1
~H (N (mz, ) <HN(p)+C8 (28)
We need notation for the eigenstates and eigenvalues of

N{p). Let these béwy) andwy, 1 < k < dow. Finally, we for some constanf’. We will do this by showing that for any

define the probability ., 1 < j < d, 1 < k < dou;, by ¢, there is am sufficiently large such that we can take a typical
el T subspacel,,,,. 5, v, IN Hew: and projectm signals from a
ik = (Wi N (|v;) (v;]) |we)- (25) source with density matri®y®” (7, , ) onto it, such that

the projection has fidelity — ¢ with the original output of the
source. Herejs (andés, 64) will be a linear function ob; (with

the constant depending en ). By projecting the source on
Tran, 52, N (p)» We are performing Schumacher compression of

This is the probability that if the eigenstafe;) of p is sent
through the channél” and measured in the eigenbasid\afp),
that the eigenstatev;) will be observed. Note that

the source. From the theorem on possible rates for Schumacher
Z Ao = (wi N (Z )\j|vj><vj|> wye) tcr:);pressmn (quantum source coding) [23], [29], this implies
i i
= (wi| N (p)wr) H(N® (T, 5.,) < lim — logdim Ty, 5, wip. (29)
= W (26) m—oo 11

The property 3) for typical subspaces then implies the result.
We now define the typical subspatg s ,. Most previous  Consider the following process. Take a typical eigenstate
papers on quantum information theory have dealt with entropy-
typical subspaces. We use frequency-typical subspaces, which [5) = [Var) @ |vay) @ -+~ @ |va,)

are similar, but have properties that make the proof of this lemrggy . Now, apply a Krauss eleme, to each symbdb,, )

somewhat simpler. _ _ of |s), with element4, applied with probability| Ay |va, )|
A frequency-typical subspace G{“" associated with the This takes

density matrixp € H is defined as the subspace spanned by N

certain eigenstates ¢f*™. We assume that has all positive Is) = ® v, ) (30)
eigenvalues. (If it has some zero eigenvalues, we restrict to the “
support ofp, and find the corresponding typical subspace of
supp(p)®™, which will now have all positive eigenvalues.) Theo one ofc™ possible stateff). Each state is associated with a
eigenstates gi®” are tensor product sequences of eigenvectdpgobability of reaching it; in particular, the state

of p, thatis,|va,) @ |[va,) @ - - - @ |va,, ). Let|s) be one of these n

eigenstates gf“". We will say|s) is frequency typicalf each [t) = ® [Ua;, 8,) (31)
eigenvectofv;) appears in the sequenicé approximatelyr A ; j=1

times. Specifically, an eigenstdté is 6-typical if

=1

is produced with probability

INpoy (8)) = Ajn| < 6n (27) n

T = H Naj,,ﬁj- (32)
j=1

forall j; hereN|, ) (|s)) is the number of times thét; ) appears

in |s). Thefrequency-typical subspads, s, , is the subspace of

HE™ that is spanned by adl-typical eigenvectorss) of p©™.
We definellr to be the projection onto the subspaceand

Notice that, for anyls), if the |¢.) and 7. are defined as in
(31) and (32), then

77 to be this projection normalized to have tracéhat is,mr = "

Ty NE(|s)(s]) = > T [t)(t-] (33)
From the theory of typical sequences [14], for any density z=1

matrixo, anye > 0, andé > 0, one can choose large enough where the sum is over glt) in (31).

so that We will now see what happens whén) is projected onto a

typical subspacé’, s, v, associated withV(p)“™. We get
that the fidelity of this projection is

(M, o, o lt) = D ()l (34)

2—71,([—](0)—1—(5’) S A S 2—71,([—]((7)—(5’) |

1) Tr HTm 5o O'®nHT

n, &, o

> 1—¢

2) the eigenvalues of Iy, ,  o“ I, , , satisfy

MET, 6y, N(p)
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where the sum is taken over &l-typical eigenstateg-) of Now, we are ready to complete the upper bound argument.
N{(p)®™. Now, we compute the average fidelity (using the probBAfe will be using the theorem about Schumacher compression
ability distributionr) over all state$t.) produced from a given [23], [29] that if, for all sufficiently largen, we can compress.
61-typical eigenstatgs) = @;|va,) states from a memoryless source emitting an ensemble of pure

- states with density matrix onto a Hilbert space of dimension
Z Tz(tzlﬂzl,gz,,x—(p> Ity = Z Z | mH, and recover them with fidelity — ¢, thenH (o) < H.

- — We first need to specify a source with density matrix
Z 2=1 M ET,, &y, N (p)

N (rr, . ). Taking a randond; -typical eigenstatgs) of
= Z (rINE™(|s)(sD]ry  pn (chosen uniformly from alks;-typical eigenstates), and
17 CTo, 60, M) premultiplying each of the tensor factdrs, ;) by A; with the
n probability | A |v., )| to obtain a vectoft), gives us the desired
= Z H Paj,v.;-  source with density matriy/ " (rr, , ). We next project a
Ir) =@, lw. ;) i=1 sequence ofn outputs from this source onto the typical sub-
7Y CT. 60 M) spacel;,,, s,, A(p)- L€t Us analyze this process. First, we will

(35) specify a sequencts) of m particular 6, -typical eigenstates

) L tE> = |s1)|s2) - - |sm). Because each of the componefis
Here the last step is an application of (25). The above quantl{y g state]s) is & -typical, [3) is a 6,-typical eigenstate of

has a completely classical interpretation; it is the probabilitngmn_ Consider the ensemble of stajésgenerated from any
Egzé'f Wetzta” WlthtLheSrlc;g;tﬁil Seq”?ﬁ;fs>e:eﬁ’(|jvaj>* "f‘tr;]da particular 8, -typical [s) by applying theA; matrices to|s).
[Va) t0 fwy) with p Y Porys w Up With a 1+ suffices to show that this ensemble can be projected onto

6y-typical sequence of thieo,). Tyn. 50, 8¢y With fidelity 1 — ¢; that is, that

We will now show that the projection onth, s, a(,) Of the T
average statg.) generated from &; -typical eigenstatés) of Z<§| @k Allly, . Op Arls) 21— (39)
p®™ has expected trace at ledst e. This will be needed for " e -
the lower bound, and a similar result, using the same calculaﬁ_ . ) .
tions, will be used for the upper bound. We know that the orig— IS W_'” prove the theorem, as by avgragmg_overéa’:typlcal
inal sequences) is 6, -typical, that is, each of the eigenvector tateds) we ob_tam asource W'th density ma_ltﬂ_k@ (WT ‘1 )
|v;) appears approximatehy\, times. Now, the process of first whose projection has average fldeﬂtf e. Thisimplies, via the
applying A, to each of the symbols, and then projecting the réheorems on Schumacher compression, that

sult onto the eigenvectors &f (p)©™", takes|v,) to |wy) with n . 1
probability p;;.. We start with &, -typical seqdenc&), so we HW (rr, 4,.,)) < lim ()
have <n(H(N(p)) + 83) (40)
N|,/]>(|S>) = ()\J + Aj)mn (36) whereéds = badous log(wmax/wmm); herew.x (wmin) is the
) maximum (minimum) nonzero eigenvalue &f(p). If we let
where|A;| < 6,. Taking the statds) = &), |v;) 10 [r) = 4 g0 t00 asn goes tooo, we obtain the desired bound. For
@ |wy), and using (26), we get this argument to work, we need to make sure thiatbounded
independently ofs); this follows from the Chernoff bound.
E (lewk>(|7,>)) _ (wk +Z Ajpjk) mn We need now only show that the projectipn of the states
; |t} generated from|s;)---|s,,) onto the typical subspace

