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1 Probability “review”

1.1 σ-fields

In probability, the fundamental set Ω describes the set of all possible outcomes (or realizations) of a given
experiment. It might be any set, without any particular structure, such as for example Ω = {1, . . . , 6}
representing the outcomes of a die roll, or Ω = [0, 1] representing e.g. the outcomes of a concentration
measurement of some chemical product. Notice moreover that the set Ω need not be composed of numbers
exclusively. It is e.g. perfectly valid to consider the set Ω = {banana, apple, orange}.
Given a fundamental set Ω, it is important to describe what information does one have on the system,
namely on the outcomes of the experiment. This notion of information is well captured by the math-
ematical notion of σ-field, which is defined below. Notice that in elementary probability courses, it is
generally assumed that the information one has about a system is complete, so that it becomes useless
to introduce the concept below.

Definition 1.1. Let Ω be a set. A σ-field (or σ-algebra) on Ω is a collection F of subsets of Ω (or events)
satisfying the following three properties or axioms:

(i) ∅ ∈ F .

(ii) If A ∈ F , then Ac ∈ F .

(iii) If (An)∞n=1 ⊂ F , then
⋃∞

n=1An ∈ F . In particular, if A,B ∈ F , then A ∪B ∈ F .

The following properties can be further deduced from the above axioms (this is left as an exercise):

(iv) Ω ∈ F .

(v) If (An)∞n=1 ⊂ F , then
⋂∞

n=1An ∈ F . In particular, if A,B ∈ F , then A ∩B ∈ F .

(vi) If A,B ∈ F and A ⊂ B, then B\A ∈ F .

Terminology. The pair (Ω,F) is called a measurable space and the events belonging to F are said to be
F-measurable, that is, they are the events that one can decide on whether they happened or not, given
the information F . In other words, if one knows the information F , then one is able to tell to which
events of F (= subsets of Ω) does the realization of the experiment ω belong.

Example. For a generic set Ω, the following are always σ-fields:

F0 = {∅,Ω} (= trivial σ-field).
P(Ω) = {all subsets of Ω} (= complete σ-field).

Example 1.2. Let Ω = {1, . . . , 6}. The following are σ-fields on Ω:

F1 = {∅, {1}, {2, . . . , 6},Ω}.
F2 = {∅, {1, 3, 5}, {2, 4, 6},Ω}.

Example 1.3. Let Ω = [0, 1] and I1, . . . , In be a family of disjoint intervals in Ω such that I1∪. . .∪In = Ω
({I1, . . . , In} is also called a partition of Ω). The following is a σ-field on Ω:

F3 = {∅, I1, . . . , In, I1 ∪ I2, . . . , I1 ∪ I2 ∪ I3, . . . ,Ω} (NB: there are 2n events in total in F3).

σ-field generated by a collection of events.

An event carries in general more information than itself. As an example, if one knows whether the result
of a die roll is odd (corresponding to the event {1, 3, 5}), then one also knows of course whether the
result is even (corresponding to the event {2, 4, 6}). It is therefore convenient to have a mathematical
description of the information generated by a single event, or more generally by a family of events.
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Definition 1.4. Let A = {Ai, i ∈ I} be a collection of events, where I need not be a countable set. The
σ-field generated by A is the smallest σ-field on Ω containing all the events Ai. It is denoted as σ(A).

Example. Let Ω = {1, . . . , 6} (cf. Example 1.2).

Let A1 = {{1}}. Then σ(A1) = F1.
Let A2 = {{1, 3, 5}}. Then σ(A2) = F2.
Let A = {{1}, . . . , {6}}. Then σ(A) = P(Ω).

Exercise. Let A = {{1, 2, 3}, {1, 3, 5}}. Compute σ(A).

Example. Let Ω = [0, 1] and let A3 = {I1, . . . , In} (cf. Example 1.3). Then σ(A3) = F3.

Borel σ-field. Another important example of generated σ-field on Ω = [0, 1] is the following:

B([0, 1]) = σ({ ]a, b[ : a, b ∈ [0, 1], a < b}),
is the Borel σ-field on [0, 1] and elements of B([0, 1]) are called the Borel subsets of [0, 1]. As surprising
as it may be, B([0, 1]) 6= P([0, 1]), which generates some difficulties from the theoretical point of view.
Nevertheless, it is quite difficult to construct explicit examples of subsets of [0, 1] which are not in B([0, 1]).

Sub-σ-field.

One may have more or less information about a system. In mathematical terms, this translates into the
fact that a σ-field has more or less elements. It is therefore convenient to introduce a (partial) ordering on
the ensemble of existing σ-fields, in order to establish a hierarchy of information. This notion of hierarchy
is important and will come back when we will be studying stochastic processes that evolve in time.

Definition 1.5. Let Ω be a set and F be a σ-field on Ω. A sub-σ-field of F is a collection G of events
such that:

(i) If A ∈ G, then A ∈ F .

(ii) G is itself a σ-field.

Notation. G ⊂ F .

Remark. Let Ω be a generic set. The trivial σ-field F0 = {∅,Ω} is a sub-σ-field of any other σ-field on
Ω. Likewise, any σ-field on Ω is a sub-σ-field of the complete σ-field P(Ω).

