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Solutions: More Exercises

Problem 1

We know that X; ~ Bernoulli () so P[X; =1] =0 and P[X; =0] =1 — 6.
(a) 0=1/2s0 H(X;)=1fori=1,...,n.
By definition (X1,...,X,) =(0,...,0) € A™ if and only if
o X+ < p[(Xy,...,X,) =(0,...,0)] < 27"HX)=d,

or
1/2

o X+ < TR X, = 0] < 27—,
=1

Then we can take the log(-) of both side of the above inequalities. Because that the log(-)
function is an increasing function the order of the inequalities do not change and we have

—n[l+e <—n<-—nll—¢,
l14+4e>1—ce
So (0,...,0) € AE") if and only if € > 0 which means that it is true for every €. In fact for

6 = 1/2 all of the 2" possible sequences are belong to AE").

(b) Again by definition (x1,...,z,) € A™ if and only if
P[X1::(:1]~~~P[Xn=xn}
o HX) T < P(Xy,..., Xn) = (x1,...,1,)] < 27HHE) =,

if and only if

—n[H(X)+¢ <log[[P[Xi =] < —n[H (X) -4,
=1
if and only if

—n[H (X) + €] <log (HL(mn). (1-— 9)"_L(xn)) < -n[H(X)-—¢,
which only depends on L (z™).

(c¢) For the probability of observing a sequence (z1,...,x,) € AE"), by definition we have the
following bounds

2_n[H(X)+E} <P [(le s >Xn) = (:Eb s >ajn)] < 2—n[H(X)—e],

SO we can write

[P [most probable sequence] 9—n[H(X)—¢

— — 22n5 n—oo
PP [least probable sequence] — 2-7nlH(X)+¢]

)

which shows that the typical sequences are not “approximately equiprobable”.



(d) From (b) we can write

—n[H(X) +¢ < L(z")log (8) + (n — L (2"))log (1 - 8) < —n [H (X) — ],

—n[H (X)+¢€ < L(z")log (%) +nlog(1—60)<-n[H(X)—¢,

and

—n[H(X)+log(1—6)+¢ < L(z")log <&> < —n[H(X)+log(1—6)—¢.

We know that
log <1’%9) >0 : 0>1/2,
log <1’%9) <0 : 6<1/2,
so for § > 1/2 we have
—n[H(0) +log (1 —0) + €] < LM < —n[H(0) 4+ log (1 —0) — €]
log (125 log (125

where H(0) = —f0log () — (1 — 6)log (1 — #). Then we have

n-@—n-égL(aﬁ")gn-H—l—n-

s (27)

So by choosing p =6 and a =

¢
os (5]

@ we have C(")(q,p) = A,

Problem 2

Every set S; is chosen uniformly at random from all 2™ possible subsets of the set {1,...,m}.
Then at step ¢ we ask the question: is X € S5;7 Based on the answers to these questions we
want to find the value of X.

(a) Let us assume that X = 1. Then we can write the event that the question S; at ith step
has the same answer for object 1 and 2 as follows

event A; event B;

same answer at ith step = [1 € S;,2 € SJU[1 ¢ S;,2 ¢ Sy,

because A; N B; = (). So for the probabilities we have
[P [same answer at ith step] =P[1 € 5;,2 € S;] +P[1 ¢ S;,2 ¢ S;] =P [Ai] + P[B]
Now we can use the chain rule to write
Pl1e S;,2€85;]=P[2eS;|1€ S;P[1eS;].

Then it can be easily observed that

m—1

2
Plle S| =" =1/2




and
2m—2
P2eS;|1€8]= 1 =1/2,

SO

]P)[AZ] :PDESZ‘,ZESZ'] =

Using a similar argument we can show that

[

P[Bi] =P[1 ¢ 5i,2 ¢ Si] =

e~ |

So we have

k k
[P [same answer with object 2 after k step] = H]P’ [A;UB;| = H]P’ [A;] + P[B;] = 1/2F.
i=1 i=1

We can use the argument of part (a) to write
PP [same answer with object i after k step] = 1/2*,

so the expected number of objects in the set {2,...,m} that have the same answers to
the k questions as does the correct object 1 is

m—1_2"—1

—k —k
o =2 -2k

average number of wrong objects =

Choosing k = n + /n we have

average number of wrong objects = 27"V _ 27—V — 9=V _ g=n=vVn,

Let F be the number of wrong objects after asking k questions. This is a random variable
that in part (b) and (c) we calculated its expected value. For k = n + y/n we found that
E[E] = 2=V"* — 277=V"_ Now we have

lim E[E] — 0.

n—oo
But we want to show that the probability of wrong answers goes to zero as n — oo. To
this end, we use the Markov’s inequality as following

o, 9—vn _ 2—“—\/57

1
> = > _\/ﬁ _ —n—\/ﬁ
PIE21=P|E2 ——n (2 2 )

t

I

where (i) follows from Markov’s inequality. So for the probability of having wrong answer
we have
lim P[E>1] — 0.

n—~o0

Because the random variable E takes its value from {0,1,2,...} we conclude that E =0
with probability approaching 1 as n — oo.