_ / Tn, 50, N(p) Das trace at leadt— ¢. We know that the original
= (W Ag)mn 37) sequezncdpg)) is 6;-typical, that is, each of the eigenvectdos)
where A;, < dé;. The quantityNy,,(|r)) is determined by appears approximately.n); times. Thus, the same argument
the sum ofmn independent random variables whose values anging the law of large numbers that applied to (35) also holds
either0 or 1. Let the expected average of these variablgsbe here, and we have shown the upper bound for Lemma 1.
wi + A}. Chernoff’s bound [1] says that for such a variable We now give the proof of the lower bound. We use the same
X which is the sum ofV independent trials, andV is the notation and some of the same ideas and machinery as in our
expected value ok proof of the upper bound. Consider the distributiorjtg§ ob-
i C9a? /N tained by first picking a random typical eigenstasg of p©7,

PrX —pN < —d] <e 2/ ) and applying a matrixd,, to each symbol ofs), vﬁﬁ Ay ap-

Pr[X — uN >a] <e @ /7. plied to|v;) with probability| Ax|v;)|2. This gives an ensemble

Together, these bounds show that of quantum stateg. ) with associated probabilities such that

N . / —282mn c”
Pr [Ny, (I7) = (wr + Aj) mn| < §mn] < 2¢ o0 N (w4, ) = D Telt)ital. (41)

z=1

If we takeés = (d + 1)61, then by Chernoff’s bound, for every The idea for the lower bound is to choose randomly &/sef
¢ there are sufficiently largewn so that|r) is 6»-typical with sizeW = n(H(p) — 64) from the vectorgt. ), according to the
probability 1 — e. probability distributionr, . We take, = C'é; for some constant
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C to be determined later. We will show that with high probawhereWV is the number of random codeworfls) we choose
bility (say, 1 — ¢2) the selected séf of |¢.) vectors satisfy the randomly. We now consider a different probability distribution
criteria of Hausladewt al. [17] for having a decoding observ-on thelt.), which we call7.. This distribution is obtained by
able that correctly identifies a stdte) selected at random with first choosing an eigenstate) of <" with probability propor-
probability 1 — e. This means that these states can be usedttonal to its eigenvalue (rather than choosing uniformly among
send messages with rat€H (p) — 6,)(1 — 2¢), showing that §-typical eigenstates gf<™), and then applying a Krauss el-

the density matrix of their equal mixture ement4; to each of its symbols to obtain a woft} (as be-
1 fore, Ay, is applied tov;) with probability | A, |v,)|?). Observe

mr= o > [t thatr, < 22877/ where§’ = d610g(Amax/Amin). This holds

17 z€T because the difference between the two distributiorsd 7’

stems from the probability with which an eigenstggeof p©”
is chosen; from the properties of typical subspaces, the eigen-
value of every typical eigenstate) of o®" is no more than
—n(H(P)~*") "and the number of such eigenstates is at most
A _ I 2 7/, an g
(71, o ) EZ:T [t2)(t-] on(H(p)+8") Thus, we have

has entropy at least(H(p) — 64))(1 — 2¢). However, the
weighted average of these density matriceover all setd’ is

where eachrr is weighted according to its probability of ap-
pearing. By concavity of von Neumann entropy, E Z SiiSji
i

HWN®(7r, .. ) 2 n(H(p) = 8)(1 — 26)(1 — e2).
o <wW Z TZ<ti|HZm,52,,\"(p> |tZ><tZ|Hﬂm,52,,\"(p>|ti>

By makingn sufficiently large, we can makeg ¢, andé, arbi-

trarily small, and so we are done. <SWoRm NT i, e BN ED, o )
The remaining step is to give the proof that with high prob- z
ability a randomly chosen set of siZ& of the |t.) obeys the = W22‘5'"(t7;|HT ot >N(p)®"HT oo It

criterion of Hausladewt al. The Hausladeet al. protocol for
decoding [17] is first to project onto a subspace, for which we
will use the typical subspad, »,, ), and then use the squarewh?re the last inequality follows from property 2) of typical

root measurement on the p_rolected vectors. Herej the square g%%spaces, which gives a bound on the maximum eigenvalue of
measurement corresponding to vectess, |v2), . . . is the pos-

itive operator valued measeure (POVM) with elements N(p)® 1Ly

HTn, 6o, N(p) n, 80, N(p) "
—1/2 . . —1/2
o7 il vile Thus, if we makdV = 27(H(r)=20'=5:=%) \ye have the desired
where inequality (42), and the proof of Lemma 1 is complete.

< W226'n27n(H(p)763) (44)

typical subspaces in the proof of Lemma 1; this appears to be

the most natural method of proof. Holevo [20] has found a more
Here, we us¢v;) = 1z, , ., [t:). Hausladertal.[17] give direct proof of Lemma 1, which also uses frequency-typical
a criterion for the projection onto a subspace followed by thsbspaces. Frequency-typical sequences are commonly used in
square-root measurement to correctly identify a state choserlassical information theory, although they have not yet seen
random from the statelg.) € 7. Their theorem only gives much use in quantum information theory, possibly because the
the expected probability of error, but the proof can easily lpiantum information community has not had much exposure
modified to show that the probability of errét , in decoding to them. One can ask whether Lemma 1 still holds for en-

We used frequency-typical subspaces rather than entropy-
(/) _ Z |Uz><Uz| q y-typ p py

theith vector|¢;) is at most tropy-typical subspaces. This is not only a natural question, but
might also be a method of extending Lemma 1 to the case where

Pg; <2(1—Su)+ Z Si;Sji (42)  supp(p) is a countable-dimension Hilbert space, a case where

J#i the method of frequency-typical subspaces does not apply. The

difficulty with using entropy-typical subspaces in our current
I;i)Tr]oof is that an eigenstate) of p“™ which is entropy-typical

of (42),1 — S;;, is small, for|t;) obtained from any typical bu_t n(;)t iret(gx/ency-typlﬁal .W'" n gten?rfatll not be r?app(ted ;[r? a
eigenstatés) of p“™. We need to give an estimate for the secon{@'*ial :'aens (fgésé%/ a\gggTLngsmeoanlsschStise ggﬁ em(;ch:r
term of (42). Taking expectations over all the), z # ¢, we ypi Igensp (p)=". Thi u

obtain, since all th¢t.) are chosen independently compression arg“”.‘e“‘ is no longer .Vahd' One way to fix the
problem is to require an extra condition on the eigenvectors

WhereSii = <ti|HTn’52”\"(p> |tz> andSij = <ti|HTm52”»\r(p> |tj>.

