
Information Theory and Coding EPFL Winter Semester 2009/2010
Prof. Suhas Diggavi Handout # 14, Wednesday, 28 October, 2009

Solutions: Homework Set # 4

Problem 1

It’s easy to design an optimal code for each state using Huffman procedure. A possible solution
is:

Un S1 S2 S3

Un−1

S1 0 10 11
S2 10 0 11
S3 − 0 1

(1)

and so E(L|C1) = 1.5 bits per symbol, E(L|C2) = 1.5 bits per symbol, and E(L|C3) = 1 bit
per symbol. The average message lengths of the next symbol conditioned on the previous state
being Si are just the expected lengths of the codes Ci. Note that this code assignment achieves
the conditional entropy lower bound.
To find the unconditional average, we have to find the stationary distribution on the states. Let
µ be the stationary distribution:

µ = µ





1
2

1
4

1
4

1
4

1
2

1
4

0 1
2

1
2



 .

µ is found to be µ = [29 , 4
9 , 1

3]. Thus the unconditional average number of bits per source symbol
is

EL =

3
∑

i=1

µiE(L|Ci)

=
2

9
× 1.5 +

4

9
× 1.5 +

1

3
× 1

=
4

3
bits/symbol.

The entropy rate of the Markov chain is

H = H(X2|X1)

=
∑

i

µiH(X2|X1 = Si)

=
4

3
bits/symbol

Thus the unconditional average number of bits per source symbol and the entropy rate H of
the Markov chain are equal, because the expected length of each code Ci equals the entropy of
the state after state i, H(X2|X1 = Si), and the maximal compression is obtained.

1

Problem 2

(a) We can write the following chain of inequalities

Qn(x)
1
=

n
∏

i=1

Q(xi)

2
=

∏

a∈X

Q(a)N(a|x)

3
=

∏

a∈X

Q(a)nPx(a)

4
=

∏

a∈X

2nPx(a) log Q(a)

=
∏

a∈X

2n(Px(a) log Q(a)−Px(a) log Px(a)+Px(a) log Px(a))

= 2
n

P

a∈X
(−Px(a) log Px(a)

Q(a)
+Px log Px)

= 2n(−D(Px‖Q)−H(Px))

where 1 follows because of Xi’s being i.i.d.,2 follows by grouping symbols and 4 is just by
definition of type.

(b) In this part, we show that
|T (P)|

.
= 2nH(P)

for binary alphabet. This means that we have to show

(

n

k

)

.
= 2nH(k

n
).

Note that we say that an
.
= bn if

lim
n→∞

1

n
log

an

bn

= 0,

and thus it is enough to bound
(

n
k

)

by

1

n + 1
2nH(k

n
) ≤

(

n

k

)

≤ 2nH(k
n

).

Upper bound:
We know that

∑n
k=0

(

n
k

)

pk (1 − p)n−k = 1. Thus considering only one term, and setting

p = k
n

gives

1 ≥

(

n

k

)(

k

n

)k (

1 −
k

n

)n−k

=

(

n

k

)

2log(k
n)

k
+log(n−k

n)
n−k

=

(

n

k

)

2n(k
n

log k
n

+ n−k
n

log n−k
n

)

=

(

n

k

)

2−nH(k
n

)

2

where H(p) = p log p + (1 − p) log(1 − p). So

(

n

k

)

≤ 2nH(k
n

)

Lower bound:

1 =

n
∑

k=0

(

n

k

)

pk(1 − p)n−k

≤ (n + 1)max
k

(

n

k

)

pk(1 − p)n−k

1
= (n + 1)

(

n

np

)

pnp(1 − p)n−np.

where 1 is obtained as follows:
Define Si =

(

n
i

)

pi(1 − p)n−i. We want to show that the i maximizing Si is np. To this

end, let’s calculate Si+1

Si
for i < np and i > np. One could verify Si+1

Si
= n−i

i+1
p

1−p
. Now see

that for i = np − 1, Si+1

Si
> 1 and for i > np, Si+1

Si
< 1. This says that Si is increasing

untill i = np and decreasing afterwards. so the maximum happens at i = np.
So letting p = k

n
,

1 ≤ (n + 1)

(

n

k

)(

k

n

)k (

1 −
k

n

)n−k

.

(

n
k

)

k
n

k (

1 − k
n

)n−k
=

(

n
k

)

2−nH(k
n

) as seen above in deriving the upper bound. So

1

n + 1
≤

(

n

k

)

2−nH(k
n

),

and thus

1

n + 1
2nH(k

n
) ≤

(

n

k

)

.

(c)

Qn(T (P)) =
∑

x∈T (P)

Qn(x)

=
∑

x∈T (P)

2−n(D(P‖Q)+H(P))

= |T (P)|2−n(D(P‖Q)+H(P)).

Using the bounds of part (b) we have,

1

(n + 1)|X |
2−nD(P‖Q) ≤ Qn(T (P)) ≤ 2−nD(P‖Q)

and thus
Qn(T (P))

.
= 2−nD(P‖Q).

3

Problem 3

We have a stationary Markovian source which produces binary symbols according to the tran-
sition matrix P as follows

P =

[

1
3

2
3

2
3

1
3

]

.

To find the stationary distribution of this Markov process we have to solve the following system
of linear equations

µ = µP.