Example. Let Ω = {1, . . . , 6} (cf. Example 1.2). Notice that F1 is not a sub-σ-field of F2 (even though
{1} ⊂ {1, 3, 5}), nor is F2 a sub-σ-field of F1. In general, notice that

1) If A ∈ G and G ⊂ F , then it is true that A ∈ F .

but

2) A ⊂ B and B ∈ G together do not imply that A ∈ G.

Example. Let Ω = [0, 1] (cf. Example 1.3). Then F3 is a sub-σ-field of B([0, 1]).

1.2 Random variables

The notion of random variable is usually introduced in elementary probability courses as a vague concept,
essentially characterized by its distribution. In mathematical terms however, random variables do exist
prior to their distribution: they are functions from the fundamental set Ω to R. Here is a preliminary
definition.

Definition 1.6. On the set R, one defines the Borel σ-field as

B(R) = σ({ ]a, b[ : a, b ∈ R, a < b}).
The elements of B(R) are called Borel sets. Again, notice that B(R) is strictly included in P(R).
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Definition 1.7. Let (Ω,F) be a measurable space. A random variable on (Ω,F) is a map X : Ω → R

satisfying
{ω ∈ Ω : X(ω) ∈ B} ∈ F , ∀B ∈ B(R). (1)

Notation. One often simply denotes the set {ω ∈ Ω : X(ω) ∈ B} = {X ∈ B} = X−1(B): it is called
the inverse image of the set B through the map X (watch out that X need not be a bijective function in
order for this set to be well defined).

Terminology. The above random variable X is sometimes called F-measurable, in order to emphasize
that if one knows the information F , then one knows the value of X.

Example. If F = P(Ω), then condition (1) is always satisfied, so every map X : Ω → R is an F-
measurable random variable. On the contrary, if F = {∅,Ω}, then the only random variables which are
F-measurable are the maps X : Ω → R which are constant.

Remark. Condition (1) can be shown to be equivalent to the following condition:

{ω ∈ Ω : X(ω) ≤ t} ∈ F , ∀t ∈ R,

which is significantly easier to check.

Definition 1.8. Let (Ω,F) be a measurable space and A ∈ F be an event. Then the map Ω → R defined
as

ω 7→ 1A(ω) =

{

1 if ω ∈ A,
0 otherwise,

is a random variable on (Ω,F). It is called the indicator function of the event A.

Example. Let Ω = {1, . . . , 6} and F = P(Ω) (cf. Example 1.2). Then X1(ω) = ω and X2(ω) =
1{1,3,5}(ω) are both random variables on (Ω,F). Moreover, X2 is F2-measurable, but notice that X1 is
neither F1- nor F2-measurable.

Example. Let Ω = [0, 1] and F = B([0, 1]) (cf. Example 1.3). Then X3(ω) =
∑n

j=1 xj1Ij
(ω) and

X4(ω) = ω are both random variables on (Ω,F). Notice however that only X3 is F3-measurable.

We will need to consider not only random variables, but also functions of random variables. This is why
we introduce the following definition.

Definition 1.9. A map g : R → R such that

{x ∈ R : g(x) ∈ B} ∈ B(R), ∀B ∈ B(R),

is called a Borel-measurable function on R.

Remark. A Borel-measurable function on R is therefore nothing but a random variable on the measurable
space (R,B(R)).

As it is difficult to construct explicitly sets which are not Borel sets, it is equally difficult to construct
functions which are not Borel-measurable. Nevertheless, one often needs to check that a given function
is Borel-measurable. A useful criterion for this is the following (given here without proof).

Proposition 1.10. If g : R → R is continuous, then it is Borel-measurable.

Finally, let us mention this useful property of functions of random variables.

Proposition 1.11. If X is an F-measurable random variable and g : R → R is Borel-measurable, then
Y = g(X) is also an F-measurable random variable.

Proof. Let B ∈ B(R). Then

{Y ∈ B} = {g(X) ∈ B} = {X ∈ g−1(B)} ∈ F ,
since X is an F-measurable random variable and g−1(B) ∈ B(R) by assumption.
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σ-field generated by a collection of random variables.

The amount of information contained in a random variable, or more generally in a collection of random
variables, is given by the definition below.

Definition 1.12. Let (Ω,F) be a measurable space and {Xi, i ∈ I} be a collection of random variables
on (Ω,F). The σ-field generated by Xi, i ∈ I, denoted as σ(Xi, i ∈ I), is the smallest σ-field G on Ω such
that all the random variables Xi are G-measurable.

Remark. Notice that
σ(Xi, i ∈ I) = σ({{Xi ∈ B}, i ∈ I, B ∈ B(R)}),

where the right-hand side expression refers to Definition 1.4. It turns out that one also has

σ(Xi, i ∈ I) = σ({{Xi ≤ t}, i ∈ I, t ∈ R}).

Example. Let (Ω,F) be a measurable space. If X0 is a constant random variable (i.e. X0(ω) = c ∈
R, ∀ω ∈ Ω), then σ(X0) = {∅,Ω}.
Example. Let Ω = {1, . . . , 6} and F = P(Ω) (cf. Example 1.2). Then σ(X1) = P(Ω) and σ(X2) = F2.

Example. Let Ω = [0, 1] and F = B([0, 1]) (cf. Example 1.3). Then σ(X3) = F3 and σ(X4) = B([0, 1]).

Following the proof of Proposition 1.11, the proposition below can be easily shown.