We have already shown that the expectation of the first te

& ) of the typical subspace which implies that most of their mass
E Z SiiSii | = (W —1) Z T, <ti|HTn,52H\r(p>|tz> is indeed mapped somewhere close to the typical eigenspace
i =1 of AM(p)®". We have found such a condition (automatically

(43) satisfied by frequency-typical eigenvectors), and believe this
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may indeed be useful for studying the countable-dimensiorshteTr 4(¢). The second part is the state Alice sent through the

case. channel, which, after Bob’s part is traced out, is in st§lig.,)
wherep,, = Trp(U.(¢)). Bob is trying to decode information
C. Proof of the Upper Bound from the output of many blocks, each containimgises of the

channel, together with his half of the associated entangled states,
i.e., from many blocks of the for\" @ Z) (U4, @ Z)(¢). Since
Cp < max H(p)+HWN(p) - HN @Z(d,)) (45) these blocks are not entangled each other, the Holevo—Schu-
pEHin macher—Westmoreland theorem [19], [31] applies, and the ca-
where®, is a purification ofp. pacity is given by (8), considering these blocks to be the signal

As in the proof of the lower bound, this proof works by firsstates. The first term of (8) is the entropy of the average block,
proving the result in a special case and then using this spe@8H this is bounded by
case to obtain the general result. Here, the special case is when
Alice’s protocol is restricted to encode the signal using a unitary H </\7 <Z p,;pl)) + H(ps). (46)
transformation of her half of the entangled stat& his special x

case is proved by analyzing the possible protocols, applying tge first term in (46) is the entropy of the average state that
capacity formula (8) of Holevo and Schumacher and Westmoigo|, receives through the channel, i8/(U, (Trp¢)), and the
land [19], [31], and then applying several entropy inequalitiesecond term is the entropy of the state that Bob retained all the
First, consider a channgV” with entanglement-assisted catime, j.e., Tr 44. That the sum of the two terms is a bound for
pacity Cr. By the definition of entanglement-assisted capacitye entropy follows from the subadditivity property of von Neu-
for everye, there is a protocol that uses the chankiednd some  mann entropy that the entropy of a joint system is bounded from
block lengthn, that achieves capacity — ¢, and that does the ahove by the sum of the entropies of the two systems [28]. We
following. . _ canuseH (p,) for the second term because Alice is using a uni-
Alice and Bob start by sharing a pure entangled sta®-  tary transformation to produge. from her half of the entangled
dependent of the classical data Alice wishes to send. (Protocglgtes she shares with Bob, so the entrafiyp,) = H(Tr1¢)
where they start with a mixed entangled state can easily be S{githe same for alt. Since we assume that Alice and Bob share
ulated by ones starting with a pure state, although possiblyzahure quantum state, the entropy of Bob’s half is the same as
the cost of additional entanglement.) Alice then performs somgs entropy of Alice’s half. Although this is not the most ob-
superoperatos,, on her half of¢ to get(A, @ Z)(¢), where yious expression for this second term of (46), it will facilitate
A, depends on the classical datahe wants to send. She thengter manipulations.
sends her half oft, (¢) through the channe¥ formed by the  The second term of (8) is the average entropy of the state Bob
tensor product of: uses of the channel. Bob then possibly receives, and this is
waits until he receives many of these staté&*™ @ 7)(A, ® .
Z)(¢), and applies some decoding procedure to them. Z peH ((N ® I) (<I>,,I)) (47)
This follows from the definition of entanglement-assisted ca- x
pacity (1) using only forward communication. Without feedbackhere®,, is a purification ofp,,. This formula holds because
from Bob to Alice, Alice can do no better than encode all hexlice’s and Bob’s joint state after Alice’s unitary transformation
classical information at once, by applying a single classically,, is still a pure state, and so their joint state is a purification
chosen completely positive mag, to her half of the entangled of p,,.
stateg, and then send it to Bob through the noisy chadvier. We thus get
(If, on the contrary, feedback were allowed, it might be advanta-
geous to use a protocol requiring several rounds of communicg,~ v
tion.) Note that the present formalism includes situations whegrReCE 9<H <N <§: pmpm>> * zx: poH(p)
Alice does not use the entangled statat all, because the map N
A, can completely discard all the informationdn - Z p,;H(/\/ ®I(<I>,7m)) - (48)
In this section, we assume thdt, is a unitary transforma- ¥
tion ¢,. Once we have derived an upper bound assuming ti&@wever, by Lemma 3, that we prove in the next section, the
Alice’s transformations are unitary, we will use this upper bourl@st two terms in this formula are a concave functiorpof so
to show that allowing her to use nonunitary transformations do®§ can move the sum inside these terms, and we get
not help her. This is proved using the strong subadditivity prop- 1 . .
erty of von Neumann entropy: the proof (Lemma 2) will be de-CE —€ = n (H (N(p)) +H(p) - H (N ®I(¢P))) (49)
ferred to the next section. wh
The next step in our proof is to apply the Holevo formula
(8) to the tensor product chann&f®”. Let ' = N®" de- p= Z PPz
note the tensor product of many uses of the channel. For the x
zth signal state, Alice sends her half @1, @ 7)(¢) through ; ; " e .
the channel\', and Bob receive§V ® Z) (U, @ Z)(¢). Bob's E:Jr;aslle% ::etheexE;iis;gzti(gg)fcfogtha?ddltlve (this will be dis
state can be divided into two parts. The first of these is his '
half of ¢, which, after Alice’s part is traced out, is always in Cr(M @ Ny) = Cg(N1) + Cr(N2). (50)

We prove an upper bound of

ere
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Using this, we can set = 1 in (49), thus replacian/ = N©@" R
by N. Since this equation holds for amy> 0, we obtain the
desired formula (45).

D. Proofs of the Lemmas A

This subsection discusses three lemmas needed for Section N
[I-C. The first of these shows that without loss of capacity, Alice
can use a unitary transform for encoding. The next shows that A —— B
the last two terms of the formula far'z in (9) are a convex N

func.t?on ofp. T.he last lemma shows that the formula & is ig. 2. In Lemma 2A is the input space for the original madp. A U A’ is
add!t!v_e The first two lemmas use the _pr_operty of strong suﬁfg.inr‘)utspace for the map’. Thpe out%ut space forbgth mapsB.s‘The‘space
additivity for von Neumann entropy. Originally, we also had & is a reference system used to purify statesiiand A’

fairly complicated proof for the third lemma. However, Prof.

