Information Theory and Coding EPFL Winter Semester 2009/2010
Prof. Suhas Diggavi Handout # 16, Tuesday, 10 November 2009

Homework Set #5
Due 17 November 2009, 6 pm, in INR036

Problem 1 (THERE ARE ALMOST NO PERFECT CODES)

Let C be a linear binary perfect code consisting of binary sequences of length N. Assume that
for the rate of code C we have Re > 0 where Re £ IO%KJ\'

In this problem we would like to show that useful perfect codes do not exist (here, “useful”
means having large block-length N, and rate close neither to 0 nor 1).

Let o € (1/3,1/2) be a parameter. In this problem we will show that there is no large
perfect code that is a/N-error-correcting.

Remember that a code is perfect alN -error-correcting code if the set of aN-spheres centered
on the codewords of the code fill the Hamming space without overlapping.

Let us suppose that such a code has been found.

(a) Knowing that the code is aN-error-correcting code, what can we say about its minimum
distance?

(b) Let us focus just on three codewords of this code. (Remember that the code has rate
Re > 0, so it should have 2VF¢ codewords which is a large number if N grows.) Without
loss of generality, we choose one of the codewords to be the all-zero codeword and define
the other two to have overlaps with it as shown in the following

co = 000000 0000000000000 000000 0000
cp = 111111 1111111111111 000000 0000
co = 000000 1111111111111 111111 0000
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where u + v+ w+x = 1.

Use the distance property of code C to show that it cannot even have three codewords ¢y,
c1, and ¢ (let alone 2VF¢ codewords).

Problem 2 (Reep-Soromon CoDES)

(a) Show that if H is the parity check matrix of a code of length n, then the code has minimum
distance at least d if every d — 1 columns of H are linearly independent.

(b) Consider a linear code defined over a finite field F with the parity check matrix
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Figure 1: Problem 3

where k <n < |F| and «; € F such that o; # o if @ # j. A matrix with this form called
a Vandermonde matriz. 1t can be shown that the parity check matrix of a Reed-Solomon
code is in fact a Vandermonde matrix.

Show that every n — k columns of H are linearly independent.
Hint: For a square n x n Vandermonde matrix
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we have

det(V) = [] (a5 — ).

1<i<j<n

(¢) From part (b) and the Singelton bound conclude that the Reed-Solomon codes are maxi-
mum distance seperable codes.

Problem 3

We have a source that produces a sequence of bits with the following two properties:
e A “1” is always followed by a “07,
e No more than three “0”s come in a row.

Assume that this source can be modeled by a first order Markov chain as shown in Fig 1

(a) Choose p,q, and r such that the entropy rate of this Markov process is maximized.

(b) Construct a 2-state FSM that receives the source outputs as its input and maximally
compresses it.

(c) Is this finite state machine uniquely decodable?

(d) Is this finite state machine information lossless?



Problem 4 (LempPEL-Z1v ALGORITHM 1S ASYMPTOTICALLY OPTIMAL)

Consider a first order Markov process X, X1, - - - with the stationary distribution [pg, p1,-- - , Pm],
where p; denotes the stationary distribution of being in state ¢ € {0,--- ,m}. Assume that the
Markov process is in state 0. We define Ty as the number of steps it takes for the process to
return to state 0 again.

(a) Calculate ETj for a 2-state Markov process in terms of py and py.

(b) Define s; as the expected number of visits to state ¢ before returning from 0 to state 0.
ie.,
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where the index 0 of Eg shows the fact that we are considering the chain from the time it
has left state 0. Show that s
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and conclude that py = BT
(¢) Take the Markov process Xy, X1, -- and form the following extended Markov process
from it: Xg‘*l, X7, X;H, -+-. How many steps does it take on average for this extended
process to return for the first time to the state 00--- 0 (after it left it).

In the LZ77 algorithm with infinite-length sliding window, in order to encode the block zgz1 - - - 1,
one finds and communicates the last time the n symbols have been seen. Call it R, (zox1 - - - Tp_1).

If we denote the length of description of R, (XoX; -+ X,,—1) by [(XoX1 -+ X,—1), it can easily

be shown that

1
lim —El(XoX1 -, Xp_1) = H(X)
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and this is the basic idea of the proof of optimality of LZ77 algorithm. Refer to Homework 5 of
last year’s homeworks for details of proof.