Proposition 1.13. If X is a random variable on a measurable space (Ω,F) and g : R → R is Borel-
measurable, then Y = g(X) is a σ(X)-measurable random variable (this applies in particular to Y = X).

As a matter of fact, it turns out that the reciprocal statement is also true: if Y is a σ(X)-measurable
random variable, then there exists a Borel-measurable function g : R → R such that Y = g(X).

1.3 Probability measures

Definition 1.14. Let (Ω,F) be a measurable space. A probability measure on (Ω,F) is a map P : F →
[0, 1] satisfying the following two axioms:

(i) P(∅) = 0 and P(Ω) = 1.

(ii) If (An)∞n=1 ⊂ F is such that An ∩Am = ∅, ∀n 6= m, then P(∪∞
n=1An) =

∑∞
n=1 P(An).

In particular, if A,B ∈ F are such that A ∩B = ∅, then P(A ∪B) = P(A) + P(B).

The following properties can be further deduced from the above axioms:

(iii) If (An)∞n=1 ⊂ F , then P(∪∞
n=1An) ≤∑∞

n=1 P(An).
In particular, if A,B ∈ F , then P(A ∪B) ≤ P(A) + P(B).

(iv) If A,B ∈ F and A ⊂ B, then P(A) ≤ P(B) and P(B\A) = P(B) − P(A).
In particular, P(Ac) = 1 − P(A).

(v) If A,B ∈ F , then P(A ∪B) = P(A) + P(B) − P(A ∩B).

(vi) If (An)∞n=1 ⊂ F is such that An ⊂ An+1, ∀n, then P(∪∞
n=1An) = limn→∞ P(An).

(vii) If (An)∞n=1 ⊂ F is such that An ⊃ An+1, ∀n, then P(∩∞
n=1An) = limn→∞ P(An).

Terminology. The triple (Ω,F ,P) is called a probability space. Property (ii) is referred to as the
σ-additivity (or simply additivity in the finite case) of probability measures.

Example. Let Ω = {1, .., 6} and F = P(Ω) be the measurable space associated to a die roll. The
probability measure associated to a balanced die is defined as

P1({i}) =
1

6
, ∀i ∈ {1, . . . , 6},
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and is extended by additivity to all subsets of Ω. E.g.,

P1({1, 3, 5}) =
1

6
+

1

6
+

1

6
=

1

2
.

The probability measure associated to a loaded die is defined as

P2({6}) = 1 and P2({i}) = 0, ∀i ∈ {1, . . . , 5},

and is extended by additivity to all subsets of Ω.

Example. Let Ω = [0, 1] and F = B([0, 1]). One defines the following probability measure on the
subintervals of [0, 1]:

P( ]a, b[ ) = b− a.

Fact. P can be extended by σ-additivity to all Borel subsets of [0, 1]. It is called the Lebesgue measure
on [0, 1] and is sometimes denoted as P(B) = |B|.

1.4 Distribution of a random variable

Definition 1.15. Let (Ω,F ,P) be a probability space and X be a random variable defined on this
probability space. The distribution of X is the map µX : B(R) → [0, 1] defined as

µX(B) = P({X ∈ B}), B ∈ B(R).

Remark. The triple (R,B(R), µX) forms a new probability space.

Notation. If a random variable X has distribution µ, this is denoted as X ∼ µ. Likewise, if two random
variables X and Y share the same distribution µ, then they are are said to be identically distributed and
this is denoted as X ∼ Y ∼ µ.

Example 1.16. The probability space describing two independent (and balanced) dice rolls is Ω =
{1, . . . , 6} × {1, . . . , 6}, F = P(Ω) and

P({(i, j)}) =
1

36
, ∀(i, j) ∈ Ω.

Let X1(i, j) = i be the result of the first die, and Y (i, j) = i+ j be the sum of the two dice. Then

µX1
({i}) = P({X1 = i}) = P({(i, 1), . . . , (i, 6)}) =

6

36
=

1

6
, ∀i ∈ {1, . . . , 6},

and

µY ({2}) = P({Y = 2}) = P({(1, 1)}) =
1

36
, µY ({3}) = P({Y = 3}) = P({(1, 2), (2, 1)}) =

1

18
.

More generally:

µY ({i}) =
6 − |7 − i|

36
, i ∈ {2, . . . , 12}.

Cumulative distribution function.

Definition 1.17. Let (Ω,F ,P) be a probability space and X be a random variable defined on this
probability space. The cumulative distribution function (or cdf) of X is the map FX : R → [0, 1] defined
as

FX(t) = µX( ] −∞, t]) = P({X ≤ t}), t ∈ R.
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Fact. The knowledge of FX is equivalent to the knowledge of µX .

From the properties of probability measures, one deduces easily that the cdf of a random variable satisfies
the following properties:

(i) limt→−∞ FX(t) = 0, limt→+∞ FX(t) = 1.

(ii) FX is non-decreasing, i.e. FX(s) ≤ FX(t) for all s < t.

(iii) FX is right-continuous on R, i.e. limε↓0 FX(t+ ε) = FX(t), for all t ∈ R.

Remark. FX has at most a countable number of jumps on the real line. If FX has a jump of size
p ∈ [0, 1] at t ∈ R, this actually means that P({X = t}) = FX(t) − limε↓0 FX(t− ε) = p.

Two important classes of random variables.

Discrete random variables.

