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Solutions: More Exercises

Problem 1

We know that Xi ∼ Bernoulli (θ) so P [Xi = 1] = θ and P [Xi = 0] = 1 − θ.

(a) θ = 1/2 so H (Xi) = 1 for i = 1, . . . , n.

By definition (X1, . . . ,Xn) = (0, . . . , 0) ∈ A
(n)
ǫ if and only if

2−n[H(X)+ǫ] ≤ P [(X1, . . . ,Xn) = (0, . . . , 0)] ≤ 2−n[H(X)−ǫ],

or

2−n[H(X)+ǫ] ≤
n∏

i=1

1/2
︷ ︸︸ ︷

P [Xi = 0] ≤ 2−n[H(X)−ǫ].

Then we can take the log(·) of both side of the above inequalities. Because that the log(·)
function is an increasing function the order of the inequalities do not change and we have

−n [1 + ǫ] ≤ −n ≤ −n [1 − ǫ] ,

1 + ǫ ≥ 1 − ǫ.

So (0, . . . , 0) ∈ A
(n)
ǫ if and only if ǫ ≥ 0 which means that it is true for every ǫ. In fact for

θ = 1/2 all of the 2n possible sequences are belong to A
(n)
ǫ .

(b) Again by definition (x1, . . . , xn) ∈ A
(n)
ǫ if and only if

2−n[H(X)+ǫ] ≤
P[X1=x1]···P[Xn=xn]

︷ ︸︸ ︷

P [(X1, . . . ,Xn) = (x1, . . . , xn)] ≤ 2−n[H(X)−ǫ],

if and only if

−n [H (X) + ǫ] ≤ log

n∏

i=1

P [Xi = xi] ≤ −n [H (X) − ǫ] ,

if and only if

−n [H (X) + ǫ] ≤ log
(

θL(xn). (1 − θ)n−L(xn)
)

≤ −n [H (X) − ǫ] ,

which only depends on L (xn).

(c) For the probability of observing a sequence (x1, . . . , xn) ∈ A
(n)
ǫ , by definition we have the

following bounds

2−n[H(X)+ǫ] ≤ P [(X1, . . . ,Xn) = (x1, . . . , xn)] ≤ 2−n[H(X)−ǫ],

so we can write

P [most probable sequence]

P [least probable sequence]
=

2−n[H(X)−ǫ]

2−n[H(X)+ǫ]
= 22nǫ n→∞−→ ∞,

which shows that the typical sequences are not “approximately equiprobable”.
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(d) From (b) we can write

−n [H (X) + ǫ] ≤ L (xn) log (θ) + (n − L (xn)) log (1 − θ) ≤ −n [H (X) − ǫ] ,

−n [H (X) + ǫ] ≤ L (xn) log

(
θ

1 − θ

)

+ n log (1 − θ) ≤ −n [H (X) − ǫ] ,

and

−n [H (X) + log (1 − θ) + ǫ] ≤ L (xn) log

(
θ

1 − θ

)

≤ −n [H (X) + log (1 − θ) − ǫ] .

We know that 





log
(

θ
1−θ

)

> 0 : θ > 1/2,

log
(

θ
1−θ

)

< 0 : θ < 1/2,

so for θ > 1/2 we have

−n [H(θ) + log (1 − θ) + ǫ]

log
(

θ
1−θ

) ≤ L (xn) ≤ −n [H(θ) + log (1 − θ) − ǫ]

log
(

θ
1−θ

) ,

where H(θ) = −θ log (θ) − (1 − θ) log (1 − θ). Then we have

n · θ − n · ǫ

log
(

θ
1−θ

) ≤ L (xn) ≤ n · θ + n · ǫ

log
(

θ
1−θ

) .

So by choosing p = θ and α = ǫ
log ( θ

1−θ )
we have C(n)(α, p) = A

(n)
ǫ .

Problem 2

Every set Si is chosen uniformly at random from all 2m possible subsets of the set {1, . . . ,m}.
Then at step i we ask the question: is X ∈ Si? Based on the answers to these questions we
want to find the value of X.

(a) Let us assume that X = 1. Then we can write the event that the question Si at ith step
has the same answer for object 1 and 2 as follows

same answer at ith step = [

eventAi
︷ ︸︸ ︷

1 ∈ Si, 2 ∈ Si] ∪ [

eventBi
︷ ︸︸ ︷

1 /∈ Si, 2 /∈ Si],

because Ai ∩ Bi = ∅. So for the probabilities we have

P [same answer at ith step] = P [1 ∈ Si, 2 ∈ Si] + P [1 /∈ Si, 2 /∈ Si] = P [Ai] + P [Bi]

Now we can use the chain rule to write

P [1 ∈ Si, 2 ∈ Si] = P [2 ∈ Si | 1 ∈ Si]P [1 ∈ Si].