Because of the symmetry that matrix P has, it can be easily guessed that the stationary
distribution is µ =

[

1
2

1
2

]

, so we have P [Xi = 0] = P [Xi = 1] = 1
2 .

(a) From the definition of distribution function we can write

F (01110) = P [0.X1 · · ·X5 < 0.01110].

We can expand the above probability as follows

F (01110) =P [X1 < 0] + P [X1 = 0, X2 < 1] + P [X1 = 0, X2 = 1, X3 < 1]

+ P [X1 = 0, X2 = 1, X3 = 1, X4 < 1]

+ P [X1 = 0, X2 = 1, X3 = 1, X4 = 1,X5 < 0]

=P [X1 = 0, X2 = 0] + P [X1 = 0, X2 = 1, X3 = 0]

+ P [X1 = 0, X2 = 1, X3 = 1, X4 = 0]

=
1

2

1

3
+

1

2

2

3

2

3
+

1

2

2

3

1

3

2

3
=(0.01110110100000 · · ·)2.

(b) From the source, we have only observed the first five bits, 01110, which can be continued
with an arbitrary sequence. However for and arbitrary sequence that starts with the
sequence 01110 we have

F ([01110, 00000 · · ·]) ≤ F ([01110,X6X7X8 · · ·]) ≤ F ([01110, 11111 · · ·]) ,

where [s1, s2] means concatenation of two sequences s1 and s2.

We know that

F ([01110, 00000 · · ·]) = F (01110) = (0.01110110100000 · · ·)2.

So it only remains to find F ([01110, 11111 · · ·]). But we know that 0.0111011111 · · · =
0.01111, so we have

F ([01110, 11111 · · ·]) =F (01111)

P [X1 < 0] + P [X1 = 0, X2 < 1] + P [X1 = 0, X2 = 1, X3 < 1]

+ P [X1 = 0, X2 = 1, X3 = 1, X4 < 1]

+ P [X1 = 0, X2 = 1, X3 = 1, X4 = 1,X5 < 1]

=P [X1 = 0, X2 = 0] + P [X1 = 0, X2 = 1, X3 = 0]

+ P [X1 = 0, X2 = 1, X3 = 1, X4 = 0]

+ P [X1 = 0, X2 = 1, X3 = 1, X4 = 1,X5 = 0]

=
1

2

1

3
+

1

2

2

3

2

3
+

1

2

2

3

1

3

2

3
+

1

2

2

3

1

3

1

3

2

3
=(0.011111010000 · · ·)2.

4

So comparing binary representation of F (01110) and F (01111) we observe that we are
sure about 4 bits: 0111.

Problem 4

The parsed string is as follows

Original sequence: 0 00 000 1 10 101 0000 01 1010 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Using dictionary: D1 D2 D3 D4 D5 D6 D7 D8 D9 ?
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Compressed sequence: 0 00 00 100 100 101 000 0100 0111 ?

The dictionaries that have been constructed are as follows

D1 = {0, 1},

respectively encoded to: ED1 = {0, 1},

D2 = {00, 01, 1},

respectively encoded to: ED2 = {00, 01, 10},

D3 = {000, 001, 01, 1},

respectively encoded to: ED3 = {00, 01, 10, 11},

D4 = {0000, 0001, 001, 01, 1},

respectively encoded to: ED4 = {000, 001, 010, 011, 100},

D5 = {0000, 0001, 001, 01, 10, 11},

respectively encoded to: ED5 = {000, 001, 010, 011, 100, 101},

D6 = {0000, 0001, 001, 01, 100, 101, 11},

respectively encoded to: ED6 = {000, 001, 010, 011, 100, 101, 110},

D7 = {0000, 0001, 001, 01, 100, 1010, 1011, 11},

respectively encoded to: ED7 = {000, 001, 010, 011, 100, 101, 110, 111},

D8 = {00000, 00001, 0001, 001, 01, 100, 1010, 1011, 11},

respectively encoded to: ED8 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000},

D9 = {00000, 00001, 0001, 001, 010, 011, 100, 1010, 1011, 11},

respectively encoded to: ED9 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001},

D10 = {00000, 00001, 0001, 001, 010, 011, 100, 10100, 10101, 1011, 11},

respectively encoded to: ED10 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010}.

To encode the last “1” which is not in the dictionary D10, one way is to use a special
character or flag reserved to determine the last part of the sequence.

5

Problem 5

(a) The maximum length of the window is W , so to represent the pointer P we need ⌈log2 W ⌉
bits.The maximum matching length is M , so to represent the length of the match, L, we
need ⌈log2 M⌉ bits.

(b) The number of bits that are needed to represent a sequence of length L symbols with the
matching method is

lmatching = 1 + ⌈log2 W ⌉ + ⌈log2 M⌉ bits.

The number of bits to represent a sequence of length L symbols using writing the charac-
ters themselves is

lnon-mathching = (1 + 8) × L bits.

So the sequence should be encoded using the matching method if

lmatching ≤ lnon-matching,

which means
1 + ⌈log2 W ⌉ + ⌈log2 M⌉ ≤ 9 × L,

or
1 + ⌈log2 W ⌉ + ⌈log2 M⌉

9
≤ L.

Thus, for any sequences longer that 1+⌈log2 W ⌉+⌈log2 M⌉
9 , we have to encode it using the

matching method unless it is better to encode with the format (F,C).

6