Definition 1.18. X is a discrete random variable if it takes values in a countable subset C of R, that
is, P({X ∈ C}) = 1.

The distribution of a discrete random variable is entirely characterized by the numbers px = P({X = x}),
where x ∈ C. Notice that px ≥ 0 for all x ∈ C and that

∑

x∈C px = P({X ∈ C}) = 1. Moreover,

µX(B) = P({X ∈ B}) =
∑

x∈B

px, ∀B ∈ B(R),

and
FX(t) = P({X ≤ t}) =

∑

x≤t

px, ∀t ∈ R,

is a step function.

Example. A binomial random variable X with parameters n ≥ 1 and p ∈ [0, 1] (denoted as X ∼ Bi(n, p))
takes values in {0, . . . , n} and is characterized by the numbers

pk = P({X = k}) =

(

n
k

)

pk (1 − p)n−k, k ∈ {0, . . . , n},

where

(

n
k

)

=
n!

k!(n− k)!
are the binomial coefficients.

Continuous random variables.

Definition 1.19. X is a continuous random variable if P({X ∈ B}) = 0 whenever B ∈ B(R) is such that
|B| = 0 (remember that |B| is the Lebesgue measure of B).

In particular, this implies that if X is a continuous random variable, then P({X = x}) = 0 ∀x ∈ R (as
|{x}| = 0 ∀x ∈ R).

Fact. If X is a continuous random variable according to the above definition, then there exists a
function fX : R → R, called the probability density function (or pdf) of X, such that fX(x) ≥ 0 ∀x ∈ R,
∫

R
fX(x) dx = 1 and

µX(B) = P({X ∈ B}) =

∫

B

fX(x) dx, ∀B ∈ B(R).

Moreover,

FX(t) = P({X ≤ t}) =

∫ t

−∞

fX(x) dx, ∀t ∈ R,

is a differentiable function (whose derivative is F ′
X(t) = fX(t)).
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Example. A Gaussian random variable X with mean µ and variance σ2 (denoted as X ∼ N (µ, σ2))
takes values in R and has pdf

fX(x) =
1√

2πσ2
exp

(

− (x− µ)2

2σ2

)

, x ∈ R.

1.5 Independence

The notion of independence is a central notion in probability. It is usually defined for events and random
variables in elementary probability courses. Nevertheless, as it will become clear below, the independence
between σ-fields turns out to be the most natural concept (remembering that a σ-field is related to the
amount of information one has on a system).

In the three paragraphs below, (Ω,F ,P) denotes a generic probability space.

Independence of events.

One starts by defining the independence of two events in F .

Definition 1.20. Two events A,B ∈ F are independent if P(A ∩B) = P(A) P(B).

Notation. A ⊥⊥ B.

Proposition 1.21. If two events A,B ∈ F are independent, then it also holds that

P(A ∩Bc) = P(A) P(Bc), P(Ac ∩B) = P(Ac) P(B) and P(Ac ∩Bc) = P(Ac) P(Bc).

Proof. One shows here the first equality (noticing that the other two can be proved in a similar way):

P(A ∩Bc) = P(A\(A ∩B)) = P(A) − P(A ∩B) = P(A) − P(A) P(B) = P(A) (1 − P(B)) = P(A) P(Bc).

For a collection of more than 2 events, the property P(A1 ∩ . . . ∩ An) = P(A1) · · ·P(An) does not suffice
to guarantee that the same property holds for complements of the events Ai. A slightly more involved
definition of independence is therefore required.

Definition 1.22. Let {A1, . . . , An} be a collection of events in F . This collection is independent if

P(A∗
1 ∩ . . . ∩A∗

n) = P(A∗
1) · · ·P(A∗

n)

where A∗
i = either Ai or Ac

i , i ∈ {1, . . . , n}.

An intuitive reason why complements should be included in the definition of independence is the following.
Let us assume that one rolls a balanced die with four faces. Then the events {the outcome is 1 or 2} and
{the outcome is even} are clearly independent; more precisely, the different informations associated with
these events are. So the events {the outcome is 1 or 2} and {the outcome is odd} are also independent.
This motivates the extension of the definition of independence to σ-fields in the next paragraph.

Fact. It can be shown that Definition 1.22 is equivalent to saying that

P

(

⋂

i∈I

Ai

)

=
∏

i∈I

P(Ai), ∀I ⊂ {1, . . . , n}.

From the above fact, one deduces that a collection of events might not be independent, even though its
events are two-by-two independent.
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Independence of σ-fields.

Definition 1.23. Let {G1, . . . ,Gn} be a collection of sub-σ-fields of F . This collection is independent if

P(A1 ∩ . . . ∩An) = P(A1) · · ·P(An), ∀A1 ∈ G1, . . . , An ∈ Gn.

Example. Let again {A1, . . . , An} be a collection of events in F . Then the collection of events
{A1, . . . , An} is independent (according to Definition 1.22) if and only if the collection of σ-fields {σ(A1),
. . . , σ(An)} is independent (according to Definition 1.23). In order to see this, observe that σ(Ai) =
{∅, Ai, A

c
i ,Ω}.

Independence of random variables.

Definition 1.24. Let {X1, . . . , Xn} be a collection of random variables defined on (Ω,F ,P). This
collection is independent if the collection of σ-fields {σ(X1), . . . , σ(Xn)} is independent.