Holevo has pointed out that a much simpler proof (also usingClearly, the middle terms in (52) and (53) are equal, since
strong subadditivity) was already in the literature, and so Wg(p) = A”(p’). We need to show that inequality holds for the
will merely cite it. first and last terms i andC’; that is, we need to show

For the proofs of the first two lemmas in this section, we nee(h / !
—H e ) >H(p)-H I)®,)). (54
the strong subadditivity property of von Neumann entropy [25], () (VeD)(®,) = Hip) (VT@I)(2y)). (54)

[28]. This property says that iff, B, andC are quantum sys-
tems, then

Recall that we have a noisy chann¥él that acts on Hilbert
spaced, and a channel/”’ that acts on Hilbert spacé @ A’ by
tracing outA’ and then sending the resulting state throgh
H(pap) + H(pac) 2 H(papc) + H(pa)-  (51) We need to give purification®, and®,, of p andy’, respec-
It turns out to be a surprisingly strong property. tively. Note that we can také, = ¢, since any purification

We need to show that if Alice uses nonunitary transformatio€#’ iS also a purification o (see footnote 2). Let us take these
A.,, then she can never do better than the upper bound (45) Rjgifications over a reference systéify.; that we calliz. Con-
derived by assuming that she uses only unitary transformatictider the diagram in Fig. 2. In this figure, = p, paa = ¢/
U,. Recall that any nonunitary transformatigh, on a Hilbert @NdPaar = |20 P, = @) (P, ThenA maps the space
spaceH;, can be performed by using a unitary transformatioft t© the spaceé? andA”” maps the space A’ to the spacés by
U, acting on the Hilbert spacé(;, augmented by an ancilla ffacing outA’ and performingV'.

SpaceH..., and then tracing out the ancilla space [28]. We can Ve have
assume thadim H,,. < (dim H;y)?. H(p)=H(ps) = H(par)

What we will do is take the channél” we were given, that gng
acts on a Hilbert spac#/;,, and simulate it by a channgd”
that acts on a Hilbert spadé;, ® Han. WhereN” first traces
out M, and then applies to the residual state oH,,. We e also have
can then perform any transformatiéh by performing a uni- H(N @I)(®,) =H(parB)
tary operatiorl{, on Hi, @ Han and tracing outt,,.. Since gn(g
we proved the formula (45) for unitary transformations in the
previous section, we can calcula®g; by applying this formula
to the channelV’. What we show below is that the same for- TNUS,

H(p') = H(paa’) = H(pr)

H(N' @ I)(®y)) = H(prp)-

mula applied toV gives a quantity at least as large. C—-C' =H(p)— H(N@I)®,))— H(p)
Lemma 2: Suppose that/ and A/’ are related as described +H(N' @I)(®y))

above. Let us define =H(par)— H(para) — H(pr) + H(prB)

C= max H(p) + HN(p) - HN @ Z(®,))  (52) 20 (85)
and pEHin by strong subadditivity, and we have the desired inequality.

o — - max H(p) + HN' () — HN' @ Z(D ). For the next lemma, we need to prove that the function

P in Tanc ~
(53) Hp) - H (W oT) @)

is concave irp.
ThenC > . v

Proof: To avoid double subscripts in the following cal- Lemma 3:Let py and p; be two density matrices, and let
culations, we now rename our Hilbert spaces as follows. Let= popo + p1p1 be their weighted average. Then

A=Hi, A = Hane, B = How; aNdE = Heyy. Let p’ max- H(p)— H ((/\7@1) (‘Pp))

imize C’ in the above formula. We let = Tr4/p'. Since the

channel\’ was defined by first tracing out’ and then sending > po (H(po) - H ((/\7@1) (<I>,,O)))

the resulting state through the channé| p is the density ma- .

trix of the state input to the chann&f in the protocol. +p (H(m) -H ((N®I) (‘Pm))) . (56)
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G2 Using this formula (60), we see that
1
> PJH((N®I) (‘I’pj)) = H(psrc,) — H(pc,) (61)
Cl J=0
and
1
R > piH(p;) =H (pac,) - H (pc,)
§=0
=H (prc,) — H (pc,) - (62)
A ﬂ B Putting everything together, we get
H(p) - H((N@7T)(2,))
1
E =3 wi(He) - H((N 21)(2,)))
N 5=0
Fig. 3. For Lemma 34 is a Hilbert space we send through the chankfel J
andB is the output space. This mapping can be made unitary by adding an = H(pRCHCz) - H(pBRQCz) - H(pRcl) + H(pBRcl)

environment spack. We letR be a reference system which purifies the systems (63)
po andpy in A, andC; andC'; be two qubits purifyingd R as described in the

text. which is positive by strong subadditivity. To obtain (63), we

used the equality? (pc,) = H(pc,), which holds by sym-
Proof: We again give a diagram; see Fig. 3. Here we lehetry. This concludes the proof of Lemma 3.
the states be as followg;s = p = popo + p1p1, SOA isin the

: : . The final lemma we need shows that we cansset 1 and
statep. We let R be a reference system with which we purify ~ on . .
the statego andp,. Consider purification®, = |¢o) (| and replaceN = A®™ by Ain (49). This follows from the fact that

&1 = | ){¢1] Of po, p1, respectively. Then we have Cg is additive, that is, ilCg is taken to be defined by (9), then
Cr(N1 @ NV3) = Cr(N1) + Cr(N-). 64
par = poléo) (ol + b1 |61) (e | (57) ML BN2) = Cp(M) + CpMa). - (64)

. . The > direction is easy. We originally had a rather unwieldy
We now letC’; andC’; be qubits which tell whether the systemproof for the< direction based on explicitly expanding the for-
Als in statepo or py, and we will purify the system.4r inthe  mula for C; and differentiating; however, Prof. Holevo has

systemARC1 Cs in the following way: pointed out to us that a much simpler proof is given in [12],
so we will spare the readers our proof.
Parc o, = V/Pol$0)[0)|0) + /prld)[1)[1).  (58)
Tracing outCs,, we get that the state of RC is [ll. EXAMPLES OF C'r; FOR SPECIFIC CHANNELS

_ In this section, we discuss the capacity of two specific chan-

: = @ |0)(0] + @ |1)(1 59 o . . . e
parcy = poldo)($ol @ [0) (0] +prlgr) (@] @[] (59) nels: the first is the bosonic channel with attenuation/amplifi-
so nowC) can be thought of as a classical bit telling which ofation and Gaussian noise, given a bound on the average signal
®, or @, is the state of the systemR. Note that we have the €nergy, and the second is the qubit amplitude damping channel.