Then it can be easily observed that

P [1 ∈ Si] =
2m−1

2m
= 1/2,

2



and

P [2 ∈ Si | 1 ∈ Si] =
2m−2

2m−1
= 1/2,

so

P [Ai] = P [1 ∈ Si, 2 ∈ Si] =
1

4
.

Using a similar argument we can show that

P [Bi] = P [1 /∈ Si, 2 /∈ Si] =
1

4
.

So we have

P [same answer with object 2 after k step] =

k∏

i=1

P [Ai ∪ Bi] =

k∏

i=1

P [Ai] + P [Bi] = 1/2k.

(b) We can use the argument of part (a) to write

P [same answer with object i after k step] = 1/2k,

so the expected number of objects in the set {2, . . . ,m} that have the same answers to
the k questions as does the correct object 1 is

average number of wrong objects =
m − 1

2k
=

2n − 1

2k
= 2n−k − 2−k.

(c) Choosing k = n +
√

n we have

average number of wrong objects = 2n−n−√
n − 2−n−√

n = 2−
√

n − 2−n−√
n.

(d) Let E be the number of wrong objects after asking k questions. This is a random variable
that in part (b) and (c) we calculated its expected value. For k = n +

√
n we found that

E[E] = 2−
√

n − 2−n−√
n. Now we have

lim
n→∞

E[E] → 0.

But we want to show that the probability of wrong answers goes to zero as n → ∞. To
this end, we use the Markov’s inequality as following

P [E ≥ 1] = P







E ≥ 1

2−
√

n − 2−n+
√

n
︸ ︷︷ ︸

t

(2−
√

n − 2−n−√
n)

︸ ︷︷ ︸

µ







(i)

≤ 2−
√

n − 2−n−√
n,

where (i) follows from Markov’s inequality. So for the probability of having wrong answer
we have

lim
n→∞

P [E ≥ 1] −→ 0.

Because the random variable E takes its value from {0, 1, 2, . . .} we conclude that E = 0
with probability approaching 1 as n → ∞.
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Problem 3

P is a given set of participants and A is a collection of subsets of P.

(a) We know that A,B ⊂ P, B /∈ A and A ∪ B ∈ A. Using chain rule we can write

H (XA, S | XB) = H (XA | XB) + H (S | XA,XB)
︸ ︷︷ ︸

0

,

so we have H (XA | XB) = H (XA, S | XB). Again applying the chain rule we obtain

H (XA | XB) = H (XA, S | XB) = H (S | XB)
︸ ︷︷ ︸

H(S)

+H (XA | XB , S) ,

and we are done.

(b) In this part we have B ∈ A. Using the chain rule we can write

H (XA | XB) = H (XA, S | XB) − H (S | XA,XB)

= H (XA | XB , S) + H (S | XB)
︸ ︷︷ ︸

0

−H (S | XA,XB)
︸ ︷︷ ︸

0

.

The last term is zero because we have H (S | XA,XB) ≤ H (S | XB) = 0, since condition-
ing reduces the entropy.

(c) Here we assume that A,B,C ⊂ P where A ∪ C ∈ A, B ∪ C ∈ A, and C /∈ A. Then we
can write

I (XA;XB | XC) =

from (a)
︷ ︸︸ ︷

H



XB | XC
︸︷︷︸

/∈A





︸ ︷︷ ︸

H(S)+H(XB |XC ,S)

−

from (b)
︷ ︸︸ ︷

H



XB | XA,XC
︸ ︷︷ ︸

∈A





︸ ︷︷ ︸

H(XB |XA,XC ,S)

= H (S) + I (XB ;XA | XC , S)
︸ ︷︷ ︸

≥0

,

so we have I (XA;XB | XC) ≥ H (S).

Problem 4

Two random variables X and X ′ are i.i.d. with entropy H (X).

(a) We want to show that P [X = X ′] ≥ 2−H(X). Suppose that X ∼ P (x) and let us write

2−H(X) = 2E[log P (X)]

(i)

≤ E

[

2log P (X)
]

=
∑

x

P (x)2log P (x)

=
∑

x

P (x)2

= P
[
X = X ′],
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where (i) comes from the Jensen’s inequality applying on the function f(y) = 2y. Because
the function f is convex we have Ef (Y ) ≥ f (EY ). So defining a new random variable
Y , log P (X) we have

2E

Y
︷ ︸︸ ︷

log P (X) ≤ E2

Y
︷ ︸︸ ︷

log P (X),

which results in (i).