Since σ(Xi) = σ({Xi ∈ B}, B ∈ B(R)), the collection {X1, . . . , Xn} is independent if and only if

P({X1 ∈ B1, . . . , Xn ∈ Bn}) = P({X1 ∈ B1}) · · ·P({Xn ∈ Bn}), ∀B1, . . . , Bn ∈ B(R).

But one also knows that σ(Xi) = σ({Xi ≤ t}, t ∈ R), so it turns out that {X1, . . . , Xn} is independent if
and only if

P({X1 ≤ t1, . . . , Xn ≤ tn}) = P({X1 ≤ t1}) · · ·P({Xn ≤ tn}), ∀t1, . . . , tn ∈ R.

For discrete random variables taking values in a countable set C, this reduces to

P({X1 = x1, . . . , Xn = xn}) = P({X1 = x1}) · · ·P({Xn = xn}), ∀x1, . . . , xn ∈ C.

And for jointly continuous random variables with joint pdf fX1,...,Xn
, this reduces to the classical relation

fX1,...,Xn
(x1, . . . , xn) = fX1

(x1) · · · fXn
(xn), ∀x1, . . . , xn ∈ R.

The advantage of the above theoretical definition involving σ-fields is the following. Assume {X1, . . . , Xn}
is a collection of independent random variables and let g1, . . . , gn : R → R be Borel-measurable func-
tions. Then one directly deduces from the definition (and the fact that gi(Xi) is σ(Xi)-measurable)
that {g1(X1), . . . , gn(Xn)} is also a collection of independent random variables, which might have been
cumbersome to check using any of the other “simpler” definition.

Example. Let (Ω,F ,P) be a generic probability space and let X0(ω) = c ∈ R, ∀ω ∈ Ω be a constant
random variable. As σ(X0) = F0 = {∅,Ω}, X0 is independent of any other random variable defined on
(Ω,F ,P).

Example. Let (Ω,F ,P) be the probability space describing two independent dice rolls in Example 1.16
and let X1(i, j) = i and X2(i, j) = j. One verifies below that these two random variables are indeed
independent. It was already shown that P({X1 = i}) = 1

6 , ∀i ∈ {1, . . . , 6}. Likewise, P({X2 = j}) = 1
6 ,

∀j ∈ {1, . . . , 6} and

P({X1 = i,X2 = j}) = P({(i, j)}) =
1

36
= P({X1 = i}) P({X2 = j}), ∀(i, j) ∈ Ω,

so X1 and X2 are independent.

1.6 Expectation

From the point of view of measure theory, random variables are maps from Ω to R. Correspondingly, the
expectation (or mean) of a random variable X is the Lebesgue integral of the map X, that is, the “area
under the curve ω 7→ X(ω)”, where the horizontal axis is measured with the probability measure P.

9



Definition.

Let (Ω,F ,P) be a probability space and X be a random variable defined on this probability space. The
expectation of X, denoted as E(X), will be defined in three steps.

Step 1. Assume first that X is a non-negative discrete random variable, i.e. that X may be written as

X(ω) =
∞
∑

i=i

xi 1Ai
(ω),

where xi ≥ 0 and Ai ∈ F (notice that if the xi are all different, then Ai = {X = xi}). The expectation
of X is then defined as

E(X) =

∞
∑

i=1

xi P(Ai),

which corresponds to the traditional definition of expectation in elementary probability courses. Notice
here that since the sum is infinite, E(X) may take the value +∞; but because of the assumption that
xi ≥ 0, E(X) is always non-negative.

Notice also that in the particular case where X = 1A, with A ∈ F , one has E(X) = P(A).

Step 2. Assume now that X is a generic non-negative random variable (i.e. X(ω) ≥ 0, ∀ω ∈ Ω). Let us
define the following sequence of discrete random variables:

Xn(ω) =
∞
∑

i=1

i− 1

2n
1{ i−1

2n <X≤ i
2n }(ω).

Notice that xi = i−1
2n ≥ 0 and that { i−1

2n < X ≤ i
2n } ∈ F , since X is F-measurable. So according to Step

1, one has for each n

E(Xn) =
∞
∑

i=1

i− 1

2n
P

({

i− 1

2n
< X ≤ i

2n

})

∈ [0,+∞].

It should be observed that (Xn, n ∈ N) is actually an increasing sequence of non-negative “staircases”,
that is,

0 ≤ Xn(ω) ≤ Xn+1(ω), ∀n.
As the size of the steps is divided by two from n to n + 1, the staircase gets refined. Likewise, one
easily sees that E(Xn) ≤ E(Xn+1) for all n, so (E(Xn), n ∈ N) is an increasing sequence, that therefore
converges (possibly to +∞). One defines

E(X) = lim
n→∞

E(Xn) = lim
n→∞

∞
∑

i=1

i− 1

2n
P

({

i− 1

2n
< X ≤ i

2n

})

∈ [0,∞].

Step 3. Finally, consider a generic random variable X. One defines its positive and negative parts:

X+(ω) = max(0, X(ω)), X−(ω) = max(0,−X(ω))

Notice that both X+(ω) ≥ 0 and X−(ω) ≥ 0, and that

X+(ω) −X−(ω) = X(ω), X+(ω) +X−(ω) = |X(ω)|.