same expression after tracing aii. Strictly speaking, we have not yet shown that (9) holds for the
Now, it is time for our analysis. We want to show (56). Noticé&>aussian bosonic channel, as we have not proved that it holds ei-
that ther given an average energy constraint or for continuous chan-
nels. For channels with a linear constraint on the average density

H(p) = H(pa) = H(prc,c,) matrix p, our proof applies unchanged, and yields the result that

the density matridp of (9) must be optimized over all density

sinceparc, ¢, IS in a pure state, and matrices satisfying this linear constraint. We make no claims as
. to having proven (9) for continuous channels. In fact, we suspect

H ((N ® I) (<I>p)) = H(pBrc,c,) - that there may be continuous quantum channels which have a fi-

nite entanglement-assisted capacity, but where each of the terms
Now, suppose we have a classical @itwhich tells whether a of (9) is infinite for the optimal density matrix for signaling. The
quantum systenX is in statepo or p1, with probabilitypo and  theory of entanglement-assisted capacity for continuous chan-
p1, respectively. The following formula gives the expectation afels is thus currently incomplete.
the entropy ofX [28], [34] (this is analogous to the chain rule For the Gaussian channel with an average energy constraint,

for the entropy of classical systems) all three terms of (9) must be finite, since any bosonic state with
finite energy has a finite entropy. For this channel, (9) can be
E(px) =poH (po) + p1H(p1) proven by approximating the channel with a sequence of finite-

=H(pxc)— H(pc). (60) dimensional channels whose capacity we can show converges to
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the capacity of the Gaussian channel. We do this approximatiwhere D(«) is the unitary displacement operator ajgg =

by first restricting the input to the channel a finite subspacg; = 0} is the vacuum state containing no photons. The complex
and second projecting the output of the channel onto a finkembera corresponds to the complex field vector of a mode in
subspace. (In these cases, the finite subspace can be taken thdelassical theory of light. ik = = + ip, thenz is generally
that generated by the firét+ 1 number basis statés = 0), called the position coordinate apdhe momentum coordinate.

|n = 1), ..., |n = k) defined later in this section.) The displacement operator corresponds to displacing the com-
plex number labeling the coherent state, and multiplying by an
A. Gaussian Channels associated phase, i.e.,
The Gaussian channel is one of the most important contin- D()|B) = |a + /3>Cum(a,a*) (71)

uous-alphabet classical channels, and we briefly review it here.

We describe the classical complex Gaussian channel, as thigfieerelin takes the imaginary part of a complex number, i.e.,

most analogous to the quantum Gaussian channel. For a detalitedr + iy) = .

discussion of this channel see an information theory text such a§Ve also need thermal states, which are the equilibrium dis-

[13], [14]. tribution of the harmonic oscillator for a fixed temperature. The
A classical complex Gaussian chaniebf noise NV is de- thermal state with average ener§ys the state

fined by the mapping in the complex plane ;

I = s Y
Ts=—— — — iVp = 4
Nize o, # G ) (65) ; s+12%<s+1)'” =
where the nois&’ is a Gaussian of meahand varianceV, _ 1 6_|Z|2/s|z><z| 2o (72)
ie., TS
1 Leyw The entropy of the thermal stafé; is
Gn(z) = —=e #I/7, (66)
N 9(S) = (S + )log(S +1) — Slog(S).  (73)

Without any_fu_rther conditions, the capacity of 'Fhi_s _channel We are now ready to define the quantum analog of the clas-
would be unlimited, because we could choose an infinite Subggty| Gaussian channel. (See [18] for a much more detailed
of inputs arbitrarily far apart so that the corresponding oUtPYi$,atment of quantum Gaussian channels.) Coherent states are
are dlst|nQU|sh§1pIe with arbnranly small pro.bablllty of errory, overcomplete basis, and a quantum channel may be defined
We add an additional constraint on average input signal POWSF its action on coherent states. We restrict our discussion to

or energy, says. That is, we require that the input distributionquantum Gaussian channels with one mode and no squeezing,

W () satisfy which are those most analogous to classical Gaussian channels.
These channels have an attenuation/amplification pararbgter
/ |2PW (z)d*z < S. (67) and a noise parametaf. The channel amplifies the signal (nec-
essarily introducing noise) £ > 1, and attenuates the signal
This complex Gaussian channel is equivalent to two parallel regl; < 1. Amplification/attenuation of the quantum state intu-
Gaussian channels. It follows that the capacity of the complgively corresponds to multiplying the average position and mo-
Gaussian channel with average input enefgynd noiseV is  mentum coordinates by the numbér. If this were possible for
k > 1 without introducing any extra noise, it would enable one
) (68) to violate the Heisenberg uncertainty principle and measure the
position and momentum coordinates simultaneously to any de-
which is twice the capacity of a real Gaussian channel with agree of accuracy by first amplifying the signal and then simul-
erage input energy and noiseV. taneously measuring these coordinates with optimal quantum
Before we proceed to discuss the quantum Gaussian chanogtertainty. To ensure that the channel is a completely posi-
let us first review some basic results from quantum optics. tive map, amplification thus must necessarily entail introducing
the quantum theory of light, each mode of the electromagnegégtra quantum noise. The chanié| with noiseN and attenu-
field is treated as a quantum harmonic oscillator whose commation/amplification parametér, acts on coherent states as
tation relations are the same as thoses6f(1, 1). A detailed

S
Cshan = 108 <1 + N

— T
treatment of these concepts is available in the book [33]. The N{Ja){al) _DkZO‘TNDkZ(y, fork <1
Hilbert space corresponding to a mode is countably infinite. A A/(|a){a|) :DkzaTJ\7+k2—1D;];2aa fork > 1. (74)
countable orthonormal basis for this space is the number basis ) ) )
of statesn = j), j = 0, 1, 2, ..., where the stat@ = j) cor- The entanglement-assisted capacity of Gaussian channels
responds tg photons being present in the mode. was calculated in [18]. The density matgxmaximizingCg is
Another useful basis is that of the coherent states of ligiit.thermal state of average ener§iyand the entanglement-as-
Coherent states are defined for complex numbeas sisted capacity is given by
D+S -5-1
@) = D{)|0) 69 Cu=g(5)+a(5) g (2FT 1)
_—|a|2/2io‘_j| — D-5+5-1
=e — |n = j) (70) B 75
P gl\————) ()
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Fig.4. Thisfigure shows the curves given by the ratio of capacitiefC'sian Fig. 6. The values of the capaciti€s,, Csnan, and the conjectured’y (in

f(;r thle qgantur}jf_Ga:_uss;atrt\ cha?nel with nokfe_ang ihel n|ne3f:0m(§>|n_at|orl15 units of bits) are plotted for the Gaussian channel with signal strefgtivise
of values: amplification/attenuation parameter= 0.1, 7.or randsignal . xr — 1 and no amplification or attenuatidqi = 1). As the curves approach
strengthS = 0.1, 1, or 10. The dotted curves have = 0.1; the solid curves : . P e ) ~ i
- N 0, their leading-order behavior is as followSz = S, Cspan = (log,€)S,
haveS = 1; and the dashed curves ha¥e= 10. Within each set, the curves . 1 ) o . ) :
andCr =~ —2Slog, S, so the ratio” r/Csian andC'r/Cr approachso
have the valuek = 0.1, k = 1, andk = 3 from bottom to top. asS goes to0”

of signal states to maximiz€y for Gaussian channels is not
known. For one-mode Gaussian channels with no squeezing,
it is conjectured to be a thermal distribution of coherent states
[18]; if this conjecture is correct, thefily < Cspay, for these
channels, so the rati6'r /Csyan Underestimate€’s /Cy; see
Fig. 6.

