3 Continuous-time stochastic processes

Definition 3.1. A continuous-time stochastic process is a collection of random variables (X, t € R.)
defined on a common probability space (2, F,P). Alternatively, a stochastic process may be seen as a

random function
X - 2 — {f:RL—R}
N w = {t— X (w)}

Remark. In order to describe a continuous-time stochastic process, one generally needs a LARGE
probability space !

Question. For a single random variable X, the knowledge of its cdf P(X < z), Vo € R characterizes
entirely the random variable. In the case of a stochastic process (Xy, t € R;), what is needed in order
to characterize the process entirely?

First answer. Specify P(X; < z), V¢ € Ry, Vo € R ? This is insufficient. Here is why: assume we only
know that X; ~ N (0,¢), Vt € Ry. Let us then define

- XY = VY, where Y ~ N(0,1).
- Xf@ = standard Brownian motion (defined below).

It turns out that these two processes satisfy both Xt(l) ~ N(0,t) and Xt(2) ~ N(0,t), Vt € Ry, even
though they have little to do with each other!

Second answer. Specify P(X,;, < x1,X;, < z3), Vi1, to € Ry, 1, 2o € R? This is better, but still
insufficient! (Actually, it is sufficient for Gaussian processes: see below).

nt" answer. Specify P(X;, < zi,...,X;, < x,), Vt1,...,t, € Ry and n > 1! This is the correct
answer. Specifying all these joint distributions is cumbersome in general, but we will focus our attention
on specific classes of processes for which a simpler description is possible.

Processes with independent and stationary increments

Definition 3.2. The random variables X; — X, for ¢t > s > 0, are called the increments of the process
X = (X, t €Ry).

Definition 3.3. A process X = (X, t € R} ) is said to have independent and stationary increments if
- X - X, L FX¥ =0(X,,0<r<s),Vt>s >0 (independence).

- Xy — Xy~ Xy—s — Xo, Vt > s > 0 (stationarity).

(Remember that X ~ Y means “X has the same distribution as Y”).

For such process, it is sufficient to specify the distribution of Xy and X; — Xy, V¢ € R4, in order to

fully characterize the process. So in some sense in this case, the first answer above is valid. But having
independent and stationary increments is a strong requirement for a continuous-time process.

Processes with continuous trajectories

Definition 3.4. A process X = (X;, t € Ry) is said to have continuous trajectories if

P({w € Q : the function ¢ — X;(w) is continuous }) = 1.

We now have all the concepts in our hands in order to define the standard Brownian motion, which
exhibits many interesting properties and plays a central role in the theory of stochastic calculus.
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3.1 Standard Brownian motion

Definition 3.5. (first version) A standard Brownian motion is a continuous-time stochastic process
B = (B¢, t € Ry) such that

- By =0 as.

- B has independent and stationary increments.

- B, ~N(0,t), Vt e Ry.

- B has continuous trajectories.

Basic properties. - E(B;) =0, E(B?) =t, Vt € Ry.
- Bt 7Bs NBt_S 7Bo = Bt—s NN(O,t*S), SO E(Bt 735) :O7 ]E((Bt 7Bs)2) :t787 Vi 2 S 2 0.
- By the law of large numbers, lim;_, % =0 a.s.

- Moreover, % ~ N(0,1), Vt > 0, so the central limit theorem applies trivially here: % 4z~ N(0,1),

—00
1.e.

. B Tl 2
— < = I _
thjgoIP(\/{ _m) /oo o exp(—y“/2)dy, VzeR.

Remarks. - These properties are reminiscent from those of the random walk.

- The existence of a process B that satisfies all the above properties is ensured by a deep and important
theorem of Kolmogorov, but we shall not state it explicitly here.

Construction from the random walk.

- Let (S, n € N) be the simple symmetric random walk (i.e Sp = 0, S,, = .o+ &, with & 1id.,

&+
P(¢& =1) =P(& = —1) = 3). Remember that by the central limit theorem, S\/—’L 4z~ N(0,1).

n pn—oco

- Let now
Y, =S+ (t=1t]) {1, t €Ry, e, ift=n+e,e€0,1], thenV; =S, +e&q1.

This process is known as the broken line process.
Remark. Y is not a process with independent increments, nor is it a standard Brownian motion!

- Let us define B,§"> = %, t € R : this amounts to looking at the process Y from far away, rescaling the

x-axis by a factor n, while rescaling the y-axis by a factor y/n. Assume now for simplicity that nt € N.

Then
n Snt Snt d . (n)
B = 2nt _ \J Pnt t7 ~ 1) ie. PB™ < P(B; < ).
= e TV g we VIZ N O e BB S0) o BB <)
as By ~ N(0,t).