In measure theory, one does not want to deal with ill defined quantities such as ∞−∞. One therefore
defines E(X) only when E(|X|) = E(X+) + E(X−) <∞:

E(X) = E(X+) − E(X−).
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Two important particular cases. Let X be a random variable and g : R → R be a Borel-measurable
function such that E(|g(X)|) <∞ (this last condition is verified if for example g is a bounded function).

- If X is a discrete random variable with values in a countable set C, then

E(g(X)) =
∑

x∈C

g(x) P({X = x}).

- If X is a continuous random variable with pdf fX , then

E(g(X)) =

∫

R

g(x) fX(x) dx.

Terminology. - If E(|X|) <∞, then X is said to be an integrable random variable.
- If E(X2) <∞, then X is said to be a square-integrable random variable.
- If there exists c > 0 such that |X(ω)| ≤ c, ∀ω ∈ Ω, then X is said to be a bounded random variable.
- If E(X) = 0, then X is said to be a centered random variable.

One has the following series of implications:

X is bounded ⇒ X is square-integrable ⇒ X is integrable,
X is integrable and Y is bounded ⇒ XY is integrable,
X,Y are both square-integrable ⇒ XY is integrable.

Negligible and almost sure sets. An event A ∈ F is said to be negligible if P(A) = 0. On the
contrary, an event B ∈ F is said to be almost sure (a.s.) if P(B) = 1. For example, if P({X ≥ c}) = 1,
one says that “X ≥ c almost surely”.

Basic properties of expectation.

Linearity. If c ∈ R and X, Y are integrable, then E(cX + Y ) = cE(X) + E(Y ).

Positivity. If X is integrable and X ≥ 0 a.s., then E(X) ≥ 0.

Strict positivity. If X is integrable, X ≥ 0 a.s. and E(X) = 0, then X = 0 a.s.

Monotonicity. If X, Y are integrable and X ≥ Y a.s., then E(X) ≥ E(Y ).

Inequalities.

Cauchy-Schwarz’s inequality. If X, Y are square-integrable random variables, then the product XY
is integrable and

E(|XY |) ≤
√

E(X2)
√

E(Y 2).

In particular, considering Y = 1 shows that if X is square-integrable, then it is also integrable.

Jensen’s inequality. If X is a random variable and ψ : R → R is convex and such that E(|ψ(X)|) <∞,
then

ψ(E(X)) ≤ E(ψ(X)).

In particular, |E(X)| ≤ E(|X|).
Also, if X is such that P({X = a}) = P({X = b}) = 1/2, then the above inequality says that

ψ

(

a+ b

2

)

≤ ψ(a) + ψ(b)

2
,

which is pretty much the definition of convexity for ψ.
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Chebychev’s inequality. If X is a random variable and ϕ : R → R+ is increasing on R+ and such that
E(ϕ(X)) <∞, then for any a > 0, one has

P({X ≥ a}) ≤ E(ϕ(X))

ϕ(a)
.

In particular, if X is square-integrable, then taking ϕ(x) = x2 gives

P({X ≥ a}) ≤ E(X2)

a2
.

Variance, covariance and independence.

Definition 1.25. Let X,Y be two square-integrable random variables. The variance of X is defined as

Var(X) = E((X − E(X))2) = E(X2) − E(X)2 ≥ 0

and the covariance of X and Y is defined as

Cov(X,Y ) = E((X − E(X)) (Y − E(Y ))) = E(XY ) − E(X) E(Y ).

Terminology. If Cov(X,Y ) = 0, then X and Y are said to be uncorrelated.

Fact. If X,Y are independent square-integrable random variables, then

a) Cov(X,Y ) = 0, i.e. X and Y are uncorrelated (but the reciprocal statement is wrong).

b) Var(cX + Y ) = c2 Var(X) + Var(Y ), for any c ∈ R.

1.7 Convergence of sequences of random variables

For a given sequence of random variables (Xn, n ≥ 1) defined on a common probability space (Ω,F ,P),
there are several notions of convergence to a limiting random variableX. Let us review the most important
ones.

Convergence in probability. The sequence (Xn) is said to converge in probability to X (and this is

denoted as Xn
P→ X) if for all ε > 0,

lim
n→∞

P({|Xn −X| > ε}) = 0.

Almost sure convergence. The sequence (Xn) is said to converge almost surely to X (and this is
denoted as Xn → X a.s.) if

P

({

lim
n→∞

Xn = X
})

= 1.

Fact. Almost sure convergence implies convergence in probability, but the reverse implication is wrong.
Nevertheless, it holds that Xn → X a.s. if for all ε > 0,

∞
∑

n=1

P({|Xn −X| > ε}) <∞.

Quadratic convergence. Let us moreover assume that the random variables Xn and X are square-
integrable. The sequence (Xn) is then said to converge quadratically to X if

lim
n→∞

E(|Xn −X|2) = 0.

12



Fact. By Chebychev’s inequality, quadratic convergence implies convergence in probability (but not
almost sure convergence).

Convergence in distribution. The sequence (Xn) is said to converge in distribution to X (and this is

denoted as Xn
d→ X) if

lim
n→∞

FXn
(t) = FX(t),

for all t ∈ R which are continuity points of FX .

Remark. For this last definition, the random variables Xn need not be all defined on the same proba-
bility space (Ω,F ,P). The knowledge of their respective distributions suffices.

“Examples”: limit theorems.