Problem 3

P is a given set of participants and A is a collection of subsets of P.
(a) We know that A,B C P, B¢ A and AU B € A. Using chain rule we can write
H(X4,5 | Xp)=H(Xa|Xp)+H(S|Xa,Xp),
(S ———
0
so we have H (X4 | Xp) = H (X4,S | XB). Again applying the chain rule we obtain
H(Xa|Xp)=H(Xa,S|Xp)=H(S|Xp)+H (Xa|XB,5),
—_——
H(S)
and we are done.
(b) In this part we have B € A. Using the chain rule we can write
H(Xa|Xp)=H(Xa,5|Xp)—H(S|Xa,Xp)
=H (X4 | Xp,S)+H(S|Xp)—H (5| Xa,Xp).
0 0

The last term is zero because we have H (S| X4, Xp) < H (S| Xp) = 0, since condition-
ing reduces the entropy.

(¢) Here we assume that A, B,C C P where AUC € A, BUC € A, and C ¢ A. Then we
can write

from (a) from (b)

A

I(XA;XBXC)H<XBXC —H | Xp|Xa,Xc

¢A <\
H(S)+H(XB|Xc,S) H(XplXa,Xc,S)
=H(S)+1(Xp;Xa|Xc,5),
>0

so we have I (X4;Xp | X¢) > H (5).

Problem 4

Two random variables X and X’ are i.i.d. with entropy H (X).
(a) We want to show that P[X = X’] > 2-H(X) Suppose that X ~ P(z) and let us write
9—H(X) _ 9E[log P(X)]

@ E |:2log P(X)}

— Zp(x)2log P(x)
= ZP(m)2

—P[X = X'],



where (i) comes from the Jensen’s inequality applying on the function f(y) = 2¥. Because
the function f is convex we have Ef (Y) > f(EY). So defining a new random variable
Y £ log P(X) we have

Y Y

— ——
oElog P(X) < E2log P(X)’
which results in (i).

(b) This part is also very similar to the previous part. Let us write

9=H(P)=D(P||Q) _ oX P(@)log P)+ L P(®)log FF  _ o3 P()log Q(x)

Y

——
= QEP lOgQ( ) < E 210gQ ZP ZIOgQ(x
=) P)Q()
—P[X =X

The same method applies for the other one.

Problem 5

(a) Suppose that we have two stochastic processes Xi,..., X, and Y7,...,Y,, such that Y; =
¢ (X;) for i =1,2,..., where ®(+) is some deterministic function. Then we can write

Y1,...,Y,) =(®(X1),...,2 (X)) =F(X1,...,X,),
or
(Y1") = F(X7),
for some deterministic multivariate function F(-). Now using the chain rule we have
=0
H(XT)+H (Y | X7)
n n 1 + " I Y
H(XT,Y") = ! 120 !
n n n
H(Y{") + H (X7 [Y]"),

so we can conclude that H (X7) > H (Y{"). Then we take the limit as follows

1 1
li H((X) > 1 H (Y,
dm DH XY 2 lim S H (),
which results in
H((Y)<H(X).

(b) Refer to the proof of part (c).

(¢) Zi=V(X;,...,X;qy) fori=1,2,..., and i <[ < n where [ is a fixed number. Then we
can write
(Z1ye s Zpn) = [V (X1, Xaw) oo UV ( Xy, .-, X)) = F (X, ..., X)),

where F(-) is a deterministic multivariate function. Using the same argument given in
part (a) we have

H (Z{L‘l) < H(XD).

5



Multiplying both side by 1/n and taking the limit we obtain

1 1
im 2L g <Zf_l> < lim —H (XV),

n—oo n n—I n—oo n

or we can write 1 1
lim ——H (Z{H) < lim —H (XD),

n—oon — [ n—oo N

because for fixed values of [ we have lim,,_, ”T_l = 1. Then we can conclude that

H(Z)<H().

We have a second order Markov process over alphabet {0.1} which realized as follows

Bernoulli (0.5) if X, 1 = X, _o,
X, =
Bernoulli (0.9) if X, 1 # X,_o.

Let us define the Markov process Z,, = (X, Xp+1). Obviously Z, is a first order Markov
process or a Markov chain (it is a process that the current state only depends on the last
state). From the definition of process Z, we can write

H(Zy,...,Zy) = H(X1,..., Xnt1).

Taking the limit we can write

1 on+1 1
nan;oEH(Zh.”’Zn)_nll—)n;o - n+1H(X1,...,Xn+1),
so we have
H(Z)=H(X).

To find the entropy rate of process X,, we can find the entropy rate of process Z, that is a
first order Markov chain with the states: 00,01,10,11. From the definition of the process
X,, we can derive the transition matrix of the Markov chain Z,, which is as follows

00 01 10 11

00 [05 05 0 0
p_ 0L L 0 0 0109
~ 10 |01 09 0 0 |’

11 0 0 05 05

which is equivalent to the following transition graph




To find the entropy rate of the Markov chain Z, firstly we have to find it stationary
distribution g which is the solution of the following system of equations

p= pbp.
Solving the above system of equations we obtain

00 01 10 11
p=[0.087 0.4352 0.4352 0.7833].

Then for the entropy rates we can write

HX)=H(2)=H(Z|Z)= Y, wm », 6 PjlogPy
i€{00,01,10,11}  j€{00,01,10,11}



