Instructions

- You are allowed to use 1 sheet of paper for reference. No mobile phones or calculators are allowed in the exam.

- You can attempt the problems in any order as long as it is clear which problem is being attempted and which solution to the problem you want us to grade.

- If you are stuck in any part of a problem do not dwell on it, try to move on and attempt it later.

- Please solve every problem on separate paper sheets.

- It is your responsibility to number the pages of your solutions and write on the first sheet the total number of pages submitted.

Some Preliminaries

- A sequence of random variables $\{X_n\}$ converges toward X in probability if

$$\lim_{n \to \infty} \Pr[|X_n - X| \geq \varepsilon] = 0,$$

for any $\varepsilon > 0$. For example the Weak Law of Large Numbers implies that if X_1, X_2, \ldots is a sequence of i.i.d. random variables, and $S_n = \frac{1}{n} \sum_{i=1}^{n} X_n$, then

$$\lim_{n \to \infty} \Pr[|S_n - \mathbb{E}[X]| \geq \varepsilon] = 0.$$

In other words, S_n converges to $\mathbb{E}[X]$ in probability.

- The following approximations might be useful.

$$0 \log_2 0 = 0 \quad \log_2 3 = 1.58 \quad \log_2 5 = 2.32 \quad \log_2 6 = 2.58$$

Good Luck!
Problem 1 (12 pts)

Let the three discrete random variables X, Y, Z be related by $Z = X - Y$, where $X, Y \in \{0, \ldots, m - 1\}$.

(a) Compare $H(X|Y)$ and $H(Z)$. \[4pts\]

(b) When is $H(X|Y)$ equal to $H(Z)$? \[2pts\]

(c) Let $U \leftrightarrow V \leftrightarrow (W, T)$ form a Markov chain. Prove that $I(U; W) + I(U; T) \leq I(U; V) + I(W; T)$.

Hint: For example, add $I(U; T|W)$ to both sides of the inequality and simplify using chain rule. Also use data processing inequality on Markov chain $U \leftrightarrow V \leftrightarrow (W, T)$.

Problem 2 (13 pts)

Let X_1, X_2, \cdots be independent identically distributed random variables drawn according to the probability distribution $p(x)$, i.e., $p(x_1, \cdots, x_n) = \prod_{i=1}^{n} p(x_i)$.

(a) What does $[p(x_1, \cdots, x_n)]^{\frac{1}{n}}$ converge in probability to? \[4pts\]

Let $f(x)$ be a function from X to the interval $(0,1)$.

(b) What does $[\prod_{i=1}^{n} f(x_i)]^{\frac{1}{n}}$ converge in probability to? \[3pts\]

(c) How does $\mathbb{E}(\prod_{i=1}^{n} f(x_i))^{\frac{1}{n}}$ compare to $\mathbb{E}f(X_1)$? Next, what implication does this have on the relationship between the result in (b) and $\mathbb{E}f(X_1)$? \[6pts\]

Hint: Use Jensen’s inequality on the function $g(u) = u^{\frac{1}{n}}$, for $u \in (0,1]$. That is, determine whether the function $g(u)$ is convex or concave in the interval $u \in (0,1]$.

Problem 3 (15 pts)

Two fair dice are thrown together. Each dice has an outcome in the set of numbers $\{1, \ldots, 6\}$, and hence there are 36 possible outcomes of the two dice. Each dice is fair, and has a uniform probability of yielding any of the outputs $\{1, \ldots, 6\}$, i.e., each outcome for a single dice occurs with probability $\frac{1}{6}$ and the dice take values independent of one another. Let X denote the sum of the two numbers that show up. A random variable Y which takes its values in $\{A, B, C\}$ can be constructed from X. $A, B,$ and C can be any objects.