Weak law of large numbers (not the standard version). Let (ξn, n ≥ 1) be a sequence of square-
integrable and uncorrelated random variables with a common expectation E(ξn) = µ and a common
variance Var(ξn) = σ2. Let also Sn = ξ1 + . . .+ ξn. Then

Sn

n

P→ µ.

Remark. The convergence is also quadratic in this case.

Strong law of large numbers. Let (ξn, n ≥ 1) be a sequence independent and identically distributed
(i.i.d.) random variables such that E(|ξ1|) <∞. Let also µ = E(ξ1) and Sn = ξ1 + . . .+ ξn. Then

Sn

n
→ µ a.s.

Example. Assume that P({ξ1 = 1}) = P({ξ1 = 0}) = 1/2 (so µ = 1/2). Then the above theorem says
approximately that as n gets large,

Sn ≃ n

2
with high probability.

The next question is: for a given n, how close is Sn from n/2? The answer is given by the following
theorem.

Central limit theorem. Let (ξn) be a sequence of i.i.d. random variables such that E(ξ21) < ∞. Let
also µ = E(ξ1), σ

2 = Var(ξ1) and Sn = ξ1 + . . .+ ξn. Then

Sn − nµ√
nσ

d→ Z ∼ N (0, 1).

This more specifically says that

lim
n→∞

P

({

Sn − nµ√
nσ

≤ t

})

=

∫ t

−∞

1√
2π

exp

(

−x
2

2

)

dx,

for all t ∈ R (as the cdf of N (0, 1) is continuous on R).

Example. Assume again that P({ξ1 = 1}) = P({ξ1 = 0}) = 1/2 (so µ = 1/2 and σ = 1/2). Then the
above theorem says approximately that as n gets large,

Sn ≃ n

2
+

√
n

2
Z,

where Z is a standard Gaussian random variable. So typically, the standard deviation of Sn from its
mean n/2 is of order

√
n.
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1.8 Conditional expectation

Let (Ω,F ,P) be a probability space, as usual.

Conditioning with respect to an event B ∈ F .

The conditional probability of an event A ∈ F given another event B ∈ F is defined as

P(A|B) =
P(A ∩B)

P(B)
, given that P(B) > 0.

In a similar way, the conditional expectation of an integrable random variable X given B is defined as

E(X|B) =
E(X 1B)

P(B)
, given that P(B) > 0.

Conditioning with respect to a discrete random variable Y .

Let us assume that the random variable Y (is F-measurable and) takes values in a countable set C.

P(A|Y ) = ϕ(Y ), where ϕ(y) = P(A|{Y = y}), y ∈ C.

E(X|Y ) = ψ(Y ), where ψ(y) = E(X|{Y = y}), y ∈ C.

If X is also a discrete random variable with values in C, then

E(X|Y ) = ψ(Y ), where ψ(y) =
E(X 1{Y =y})

P({Y = y}) =
∑

x∈C

x
E(1{X=x}∩{Y =y})

P({Y = y}) =
∑

x∈C

xP({X = x}|{Y = y}).

Important remark. ϕ(y) and ψ(y) are regular functions, but P(A|Y ) and E(X|Y ) are random variables.
They both are functions of the outcome of the random variable Y , that is, they are σ(Y )-measurable
random variables.

Example. Let X1, X2 be two independent dice rolls and let us compute E(X1 +X2|X2) = ψ(X2), where

ψ(y) = E(X1 +X2|{X2 = y}) =
E((X1 +X2) 1{X2=y})

P({X2 = y})

=
E(X1 1{X2=y}) + E(X2 1{X2=y})

P({X2 = y})
(a)
=

E(X1) E(1{X2=y}) + E(y 1{X2=y})

P({X2 = y})

=
E(X1) P({X2 = y}) + y P({X2 = y})

P({X2 = y}) = E(X1) + y,

where the independence assumption between X1 and X2 has been used in equality (a). So finally (as
one would expect), E(X1 + X2|X2) = E(X1) + X2, which can be explained intuitively as follows: the
expectation of X1 conditioned on X2 is nothing but the expectation of X1, as the outcome of X2 provides
no information on the outcome of X1 (X1 and X2 being independent); on the other side, the expectation
of X2 conditioned on X2 is exactly X2, as the outcome of X2 is known.

Conditioning with respect to a continuous random variable Y ?

In this case, one faces the following problem: if Y is a continuous random variable, P({Y = y}) = 0 for
all y ∈ R. So a direct generalization of the above formulas to the continuous case is impossible at first
sight. A possible solution to this problem is to replace the event {Y = y} by {y ≤ Y < y + ε} and take
the limit ε → 0 for the definition of conditional expectation. This actually works, but also leads to a
paradox in the multidimensional setting (known as Borel’s paradox). In addition, some random variables
are neither discrete, nor continuous. It turns out that the cleanest way to define conditional expectation
in the general case is through σ-fields.
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Conditioning with respect to a sub-σ-field G.

In order to define the conditional expectation in the general case, one needs the following proposition.

Proposition 1.26. Let (Ω,F ,P) be a probability space, G be a sub-σ-field of F and X be an integrable
random variable on (Ω,F ,P). There exists then an integrable random variable Z such that

(i) Z is G-measurable,

(ii) E(ZU) = E(XU) for any random variable U G-measurable and bounded.

Moreover, if Z1, Z2 are two integrable random variables satisfying (i) and (ii), then Z1 = Z2 a.s.

