
Information Theory and Coding EPFL Winter Semester 2008/2009
Prof. Suhas Diggavi Handout # 21, Sunday, 7 December, 2008

Solutions: Homework Set # 5

Problem 1

(a) An FSM is uniquely decodable if we can reconstruct the input sequence using the initial
state of the FSM and its output, i.e., if we start from a state and feed two different inputs,
we get different outputs.

Similarly, an FSM is called information lossless if having the output, the initial and final
states, one can uniquely determine the input sequence.

It is clear that being IL is a necessary but not sufficient condition for being UD.

We claim that FSM1 is UD and therefore it is also IL. Assume that it is not. Therefore
there exist two different sequences xn and zm and an initial state w which yield in the
same output, yp. Let t be the first position where xn and zm are different, i.e., xt−1 = zt−1

and xt 6= zt. Without loss of generality one can assume xt = a and zt = b. Assume that
Since xt−1 = zt−1, we will be in the same state when xt or zt are fed to the FSM, namely
wt, and q − 1 of the output symbols are already produced. Thus, yq would be the first
next output symbol. However it is easy to see that the first output symbol produced by
the FSM is different for different inputs:

state input first bit of the output
s a 0
s b 1
x a 1
x b 0
y a 1
y b 0

FSM2 is information lossless but not uniquely decodable. One can check that starting
from state s, both the two inputs “ba” and “aba” result in output “111”. However, if we
know the final state, two different input cannot yield in the same output. It is clear that
the final state cannot be s (unless for the null input sequence). If the final state is x, it is
clear that we have always been in the left branch of the FSM, otherwise we have always
been in the right branch. In both cases it is easy to show that the FSM is information
lossless.

(b) The output sequence is: “10101010111”

(c) The sequence can be parsed into 6 distinct words as bb/ab/aa/ba/b/a. This is in fact the
maximum, because the minimum length of a sequence can be parsed into 7 distinct words
is n7 = 21 · 1 + 22 · 2 + 1 · 3 = 13 > 10.

1

(d) The following table shows how the LZ algorithm works.

dictionary codewords new w. codeword output
{a, b} {0, 1} b 1 1
{a, ba, bb} {00, 01, 10} ba 01 101
{a, baa, bab, bb} {00, 01, 10, 11} baa 01 10101
{a, baaa, baab, bab, bb} {000, 001, 010, 011, 100} bab 011 10101011
{a, baaa, baab, baba, babb, bb} {000, 001, 010, 011, 100, 101} a 000 10101011000

So, the Lempel-Ziv algorithm encodes this sequence to “10101011000” whose length is 11.

(e) As can be seen in the above table, the LZ algorithm parses the sequence into 5 words,
{b, ba, baa, bab, a}.

Problem 2

(a) The initial dictionary is X0 = {a, b, c, d},
X0 a b c d
dic 0 1 2 3
bits 00 01 10 11

We can parse the sequence into parses we haven’t seen until now. So, abadcdadd will be
parsed into a, b, ad, c, d, add. At each iteration, we output the binary representation of the
parsed substrings and substitute it in the dictionary with all its single letter extensions.

Step 1:

The output will be the representation of a: ”00”
X0 aa ab ac ad b c d
dic 0 1 2 3 4 5 6
bits 000 001 010 011 100 101 110

Step 2: The output will be the representation of b: ”100”
X0 aa ab ac ad ba bb bc bd c d
dic 0 1 2 3 4 5 6 7 8 9
bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Step 3: The output will be the representation of ad: ”0011”
X0 aa ab ac ada adb adc add ba bb bc bd c d
dic 0 1 2 3 4 5 6 7 8 9 10 11 12
bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

Step 4: The output will be the representation of c: ”1011”
X0 aa ab ac ada adb adc add ba bb bc bd ca
dic 0 1 2 3 4 5 6 7 8 9 10 11
bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011
X0 cb cc cd d
dic 12 13 14 15
bits 1100 1101 1110 1111

Step 5: The output will be the representation of d: ”1111”
X0 aa ab ac ada adb adc add ba bb bc bd
dic 0 1 2 3 4 5 6 7 8 9 10
bits 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010

2

X0 ca cb cc cd da db dc dd
dic 11 12 13 14 15 16 17 18
bits 01011 01100 01101 01110 01111 10000 10001 10010

Step 6: The output will be the representation of add: ”00110”

So the final string will be: 0010000111011111100110.

(b) Using the fact that the dictionary grows by 3 elements with each parsing, we can parse
the given sequence as: 00, 100, 0001, 0001, 1111

00 100 0001 0001 1111
|X| 4 7 10 13 16

Step 1:

”00” = a
X0 aa ab ac ad b c d
dic 0 1 2 3 4 5 6
bits 000 001 010 011 100 101 110

Step 2: ”100” = b
X0 aa ab ac ad ba bb bc bd c d
dic 0 1 2 3 4 5 6 7 8 9
bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Step 3: ”0001” = ab
X0 aa aba abb abc abd ac ad ba bb bc bd c d
dic 0 1 2 3 4 5 6 7 8 9 10 11 12
bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

Step 4: ”0001” = aba
X0 aa abaa abab abac abad abb abc abd ac ad ba bb
dic 0 1 2 3 4 5 6 7 8 9 10 11
bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011
X0 bc bd c d
dic 12 13 14 15
bits 1100 1101 1110 1111

Step 5: ”1111” = d

So, the Decoded sequence will be : abababad

(c) We can parse the given sequence as:
a, b, abab, ab, bb, a, abb, aab
(0, a), (0, b), (2, 6), (1, 2), (4, 1), (5, 3), (4, 3)

If we label a = 0 and b = 1, the output sequence is:

0000
...0001

...010110
...001010

...100001
...110011

...100011

(d)
000, 0 000, 1 010, 010 011, 110 101, 100
(0, a) (0, b) (2, 2) (3, 5) (5, 4)

The sequence will be:
a, b, ab, babba, babb.