(a) Find $H(X|Y)$ if Y is constructed from X as follows: \[6pts\]

<table>
<thead>
<tr>
<th>X</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

This says that $Y = \begin{cases}
A & \text{if } X \in \{2, 12\} \\
B & \text{if } X \in \{3, 11\} \\
C & \text{if } X \in \{4, \cdots, 10\}
\end{cases}$
(b) Construct \(Y \) from \(X \) such that knowing \(Y \) gives the maximum information about \(X \), i.e., construct \(Y \) such that \(I(X;Y) = H(X) - H(X|Y) \) is maximized, note that this also means \(H(X|Y) \) is minimized.

(c) Suppose now that the dice are faulty and only \(\{1,1\} \) or \(\{2,6\} \) can occur. That is, out of the 36 outcomes of the dice, only the two possibilities \(\{1,1\} \) or \(\{2,6\} \) can occur. Now, repeat (b) so that \(Y \) gives the maximum information about \(X \), i.e., \(I(X;Y) \) is maximized.

Problem 4 (20 pts)

A loaded dice with outcome \(X \) in the set of numbers \(\{1, \ldots, 6\} \) has a non-uniform probability, \(p_1 = \frac{1}{12}, p_2 = \frac{1}{9}, p_3 = \frac{1}{18}, p_4 = \frac{1}{6}, p_5 = \frac{1}{12}, p_6 = \frac{1}{2} \) where \(p_i = \Pr\{X = i\} \).

(a) Find the entropy \(H(X) \) in bits. \[6pts\]

(b) You are allowed to ask yes-no (binary) questions of the form “Is \(X \) contained in the set \(S \)?” What is the sequence of questions to ask to guess \(X \) with the minimum number of questions on average?

The same dice is tossed until the first 6 occurs. Let \(Y \) denote the number of tosses required. For example if the outcome of the tossing is 2, 6, then \(Y = 2 \); or if the outcome of the tossing is 1, 4, 2, 4, 6, then \(Y = 5 \).

(c) Find \(\Pr\{Y = k\} \). \[2pts\]

(d) Find the entropy \(H(Y) \) in bits. \[3pts\]

(e) You are again allowed to ask yes-no (binary) questions of the form “Is \(Y \) contained in the set \(S \)?” What is the sequence of questions to ask to guess \(Y \) with the minimum number of questions on average?

(f) Compare \(H(Y) \) to the expected number of questions you need to ask in part (e) to determine \(Y \).

Hint: The following expressions might be useful:

\[
\sum_{k=0}^{\infty} r^k = \frac{1}{1 - r} \quad \sum_{k=0}^{\infty} kr^k = \frac{r}{(1 - r)^2}.
\]

Problem 5 (20pts)

A source produces a sequence of bits through a finite state machine (FSM) as follows: The source has two states \(S_1 \) and \(S_2 \) as described in Fig 1, where the machine is in state \(A_i \) at time \(i \). The machine starts from state \(A_1 = S_1 \), at time \(i = 1 \). At each state, the source flips a fair coin \(\Pr(H) = \frac{1}{2} = \Pr(T) \) and decides what to output and whether to change its state or not. The FSM determining the output as well as the state-transition is depicted in Figure 1. So at the end, after \(n \) coin tosses, a sequence \(X_1, \ldots, X_{2n} \) of 0’s and 1’s is produced that satisfies certain constraints.

(a) Compute \(\Pr(x_{2i}, x_{2i-1}\mid x_{2i-2}, \ldots, x_1) \) for \(i \geq 2 \). \[6pts\]

(b) Model the stochastic process \(X_1, \ldots, X_{2n} \) with a Markov process. \[5pts\]
Figure 1: The finite state machine of the source explained in problem 5. Note that the labels (for example, $H/01$) on the arrows show the outcome of the coin toss and the corresponding output of the FSM. For example, if current state $A_i = S_1$, and the coin toss yields H, then the FSM outputs $X_{2i-1} = 0, X_{2i} = 1$ and makes a state transition to S_2, i.e., $A_{i+1} = S_2$.

(c) Relate entropy rate of the source to entropy rate of the Markov process you suggest in part (b).

(d) Calculate entropy rate of the source.