Definition 1.27. The above random variable Z is called the conditional expectation of X given G. It is
defined up to a negligible set.

Notation. Z is denoted as E(X|G).

One further defines P(A|G) = E(1A|G) for A ∈ F .

Remark. Notice that as before, both P(A|G) and E(X|G) are random variables.

Properties.

The above definition does not give a computation rule for the conditional expectation; it is only an
existence theorem. The properties listed below will therefore be of help for computing conditional expec-
tations.

- Linearity. E(cX + Y |G) = cE(X|G) + E(Y |G) a.s.

- Monotonicity. If X ≥ Y a.s., then E(X|G) ≥ E(Y |G) a.s.

- E(E(X|G)) = E(X).

- If X is independent of G, then E(X|G) = E(X) a.s.

- If X is G-measurable, then E(X|G) = X a.s.

- If Y is G-measurable and bounded, then E(XY |G) = E(X|G)Y a.s.

- If H is a sub-σ-field of G, then E(E(X|H)|G) = E(E(X|G)|H) = E(X|H) a.s.

Some of these properties are illustrated below with an example.

Example. Let Ω = {1, . . . , 6}, F = P(Ω) and P({ω}) = 1
6 for ω = 1, . . . , 6 (the probability space of the

die roll). Let also X(ω) = ω be the outcome of the die roll and consider the two sub-σ-fields:

G = σ({1, 3}, {2}, {5}, {4, 6}) and H = σ({1, 3, 5}, {2, 4, 6}).

Then E(X) = 3.5,

E(X|G)(ω) =

{

2 if ω ∈ {1, 3} or ω = 2
5 if ω ∈ {4, 6} or ω = 5

and E(X|H)(ω) =

{

3 if ω ∈ {1, 3, 5}
4 if ω ∈ {2, 4, 6}

So E(E(X|G)) = E(E(X|H)) = E(X). Moreover,

E(E(X|G)|H)(ω) =

{

1
3 (2 + 2 + 5) = 3 if ω ∈ {1, 3, 5}
1
3 (2 + 5 + 5) = 4 if ω ∈ {2, 4, 6} = E(X|H)(ω)

and

E(E(X|H)|G)(ω) =

{

3 if ω ∈ {1, 3} or ω = 5
4 if ω ∈ {4, 6} or ω = 2

= E(X|H)(ω).

On other words, the smallest σ-field always “wins”.
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Proposition 1.28. Let G be a sub-σ-field of F , X, Y be two random variables such thatX is independent
of G and Y is G-measurable, an let ϕ : R

2 → R be a Borel-measurable function such that E(|ϕ(X,Y )|) <
∞. Then

E(ϕ(X,Y )|G) = ψ(Y ) a.s., where ψ(y) = E(ϕ(X, y)).

This proposition has the following consequence: when computing the expectation of a function ϕ of two
independent random variables X and Y , one can always divide the computation in two steps by writing

E(ϕ(X,Y )) = E(E(ϕ(X,Y )|Y )) = E(ψ(Y ))

where ψ(y) = E(ϕ(X, y)) (this is actually nothing but Fubini’s theorem).

Finally, the proposition below shows that Jensen’s inequality also holds for conditional expectation.

Proposition 1.29. Let X be a random variable, G be a sub-σ-field of F and ψ : R → R be convex and
such that E(|ψ(X)|) <∞. Then

ψ(E(X|G)) ≤ E(ψ(X)|G) a.s.

In particular, |E(X|G)| ≤ E(|X||G) a.s.

Conditioning with respect to a generic random variable Y .

Once the definition of conditional expectation with respect to a σ-field is set, it is natural to define for a
generic random variable Y :

E(X|Y ) = E(X|σ(Y )) and P(A|G) = P(A|σ(Y )).

Remark. Since any σ(Y )-measurable random variable may be written as g(Y ), where g is a Borel-
measurable function, the definition of E(X|Y ) may be rephrased as follows.

Definition 1.30. E(X|Y ) = ψ(Y ), where ψ : R → R is the unique Borel-measurable function such that
E(ψ(Y ) g(Y )) = E(X g(Y )) for any function g : R → R Borel-measurable and bounded.

In two particular cases, the function ψ can be made explicit.

- As already seen above, if X, Y are two discrete random variables with values in a countable set C, then

E(X|Y ) = ψ(Y ), where ψ(y) =
∑

x∈D

x P({X = x}|{Y = y}), y ∈ C.

- If X,Y are two jointly continuous random variables with joint pdf fX,Y , then

E(X|Y ) = ψ(Y ), where ψ(y) =

∫

R

x
fX,Y (x, y)

fY (y)
dy, y ∈ R,

and fY is the marginal pdf of Y given by fY (y) =
∫

R
fX,Y (x, y) dy, assumed here to be strictly positive.

Let us check that the random variable ψ(Y ) is indeed the conditional expectation of X given Y according
to Definition 1.30: for any function g : R → R Borel-measurable and bounded, one has

E(ψ(Y ) g(Y )) =

∫

R

ψ(y) g(y) fY (y) dy

=

∫

R

(
∫

R

x
fX,Y (x, y)

fY (y)
dy

)

g(y) fY (y) dy

=

∫∫

R2

x g(y) fX,Y (x, y) dx dy = E(X g(Y )).
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