Some simple bounds oWy for the quantum Gaussian
channel can be obtained using the techniques of [7]. Suppose

0 0.2 04 5 06 0.8 1 that Alice takes a complex numherencodes it as the stdte),

‘ _ _ N and sends this through a quantum Gaussian channel. Bob then
Fig. 5. The solid curves show the ratio of capacit€s/Csian for the meggyres it in the coherent state basis. Here, the measurement
quantum Gaussian channel with signal strengjthamplification/attenuation . . L .
parametek = 1 and noiseV = 0.1, 0.3, 1,3, and10 (from bottom to top). St€P add51. to the noise, and this C.hannel is thus e.quwal_ent
The dashed curve is the limit of the solid curvesXdsgoes toco; namely, to a classical Gaussian channel with average received signal
Cr/Cshan = (S + 1)log(1 + 1/5). These curves approack asS goes strengthk2S, and average nois®y + 1 if k < 1, N + k2 if
to 0, and approach as.S goes toxo. ’ . — . .

k > 1. The quantum Gaussian channel must then have capacity
greater than the capacity of this classical Gaussian channel.
Conversely, Alice and Bob can simulate a quantum Gaussian

Here, S is the average input energy; is the average output

energy channel by using a classical complex Gaussian channel: Alice
S =k%S + N, fork <1 measures her state (in the coherent state basis), sends the result
S =k2S 4+ N+ k21, fork > 1 (76) throughthe classical channel, and Bob prepares a coherent state

and that depends on the signal he receives. If Alice starts with a

: ~ ~ state|«}, when she measures it, she obtains a complex nhumber
D=+/(S+5 +1)? —4k25(5 +1). (77) o+ ¢ wheree is a Gaussian with meahand variancd. She can

The first term of (75),¢(S), is the entropy of the input; the then multiply byk? to getk?« + k2c. To simulate the quantum -

second termg($’), is the entropy of the output; and the re5aussian channel, she must send this state through a classical

maining two terms of (75) are the entropy of a purification of thghannel with noiseV — k2 if & < 1, andN — 1if k > 1. This

thermal statd’ after half of it has passed through the channeflassical channel must then have classical capacity greater than
The asymptotics of this formula are interesting. Let us hofdz for the quantum Gaussian channel it is simulating. The

the signal strengtt$ fixed, and let the noisév go to infinity. arguments in this paragraph thus give bounds of

Then 2 1
: log <1+—]$€ Sl> < Cp <log <1+%> (79)
lim == = (S+1)log <1 + E) (78) y /-
N —oo0 Shan fOI’ k Z 1, and Of

which is independent of the attenuation/amplification parameter g kK2(5 + 1)
k. This ratio shows that the entanglement-assisted capacitycdng | 1 + —5— | < Cp <log |1+ ——-=] (80)
L N/k24+1 N-1

exceed the Shannon formula by an arbitrarily large factor, al-
beit when the signal strengthis very small. We have plotted for £ < 1. If we hold.S/N fixed, and let both these variables go
Cr/Csnan for some parameters in Figs. 4 and 5. to infinity, we find that these bounds all gotieg(1 + k2S/N),

Possibly, a better comparison than that @f to Csu., Which corresponds to the classical Shannon bound (since the
would be that ofCg to Cg, as Cy is the best rate known signal strength at the receiveriss).
for sending classical information over a quantum channellf & = 1, we can compute better bounds than these based
without use of shared entanglement, However, the optimal gt continuous-variable quantum teleportation and superdense
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coding. Alice and Bob can use a shared entangled squee@slissian channel. The average energy input to this channel is
state to teleport a continuous quantum variable [10], and c4n- sinh? 7 and the noise i&V + ¢ 2", so we obtain the bound
also use such a state for a superdense coding protocol involving 12

. . S —sinh”7r
one channel use per shared state that increases the classical ca- Cg>log|1+ Nio o
pacity of a quantum channel [11]. The squeezed state used, with te
squeezing parameter> 0, is expressed in the number basis aklaximizing this expression, we find the maximum iseat =
(D; — 1)/N, and the bound obtained is

S — (D — N —1)/(2N)
).

wheren 4 andn g are the photon numbers in Alice’s and Bob'dNote that the bounds (82) and (86) reduce to the bounds of (79)
modes, respectively. This state is squeezed, which means thatl (80) when there is no entanglement in the squeezed state,
cannot be represented as a mixture of coherent states with p&s- whenr = 0.

itive coefficients. In this state, the uncertainty in the difference ) .

of Alice and Bob's position coordinates; — x5 is reduced, b 1he Amplitude-Damping Channel

as is the uncertainty in the sum of their momentum coordinatesThe amplitude-damping channel describes a qubit channel
p4-+pgr. The conjugate variables,+x 5 andp s —pg, havein- which sends states which decay by attenuation ffonto |0},
creased uncertainty. If Alice and Bob measure their position dadt which do not undergo any other noise. This channel can be
ordinates, the difference of these coordinates is a Gaussian vaéscribed by two Krauss operators

able with mear® and variance ~2", while the sum is a Gaussian

(86)

oo

Z (tanh7)|ng = j)|np = j) (81)

coshr 4
J=0

sy =

Cg > log <1 + (87)

with mean0 and variance®". Similarly, if they measure their A = <1 ) and A, = <0 ﬁ)
momentum coordinates, the sum has variagic& while the vi=p 0 0
difference has variance®”. Further, if either Alice’s or Bob’s where
state is considered separately, it is a thermal state with average 2
energysinh?® 7. Nip—3" AjpAl.