(b) This part is also very similar to the previous part. Let us write

2−H(P )−D(P ||Q) = 2
P

P (x) log P (x)+
P

P (x) log Q(x)
P (x) = 2

P

P (x) log Q(x)

= 2Ep

Y
︷ ︸︸ ︷

log Q (x) ≤ Ep2
log Q(x) =

∑

P (x) 2log Q(x)

=
∑

P (x) Q (x)

= P
[
X = X ′].

The same method applies for the other one.

Problem 5

(a) Suppose that we have two stochastic processes X1, . . . ,Xn and Y1, . . . , Yn such that Yi =
Φ (Xi) for i = 1, 2, . . . , where Φ(·) is some deterministic function. Then we can write

(Y1, . . . , Yn) = (Φ (X1) , . . . ,Φ (Xn)) = F (X1, . . . ,Xn) ,

or
(Y n

1 ) = F (Xn
1 ) ,

for some deterministic multivariate function F (·). Now using the chain rule we have

H (Xn
1 , Y n

1 ) =







H (Xn
1 ) +

=0
︷ ︸︸ ︷

H (Y n
1 | Xn

1 ),

H (Y n
1 ) +

≥0
︷ ︸︸ ︷

H (Xn
1 | Y n

1 ),

so we can conclude that H (Xn
1 ) ≥ H (Y n

1 ). Then we take the limit as follows

lim
n→∞

1

n
H (Xn

1 ) ≥ lim
n→∞

1

n
H (Y n

1 ) ,

which results in
H (Y) ≤ H (X ) .

(b) Refer to the proof of part (c).

(c) Zi = Ψ (Xi, . . . ,Xi+l) for i = 1, 2, . . . , and i ≤ l ≤ n where l is a fixed number. Then we
can write

(Z1, . . . , Zn−l) = [Ψ (X1, . . . ,X1+l) , . . . ,Ψ (Xn−l, . . . ,Xn)] = F (X1, . . . ,Xn) ,

where F (·) is a deterministic multivariate function. Using the same argument given in
part (a) we have

H
(

Zn−l
1

)

≤ H (Xn
1 ) .
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Multiplying both side by 1/n and taking the limit we obtain

lim
n→∞

n − l

n

1

n − l
H

(

Zn−l
1

)

≤ lim
n→∞

1

n
H (Xn

1 ) ,

or we can write

lim
n→∞

1

n − l
H

(

Zn−l
1

)

≤ lim
n→∞

1

n
H (Xn

1 ) ,

because for fixed values of l we have limn→∞
n−l
n = 1. Then we can conclude that

H (Z) ≤ H (Y) .

(d) We have a second order Markov process over alphabet {0.1} which realized as follows

Xn =







Bernoulli (0.5) if Xn−1 = Xn−2,

Bernoulli (0.9) if Xn−1 6= Xn−2.

Let us define the Markov process Zn = (Xn,Xn+1). Obviously Zn is a first order Markov
process or a Markov chain (it is a process that the current state only depends on the last
state). From the definition of process Zn we can write

H (Z1, . . . , Zn) = H (X1, . . . ,Xn+1) .

Taking the limit we can write

lim
n→∞

1

n
H (Z1, . . . , Zn) = lim

n→∞
n + 1

n

1

n + 1
H (X1, . . . ,Xn+1) ,

so we have
H (Z) = H (X ) .

To find the entropy rate of process Xn we can find the entropy rate of process Zn that is a
first order Markov chain with the states: 00, 01, 10, 11. From the definition of the process
Xn we can derive the transition matrix of the Markov chain Zn which is as follows

00 01 10 11

P =

00
01
10
11







0.5 0.5 0 0
0 0 0.1 0.9

0.1 0.9 0 0
0 0 0.5 0.5







,

which is equivalent to the following transition graph
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To find the entropy rate of the Markov chain Zn firstly we have to find it stationary
distribution µ which is the solution of the following system of equations

µ = µP.

Solving the above system of equations we obtain

00 01 10 11

µ = [0.087 0.4352 0.4352 0.7833] .

Then for the entropy rates we can write

H(X ) = H (Z) = H (Z2 | Z1) =
∑

i∈{00,01,10,11}
µi

∑

j∈{00,01,10,11}
Pij log Pij .
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