3

Problem 3

Encoding:
The dictionary gets initialized to [A,B,C,D], [.c.] is empty, and K = A. The if condition

enters the block Yes, and [.c.] = A. The next symbol is K = B and as [.c.]K = AB is not in the
dictionary, the if condition enters No block , the algorithm outputs “00′′ and AB is added to the
dictionary and [.c.] = B. So now the dictionary is [A,B,C,D,AB]. The next symbol is A and
the algorithm works exactly as described; until for the last symbol, when K = B, [.c.]K = AB
is in the dictionary, the output is “0100′′, the dictionary gets updated, [.c.] = AB, and finally
there is no next character and the encoding stops: Encoded stream: 000010000101000100.

Decoding: The dictionary is initialized with [A,B,C,D] and the code to read is “00′′. So
the algorithm outputs A at the beginning and OLDCODE := A. the next code is ”001”.
(you always read log(|D| + 1) bits except for the very first code you read, have it was “00′′)
the if condition is true, and thus the output is B. before going out of the Yes block,[...] = A,
K = B, [...]K = AB is added to dictionary, the dictionary gets updated to [A,B,C,D,AB],
and finally OLDCODE = 01. The next code is “000′′ and decoding continues as described.
One thing to note is that the order of the elements of the dictionary never changes and thus
“01′′, “001′′, “0001′′, · · · are always the second element of the dictionary. In the last step of
decoding, the dictionary is already [A,B,C,D,AB,BA,AC,CA] and thus the code to read is
0100 (as dlog2(8 + 1)e = 4). The if condition is true, the algorithm outputs AB, [...] = AB,
K = A, ABA is added to the dictionary, OLDCODE = 0100, and then there is no more code
and decoding stops.

Problem 4

(a) The stationary distribution is π = [p0, p1], such that πP = π, where

P =
[

1
3

2
3

1
2

1
2

]
.

Thus, π = [37 ,
4
7]

(b) The form of the sequence of states from state 0 returning to state 0 for the first time
would be

0
l︷ ︸︸ ︷

11...1 0 for l = 0, 1, ...

And each has a returning time of l + 1. So on average we have

E(returning time to 0) =
∑

p(X1...Xl+2 = 011..10|X1 = 0).(l + 1)

= p(X1X2 = 00|X1 = 0).1+p(X1X2X3 = 101|X1 = 0).2+
∑

p(X1X2...Xl+2 = 0
l︷︸︸︷

11..1 0).(l + 1)

= p0,0 + p0,1p1,0.2 +
∞∑
l=2

(l + 1)p01(p11)l−1p10

= 1
3 + 2

3 + 2
3

∑∞
l=2 (l + 1)(1

2)2

= 1
3 + 2

3

∞∑
l=1

(
1
2

)l

︸ ︷︷ ︸
=1

+2
3

∞∑
l=1

l(
1
2

)l

︸ ︷︷ ︸
=2(∗)

4

= 7
3 + 1

p0

(∗):
∑∞

l=1 l(
1
2)l = 1

2 + 2× 1
4 + 3× 1

8 + ...

= 1
2+
1
4 + 1

4+
1
8 + 1

8 + 1
8 + ...

...
...

... + ...

= 1 + 1
2 × (1) + 1

4 × (1) + ...

= 2

(c) p(xn−1
0) = p(x0x1...xn−1)

= p(x0)p(x0 → x1)p(x1 → x2)...p(xn−2 → xn−1)

px0px0,x1px1,x2pxn−2,xn−1

(d) Define si as the expected number of visits to state i before returning from 0, to state 0.
So,

si = E0[
∑

n≥1 1{Xn=i}1{n≤T0}]

Where T0 is when it returns to state 0. And the index 0 of E shows that we are considering
the chain from the time it has left state 0.

Note that

π(i) =
si∑
j sj

Because, ∑
i

π(i)pij =
∑

i

sipij∑
j sj

=
sj∑
j sj

= π(j)

Furthermore, s0 = 1 and
∑

j Sj = E(T0) both by definition.

So π(0) = 1
E(T0) which is the answer to the question, not only for the defined extended

Markov process, but rather for any general Markov process that has stationary distribu-
tion. This is true for any other state as well.

So the answer to the part (d) would be 1
p(xn−1

0)
where p(xn−1

0) is calculated in part (c).

(e) Rn(X0X1...Xn−1)|(X0X1...Xn−1) = (x0x1...xn−1) is the distance between the last time
the extended Markov state xn−1

0 has occurred in the extended Markov process. So by
what we defined, the E of this random variable is exactly the E of the returning time of
the chain from xn−1

0 to xn−1
0 .

(f) First equality: We encode Xn−1
0 in binary and this requires dlogRne bits. We further

send the length of this description (dlogRne) ans this encoding is done by the code C(.)
designed in the hint of the problem. As explained describing k by the code C(.) requires
2dlog ke+1 < 2logk+3 bits and thus to encode dlogRne, we need a logRn +2 log logRn +
O(1) is what the length of communicating Rn which is exactly l(xn−1

0).

5

So
lim

n→∞

1
n

El(xn−1
0) = lim

n→infty

1
n

E(logRn + 2loglogRn +O(1))

The second equality is true based on definition of expectation. The third is true because
of Jensen’s inequality. The forth is again by definition.

6