In continuous-variable teleportation [10], Alice holds a state =1

|t) she wishes to send to Bob, and one half of the shared state L i

|s,). She measures the difference of position coordinates of " Maximization ovep to find C'p can be reduced to an
these states;,, = z, — x4, and the sum of momentum co-OPtimization over one parameter, as symmetry considerations
ordinatesp,, = p; + p.. These are commuting observablesS"oW thaip is of the form

and so can be simultaneously determined. She sends these mea- 11—z O

surement outcomes to Bob, who then displaces his half of the Pz = < 0 a:) )

shared state using(z,, + ipy). . . . This makes the optimization numerically tractable, and the de-
Using continuous-variable teleportation, Alice can simulate a

quantum Gaussian channel with= 1, average input energy, pendence o’y onp is shown in Fig. 7. As the damping proba-

and noiseV by sending the value,, -+ip,, over a classical com- _b|||ty p goes tal, we can analytically find the highest order term

plex Gaussian channel with average input enetgy(cosh r)? In the expression fo’s, giving
and noiseV — ¢~2". This gives a bound equal to the classical Cgp~ —x(1 —p)log(1 —p) (88)

capacity of this channel i
pactty for 0 < x < 1. Here we use&” to mean that the ratio of the

1 S + (cosh T)?) two sides approachdsasp goes tol.
+

Cg <log < (82) For the same channél; can also be obtained by optimizing

N —¢e 2
over a one-parameter family which uses two signal stajes
Finding ther which minimizes this expression gives andp, _ with equal probability [16]. These signal states are
. Di+1 1—z +v/z(1—x)
27 1
el = ——— (83) L = . 89
N P, + < :L’(l — ,’L’) " ( )
where As p goes tol, again we can analytically find the highest order
term for C'gr, which is
Dy =\/(N+1)2+4NS (84)
Cry =~ —z(1 —2)(1 — p)log(1 — p). (90)

is the value of the variablP defined in (77) when we sét—= 1.

This gives the bound Thus, agp goes tol, the values of: maximizingCr andCy,

respectively, approachh and 1/2, and the ratioCr/Cy ap-
S+ (D, +N+ 1)/(2N)) proaches!. These functions are shown graphically in Fig. 7. In

N (85  our previous paper [7], we showed that for the qubit depolar-
izing channel, the ratid’y /Cy approached as the depolar-
Similarly, if Alice uses superdense coding [11] to send iaing probability approached, and for thed-dimensional de-
continuous variable to Bob, her protocol simulates a classiqailarizing channel, the ratio approachéd 1. We do not know

Cp < log <1+
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another with unit asymptotic efficiency. In terms of the desali-
nation analogy, water from two different oceans might produce
equal yields of fresh drinking water, yet still not be equivalent
because they produced unequal yields of partly saline water suit-
able, say, for car washing.

Although it is of some intrinsic interest as a result in clas-
sical information theory, we view the classical reverse Shannon
theorem mainly as a heuristic aid in developing techniques that
may eventually establish its quantum analog, namely, the con-
jectured ability of all quantum channels of eqaal} to simulate
one another with unit asymptotic efficiency in the presence of

(a) shared entanglement.
@ Here we show that any classical DM, of capacityC, can
be asymptotically simulated bg' uses of a noiseless binary

0 0.2 0.4p0.6 0.8 1

4 channel, together with a supply of prior random information
g'g: shared between sender and receiver.
3'4_ The channelV is defined by its stochastic transition matrix
c 3:2_ N,z betweeninputs € {1---d;} and outputy € {1---do}.
_E 3] Let N™ denote the extended channel consisting pérallel ap-
Cy 2.8] plications ofZ’, and mapping: € {1---d}j}toy € {1---d}.
2'2: Theorem 2 (Classical Reverse Shannon Theordme}: NV be
2'2_ a DMC with Shannon capacity ande a positive constant. Then
'2 for each block size there is a deterministic simulation protocol
0 02 04 06 08 1 S, for N which makes use of a noiseless forward classical
p channel and prior random information (without loss of gener-
(b) ality a Bernoulli sequenceé) shared between sender and re-
(b) ceiver. WhenR is chosen randomly, the number of bits of for-

Fig. 7. (a) The capacity functionSr andCy for the amplitude-damping ward Commum(_:atlon used by the protocgl on channel input
channel are plotted against the damping probabplitfo) The ratioC'r/Cris & € {1---d;}™is arandom variable; let it be denoted, ().
p'?tted-fTrTiS curve is s steep nga 1 ”;]atlforp = 1710’;0}”‘9 computed The simulation is exactly faithful in the sense that forsathe
' .8 the limiti 4 forp = 1 X . . o
dorived ;nZI;/i‘ittl:allf/./ 7 was only3.5; the limiting value oft forp = 1was - gtqchastic matrix fois,,, whenR is chosen randomly, is iden-
tical to that forv"

whether this ratio is bounded for finite-dimensional channels, Vnay(Sn)yz = (N )y (91)

although we suspect it to be. If so, then the interesting question , .. . . L .
arises of how this bound depends on the dimensitns}, and it is asymptotically efficient in the sense that the probability

. that the protocol uses more thaC + ) bits of forward com-
anddim Hou: 4 L . e
munication approaches zero in the limit of large

IV. CLASSICAL REVERSESHANNON THEOREM lim max P(m,(z)>n(C+e)=0. (92)

n—oo pe{l--ds}»
Shannon’s celebrated noisy channel coding theorem estab-

lished the ability of noisy channels to simulate noiseless onesNote that the notion of simulation used here is stronger than
and allowed a noisy channel’'s capacity to be defined as ttie conventional one used in the forward version of Shannon’s
asymptotic efficiency of this simulation. The reverse problemmoisy channel coding theorem, and in (4) defining the gener-
of using a noiseless channel to simulate a noisy one, has aized capacity of one quantum channel to simulate another.
ceived far less attention, perhaps because noisy channelsTdrere, the simulations are required only to be asymptotically
not thought to be a useful resource in themselves (for the safaghful and their costn is deterministically upper-bounded by
reason, there has been little interest in the reverse technology.6f' + ¢). By contrast, our simulations are exactly faithful for
water desalination—efficiently making salty water from freshll n and their cost is upper-bounded byC + €) only with
water and salt). We show, perhaps unsurprisingly, that any nof@pbability approaching in the limit of largen, for all ¢ > 0.
DMC of capacityC can be asymptotically simulated 6y bits To convert one of our simulations into a standard one, it suffices
of noiseless forward communication from sender to receivé®, discontinue the simulation and substitute an arbitrary output
given a source? of random information shared beforehand bewhenevenn,, () is about to exceed(C + «).
tween sender and receiver. If this were not the case, characterifo illustrate the central idea of the simulation, we prove the
zation of the asymptotic properties of classical channels woufteorem first for a binary-symmetric channel (BSC), then ex-
require more than one parameter, because there would be céged the proof to a general DMC. L&t be a BSC of crossover
where two channels of equal capacity could not simulate opeobability p. Its capacityC' is

4Holevo [20] has found a qubit channel where this ratie.[&98. 1—Hs(p)=1+plog,p+ (1 —p)log,(1 —p).
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To prove the theorem in this case it suffices to show that for angnsider input-type classes (ITCs) and joint input/output-type
rateec > 0, there is a sequence of simulation protocgiissuch classes (JTC), the latter being defined as a set of input/output

that pairs(z, y) equivalent under some common permutation of the
input and output letter positions. In other words,, y;) and

Ynay(Sn)ye = (N")ya (93)  (&,, y2) belong to the same JTC if and only if there exists
and a permutation of letter positions;, such thatr(z1) = 2

andx(y1) = y2. Evidently, for any given input and output al-

. phabet size, the number of ITCs, and the number of JTC are
lim max P(m,(z)>n(C+e€)=0 (94)

n—00 o {l--dy}» ; each polynomial im. Letk =1, 2--- K,, index the ITCs, and
£=1,2---L, the JTC for inputs of length. The JTC will be
The simulation protoca¥,, is as follows. our generalization of the Hamming distance, since the transition

probability (N™),. is equal for all pairgz, y) in a given JTC.