- Similarly, one can show that

(n) Tm) — P(By, <xi1,...,B;

t >
m n—00

< Im)?

m —

P(BM™ < a1,...,B
Vi1, ..., tm € Ry, x1,..., 2 € R and m > 1. This shows that the sequence of processes B™ converges
in distribution to the process B.

Remark. From this, we deduce that even though the limiting process B has continuous trajectories,

these are nowhere differentiable. Indeed, the slope of B,@ is +y/n, so the “slope” of B; is +00. The
derivative of B, is formally called the white noise process (although this process does not exist!).
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3.2 Mean and covariance

Let X = (X, t € Ry) be a square integrable (i.e. E(X?) < oo, Vt € Ry ) continuous-time process.

Definition 3.6. - The mean of the process X is the function m : Ry — R given by m(t) = E(X}),
teR,.

- The covariance of the process X is the function K : Ry x Ry — R given by K(t,s) = Cov(X¢, Xy),
t, S € R+
Properties. - K is symmetric, i.e. K(t,s) = K(s,t).
- K is positive semi-definite, i.e.
n

Z cici K(ti,t;) >0, Ye,...,cp €R, ty,...t, € Ry and n>1.

ij=1
The proof of this follows the same lines as the proof for the covariance of a random vector.

In general, the mean m and the covariance K alone do not fully characterize a process X (as it is the
case for random variables and random vectors). The only exception is given in the following paragraph.

3.3 Gaussian processes

Definition 3.7. A Gaussian process is a process (X, t € Ry ) such that ¢1 Xy, +...4+¢, Xy, is a Gaussian

random variable Veq,...cp, € R, t1,...,1, € Ry and n > 1.
In other words, the process X is a Gaussian process if and only if each sample (X3, ..., Xy, ) is a Gaussian
vector.

Theorem 3.8. (Kolmogorov) Given m : Ry — R and K : Ry x Ry — R symmetric and positive
semi-definite, there exists a Gaussian process X with mean m and covariance K. In addition, m and K
characterize entirely the process X.

Proposition 3.9. (second possible definition of the standard Brownian motion)
The standard Brownian motion B = (B, t € R,) is a Gaussian process with continuous trajectories,
with mean m(t) = 0 and covariance K (t,s) =t A s (= min(t, s)).

Proof. (that the first definition implies the second)
- One should first check that ¢1 By, +. . .+c¢, By, is a Gaussian random variable Vei, ..., ¢, € R, tq,...,t, €
R4 and n > 1. Let us simply check that B; + By is Gaussian V¢ > s > 0:

B+ Bs = By — Bs + 2B is Gaussian,
as By — B and 2B, are independent and Gaussian. The proof in the general case follows the same idea.
-m(t) =E(B;) =0.
-Lett>s>0:

K(t,s) = E(BB,)=E((B; - B, + B,)B,) = E((B; — B,)B,) + E(B?)
= E(B: - Bs)E(Bs) + E(B%) = 0+ E(B?) = s = min(t, s).
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3.4 Markov processes

Definition 3.10. A (continuous-time) Markov process with respect to a filtration (F, ¢t € Ry) is a
process (X, t € R;) such that

P(X, € B|F,) =P(X, € B|X,) Vt>s>0,VYB € BR).

Equivalently,
E(g(Xe) | Fs) = E(g(Xe) | X5) Vt>s2>0

and g : R — R Borel-measurable and bounded.

Proposition 3.11. The standard Brownian motion is a Markov process with respect to its natural
filtration FZ = o(B,, 0 < r < s).

Proof. - E(g(B;)| FB) = E(g(B; — Bs + Bs) | Fs) = ¥(Bs), where ¢(y) = E(g(B; — Bs +y)) (this follows
from the fact that By — By 1L F, and that By is Fs-measurable).
- Similarly, E(g(By) | Bs) = E(g9(B; — Bs + Bs) | Bs) = ¢(Bs) given above. O

Remark. More generally, any process with independent increments (but not necessarily stationary) is a
Markov process with respect to its natural filtration.

3.5 Martingales

Let (2, F,P) be a probability space.

Definitions 3.12. - A (continuous-time) filtration is a collection (F3, t € R,) of sub-o-fields of F such
that Fy C Fy, VEt > s > 0.

- A process (X, t € Ry) is said to be adapted to the filtration (F;,t € Ry) if X; is Fi-measurable
vVt e Ry.

- The natural filtration of a process (X;, t € R, ) is defined as FX = 0(X,, 0< s <1), t € R,.

Remark. Every process is adapted to its natural filtration.

Definition 3.13. A process (M, t € Ry) is said to be a (continuous-time) martingale with respect to a
filtration (Fy,t € Ry) if

(ii) M, is Fi-measurable, Vi € R,..

(ifl) E(M, | Fy) = M,, ¥t > s > 0.

Generalization. The process M is said to be a submartingale (respectively a supermartingale) if condi-
tion (iii) is replaced by E(M, | F,) > M, (respectively E(M, | Fy) < My), ¥Vt > s > 0.

Proposition 3.14. If (M;, t € R, ) is a martingale and ¢ : R — R is convex and such that E(|o(My)]) <
oo for all ¢ € Ry, then the process (p(M), t € R.) is a submartingale.

Proposition 3.15. The standard Brownian motion (B, ¢ € R,) is a martingale with respect to its
natural filtration (2, t € R;).

Proof. (i) E(|B,]) < /E(B?) = i < 0o, Vit € R;.
(ii) B, is FCP-measurable, by definition, V¢ € R .
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(iil) Let t > s > 0:

E(B:|F]) =E(B, — By + B | F}) = E(By — By | F7) + E(B, | 7)) = E(B; — B,) + B, =0+ B, = B,.
O

Proposition 3.16. The following processes are also martingales with respect to (ftB, teRy):

-(My=B?—t, tcR,).

- (N = exp(By — %), teRy).

Theorem 3.17. (Lévy) (third possible definition of the standard Brownian motion)

Let (X, t € Ry) be a process with continuous trajectories, adapted to a filtration (F;, ¢t € R4 ) and such
that Xg =0 a.s. and

(i) (X, t € Ry) is a martingale with respect to (F, t € Ry).
(i) (X? —t, t € Ry) is also a martingale with respect to (F;, t € Ry).
Then (X, t € R, ) is a standard Brownian motion.

Definitions 3.18. - A stopping time with respect to a filtration (F, ¢t € Ry) is a random time 7" with
values in Ry U {+oo} such that {T" <t} € F;, Vt € R,.

- If X is a process, then Xr(w) = Xp)(w), w € Q (process evaluated at time T').

-Fr={AeF : An{T <t} € F, Vt € Ry} (information one possesses at time 7).

Doob’s optional sampling theorem.

Let (Mg, t € R4) be a martingale with respect to a filtration (F, ¢ € Ry), with continuous trajectories
(from now on, we will also say equivalently: a continuous martingale). Let T3, T5 be two stopping times

such that 0 < Th(w) < Th(w) < K < o0, Yw € Q. Then E(Mr, | Fr,) = Mp, as. In particular,
E(Mry,) = E(M7,) (optional stopping).

Remarks. - The proof of the theorem is much more involved than in the discrete-time setting.

- The theorem remains valid for sub- and supermartingales (with corresponding inequalities).

Doob’s inequalities.
Let (My, t € R4) be continuous square-integrable martingale with respect to (F;, ¢ € R4) such that
My =0 a.s. Then

a) P(supges<, [Ms| > ) < w, vt >0, A > 0.
b) E(supg< <, | M,|?) < 4E(|M¢|?), ¥t > 0.

Doob’s decomposition theorem.

Let (X, t € R}) be a continuous submartingale with respect to a filtration (F, ¢ € Ry). Then there
exists a unique process (A, t € Ry ) which is increasing (i.e. As < A, if s <), continuous and adapted
to (Fi, t € Ry) such that Ag = 0 and (X; — A4¢, t € Ry) is a martingale with respect to (F, t € Ry).

Application. Let (M, t € R;) be a continuous square-integrable martingale with respect to (F, t €
Ry). Then there exists a unique process (A4, t € Ry ) which is increasing, continuous and adapted to
(Fi, t € Ry) such that Ag = 0 and (M2 — A, t € R,) is a martingale with respect to (F;, t € Ry).

This process will play a particular role in the following.
Examples. - If M; = By, then A; =t (indeed, B? — t =martingale)
- If M has independent increments, then A; = E(M?) — E(M3).
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4 Stochastic integral

4.1 Functions with bounded variation

Definition 4.1. A function g : Ry — R is said to have bounded variation if ¥Vt > 0,

5up2|g ti—1)| < o0,

where the supremum is taken over all partitions 0 = ¢y < t; < ... <, =t of [0,¢] (and n is arbitrary).

Examples. - If g is increasing (or decreasing), then g has bounded variation. Indeed, in this case:
> lg(t) = gltia)| = Z 9(ti) — gti-1) = g(tn) — g(to) = g(t) — 9(0)
i i=1
for all partitions of [0,¢], so
supZ\g —g(ti1)| = g(t) — 9(0) < 0.

- If g = g1 — g2, where g; and g are both increasing, then g also has bounded variation.