1) Before receiving the input € {0, 1}™, Alice and Bob use The new protocol follows.

the random informatiot? to choose a random s&{ R, n) of
27(C+¢/2) p_hit strings. [We use/2, rather thar, to keep the 1) Before receiving the input € {1, dy}, Alice and Bob use
total overhead, including other costs, beldw the common random informatidi to pre-agree ot,, random
sets{Z(R, n, k): k =1--- K,,} of n-letter output strings, one
for each ITC. The seZ(R, n, k) has cardinality2™(“»+¢/2)

3) Alice simulates the true chann®l* within her laboratory, whereC;. < C'is the channel’s capacity for inputs in tlh
obtaining ann-bit “provisional output’y. Although thisy is ITC (in other words] /n times the channel’s input : output mu-
distributed with the correct probability for the channel outputyal information onn-letter inputs uniformly distributed over
she tries to avoid transmittingto Bob, because doing so wouldthe k£th ITC). In contrast to the BSC case, where the members
requiren bits of forward communication, and she wishes to sinef Z(R, n) were chosen randomly from a uniform distribution
ulate the channel accurately while using less forward commuoi the output space, the elementdfz, », k) are chosen ran-
cation. Instead, where possible, she substitutes a member ofdbmly from the (in general nonuniform) output distribution in-
preagreed se¥(R, n), as we shall now describe. duced by a uniform distribution of channel inputs over kitie

ITC.

2) Alice receives the:-bit input z.

4) Alice computes the Hamming distante= |x—y| between
x andy. 2) Alice receives the-letter inputz, determines which ITC,

5) Alice determines whether there are any strings in the pr]?é'-'t belongs to, and sendsto Bob, usingy(n) bits o do so.

agreed sef (R, n) having the same Hamming distanté&om 3) Alice simulates the true chann®T* in her laboratory, ob-

x asy does. If so, she selects arandom one of them, gdllénd taining ann-letter provisional output string. Although thisy is
sends Bolo, wherei is the approximately(C'+¢/2)-bitindex distributed with the correct probability for the channel input

of 4/ within the setZ(R, n). If not, she sends Bob the stridg, she tries to avoid transmittingto Bob, because to do so would
the original unmodified:-bit stringy, prefixed by al. require too much forward communication. Instead, she proceeds

6) Bob emitsy’ or y, whichever he has received, as the final~ described below.

output of the simulation. 4) Alice computes the indexX of the JTC to which the
input/output pair(x, ) belongs. As noted above, this JTC

It can readily be seen that_the probability of fallure_ln St.ef%dex is the generalization of the Hamming distance, which we
5)—i.e., of there being no string of the correct Hamming dis-

tance in the preagreed sB( R, n)—decreases exponentiallyusecj in the BSC case.
with n as long as= > 0. Thus, the probability of needing to 5) Alice determines whether there are any output strings in the
use more tharC(1 + ) bits of forward communication ap- preagreed se¥(R, =, k) having the same JTC index relative
proaches zero as required by (94). On the other hand, regardiess asy does. If so, she selects a random one of them, call
of whether step 5) succeeds or fails, the final output is correcttyy’, and sends Bob the strirlg where: is the approximately
distributed (satisfying (94)) since it has the correct distribution{C +¢/2)-bit index ofy’ within the setZ (R, n, k). If not, she
of Hamming distances from the inptitand, for each Hamming sends Bob the stringyy.
g!stance, is equidistributed among all strings at that Hamm|n96) Bob emitsy’ or y, whichever he has received, as the final

istance frome. The theorem follows. output of the simulation

For a general DMC, the protocol must be modified to take '

account of the nonbinary input and output alphabets, and theThis protocol deals with the problem of dependence of
fact that the output entropy may be different for different ineutput entropy on input by encoding each ITC separately.
puts, unlike the BSC case. The notion of Hamming distan®¥ithin any one ITC, the output entropy is independent of the
also needs to be generalized. The new protocol uses the notiggut. The communication cost of telling Bob in which ITC
of type clasq13], [14]. Two n-character strings belong to thethe input lies is polylogarithmic im, and so asymptotically
same type class if they have equal letter frequencies (for edegligible compared te:. Because one cannot increase the
ample, four a’s, three b’s, twelve c’s, etc.), and are therefocapacity of a channel by restricting its input' is an upper
equivalent under some permutation of letter positions. We wilbund the input: output mutual informationCj, for inputs
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restricted to a particular ITC. Moreover, for any I®Gnd any single uses of the channel. We hope that the arguments used to
inputz in that ITC, the input : output pairs generated by the trygrove the classical reverse Shannon theorem can be extended
channell™ will be narrowly concentrated, for large on JTC to demonstrate its quantum analog.

whose transition frequencies approximate (to withity/n)) If the QRSC is true, one useful corollary would be the in-
their asymptotic values. Therefore, as before, for any 0, ability of a classical feedback channel from Bob to Alice to in-
the probability of failure in step 5) will decrease exponentiallgrease” . A causality argument shows that a feedback channel
with n. And, as before, the simulated transition probabilitgannot increas€ g for noiseless quantum channels. If we could
(Sn)yz ON each ITC is exactly correct even for finite The simulate noisy quantum channels by noiseless ones, this would
reverse Shannon theorem for a general DMC follows, as daewply that if a feedback channel increas€g. for any noisy

the following corollary. channel, it would have to increaék; for noiseless ones as well,

Corollary 1 (Efficient Simulation of One Noisy Channel b)\//lolatmg causality.

Another): In the presence of shared random information be-
tween sender and receiver, any two classical channels of equal
capacity can simulate one another, in the sense of (4), with unifThe authors wish to thank Igor Devetak, David DiVincenzo,
asymptotic efficiency. Alexamder Holevo, Michael Nielsen, and Barbara Terhal for
hilpful discussions, and the referees for careful reading and ad-
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