- If g is continuously differentiable, then g has bounded variation. Indeed,

t;
/ s)ds
ti—1

Again, this expression does not depend on the chosen partition, so

n t
sup > [g(ti) — g(ti1)] < / 10/(5)]ds < oo,
=1 0

n n

> lgt) —gtic) =

i=1 i=1

L

<Z |d9—/\g )| ds < oco.

t71

Generalization to processes.

Definition 4.2. A continuous-time stochastic process (X, ¢t € R, ) is said to have bounded variation if
its trajectories have bounded variation a.s.

We will see that the trajectories of the standard Brownian motion have unbounded variation, a.s.

4.2 Quadratic variation

Quadratic variation of the standard Brownian motion.

Let (By, t € Ry) be a standard Brownian motion. For ¢t > 0 and n > 1 fixed, let

o -E () ()

Notation. We use indifferently the notation B; = B(t).

Definition 4.3. The (almost sure) limit (B); = lim, <B>§”) is called the quadratic variation of the
Brownian motion. We show below that it exists and is equal to .
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Proposition 4.4. For every fixed t > 0, (B); = t, a.s.

Proof. Recall that in order to show that Z,, — Z a.s., it is sufficient to check that

> P{|Zx - Z| > €}) <0, Ve>0.

n>1

Here, Z,, = (B)!™ and Z = ¢, which is fixed. Let us first compute E((B){™) and Var((B)\™):

n

= Lel(a s ()=

V) = S var((8 () - 8 (42)))

by independence of the increments of B. Moreover, if X ~ N(0,02), then

and

2" 2
Var(X?) = E(X*) - E(X?)? = 30" —¢* = 20%, so Var({ (n) Z 2 ( !

Therefore, by Chebychev’s inequality,

BB —1]> e} < SE(B %) = S Var(B)) = o

and

t2 1
E () _y <
n>1P({\<B)t | >e}) = n2>1 g T <00, Ve>0,

a —_——
=1

so the proposition is proved.

Corollary 4.5. For all ¢t > 0, we have

b (£)-o(5)| - o

Consequently, the process (By, t € Ry) has unbounded variation, a.s.

n—oo 4
=1

Proof. Let us first check that if g : R — R is a continuous function such that

o(2) o (E52)] < o <g>t—,3ggojznl(g<;i)_g(<z‘2n1>t>>2_o.

i3 (0(3) -0 (7))
() o (U57)] -

on

lim E
n—oo

i=1

Indeed,

< lim max
n—oo 1<;<2m

ORI

<oo
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So, as we know that the Brownian motion B has continuous trajectories, if it was the case that

2m . .
P (rlim S iB (2%) B <(2 ;nl)t>‘ < oo) >0,
L — 00 2:1

then this would imply that P((B); = 0) > 0, which is in contradiction with the previous result ((B); =t

a.s.). In conclusion,
2" . )
. it (i—1)t
P(nlggo;13<2n)_B< on )‘—oo)—l.

Final remark. Notice that B? — (B); = B2 — t is a martingale. This is not a coincidence.

Quadratic variation of a martingale.

Reminder(from Doob’s decomposition theorem). If (M, t € Ry) is a continuous square-integrable
martingale, then there exists a unique process (A4;, ¢ € R4) which is increasing, continuous and adapted
to the same filtration as (M;, t € Ry), such that Ag =0 and (M? — A;, t € Ry) is a martingale.

Definition 4.6. The process A is called the quadratic variation of the martingale M and is denoted as
At = <M>t7 te R+.

Proposition 4.7. If (M, t € R.) is a continuous square-integrable martingale, then

(M) = 22 (M (2%) - M ((i ;nl)t>)2 S (M), V>0,

i=1

where ((M), t € R) is the process defined above.

Remarks. - By the above definition, E((M);) = E(M?) — E(M3).
- The process (M) is increasing : it therefore has bounded variation itself.

- The only martingales with quadratic variation equal to zero are constant processes! So all non-constant
martingales have unbounded variation!

Quadratic covariation.
Let M, N be two continuous square-integrable martingales (adapted to the same filtration (3, t € Ry)).

Definition 4.8. The quadratic covariation of M and N is the unique process (M, N) which is continuous,
adapted, has bounded variation and is such that (M,N)y = 0 and (M;N; — (M,N);,t € Ry) is a
martingale.

Remark. <A{, M>t = <M>t
Proposition 4.9.

(M, N)™ = ZZ (M (%) -M (“ ;nl)t» (N <2Li) -N (“ ;nl)t>> %@o (M,N);, Vt>0.

=1

Proposition 4.10. If c € R and M, N are independent, then for all t € R,
(M,N); =0 and {(cM + N); = c*(M); + (N),.

Remark. From the above two propositions, we see that the quadratic variation of a martingale plays the
same role as the variance of a random variable. Likewise, the quadratic covariation of two martingales
plays the same role as the covariance of two random variables.
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