MIDTERM

Monday November 12, 2007, 13:15-17:00
This exam has 5 problems and 80 points in total.

Instructions

- You are allowed to use 1 sheet of paper for reference. No mobile phones or calculators are allowed in the exam.
- You can attempt the problems in any order as long as it is clear which problem is being attempted and which solution to the problem you want us to grade.
- If you are stuck in any part of a problem do not dwell on it, try to move on and attempt it later.
- Please solve every problem on separate paper sheets.
- It is your responsibility to number the pages of your solutions and write on the first sheet the total number of pages submitted.

Good Luck!

Problem 1

[12 pts]
[3pts] (a) Find the DTFT of $x[n]=\frac{1}{2} 2^{n+1} u[-n]+j 3^{-n} u[n]$.
[5pts] (b) Given the same $x[n]$ whose DTFT $X\left(e^{j \omega}\right)$ we have found in (a), consider the sequence $y[n]=x^{*}[-n]+x[n]$. Find its DTFT $Y\left(e^{j \omega}\right)$.
[4pts] (c) Given the $x[n]$ whose DTFT $X\left(e^{j \omega}\right)$ we have found in (a), consider the sequence $z[n]=$ $x^{*}[1-n]+x[n-1]$. Find its DTFT $Z\left(e^{j \omega}\right)$.

Problem 2

[18 pts]
Consider the system depicted in Figure 1. The impulse responses of the filters are $h_{1}[n]=$ $\delta[n-1], h_{2}[n]=9 \delta[n-1], h_{3}[n]=2 \delta[n-2], h_{4}[n]=3 \delta[n-1]$.

Figure 1: System with Feedback
[6pts] (a) Find $H(z)$, the system function of the overall system, and write its corresponding ROC.
[3pts] (b) Write down the difference equation corresponding to the overall system.
[6pts] (c) Compute the impulse response of the overall system, i.e., find $h[n]$ such that $y[n]=$ $h[n] * x[n]$.
[1pts] (d) Is the overall system causal? Why?
[2pts] (e) Is the overall system BIBO stable? Prove or disprove.

Problem 3

[12 pts]

Assume that $\tilde{x}[n]$ and $\tilde{y}[n]$ are two periodic sequences with the same period N. Let $\tilde{X}[k]$ and $\tilde{Y}[k]$ be their respective DFS, i.e.,

$$
\begin{aligned}
& \tilde{X}[k]=\sum_{n=0}^{N-1} \tilde{x}[n] e^{-j \frac{2 \pi}{N} k n}, \quad k=0, \ldots, N-1 \\
& \tilde{Y}[k]=\sum_{n=0}^{N-1} \tilde{y}[n] e^{-j \frac{2 \pi}{N} k n}, \quad k=0, \ldots, N-1 .
\end{aligned}
$$

[6pts] (a) Show that

$$
\sum_{n=0}^{N-1} \tilde{x}^{*}[n] \tilde{y}[n]=\frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}^{*}[k] \tilde{Y}[k]
$$

[6pts] (b) Suppose,

$$
\begin{aligned}
\tilde{x}[n] & =1+\cos \left(\frac{\pi}{4} n\right) \\
\tilde{y}[n] & =\sin \left(\frac{\pi}{4} n+\frac{\pi}{4}\right) .
\end{aligned}
$$

Find the period N for these sequences and compute

$$
\sum_{n=0}^{N-1} \tilde{x}^{*}[n] \tilde{y}[n] .
$$

Problem 4

[20 pts]

Consider two sequences $x[n]$ and $y[n]$ that have finite-length supports N and M, respectively. More precisely, $x[n]=0$ for $n<0$ and $n \geq N$, and $y[n]=0$ for $n<0$ and $n \geq M$.
We suppose that $x[n]$ and $y[n]$ are distinct sequences, i.e., there exists an n for which $x[n] \neq y[n]$. Assume that $M>N$.
[$4 p t s$] (a) Let us take the M-point DFTs, which sample the corresponding DTFTs at M uniformlyspaced points, i.e.,

$$
\begin{aligned}
& X_{1}[k]=\sum_{n=0}^{M-1} x[n] e^{-j \frac{2 \pi}{M} k n}, \quad k=0, \ldots, M-1 \\
& Y_{1}[k]=\sum_{n=0}^{M-1} y[n] e^{-j \frac{2 \pi}{M} k n}, \quad k=0, \ldots, M-1 .
\end{aligned}
$$

Suppose we claim that $X_{1}[k]=Y_{1}[k], k=0, \ldots, M-1$. If this can be true, give an example. If not, give a proof.
[8pts] (b) Now, let us sample the corresponding DTFTs at N uniformly spaced points, i.e.,

$$
\begin{aligned}
& X_{2}[k]=\sum_{n=0}^{M-1} x[n] e^{-j \frac{2 \pi}{N} k n}, \quad k=0, \ldots, N-1 \\
& Y_{2}[k]=\sum_{n=0}^{M-1} y[n] e^{-j \frac{2 \pi}{N} k n}, \quad k=0, \ldots, N-1 .
\end{aligned}
$$

Again, suppose we claim that $X_{2}[k]=Y_{2}[k], k=0, \ldots, N-1$. If this can be true give an example. If not, give a proof.
[8pts] (c) Assume that $M=2 N$, and that

$$
y[n]=\left\{\begin{array}{lr}
x[n], & n=0, \ldots, N-1 \tag{1}\\
x[n-N], & n=N, \ldots, M-1
\end{array}\right.
$$

and consider the sequence

$$
\begin{equation*}
z[n]=y[n]-x[n] . \tag{2}
\end{equation*}
$$

Given that you know that $z[n]$ has been generated as in (1)-(2), we want to find the smallest number of samples of the DTFT of $z[n]$ that would be sufficient to reconstruct $z[n]$. More precisely, suppose the DTFT of $z[n]$, given by

$$
Z\left(e^{j \omega}\right)=\sum_{n} z[n] e^{-j \omega n}
$$

needs to be sampled as,

$$
Z[k]=\left.Z\left(e^{j \omega}\right)\right|_{\omega=\frac{2 \pi k}{Q}}, \quad k=0, \ldots, Q-1
$$

We want to ensure that $z[n]$ is recoverable from the samples $Z[k], k=0, \ldots, Q-1$. Find the smallest Q that would be sufficient, given that we know the structure of $z[n]$ as given in (1)-(2). Also, write down the explicit formula of how we can reconstruct $z[n]$, given $Z[k], k=0, \ldots, Q-1$, for this smallest value of Q.

Problem 5

[18 pts]
Let $H(z)=\frac{8 z^{-3}+20 z^{-2}-10 z^{-1}+3}{8 z^{-2}-4 z^{-1}+1}$ be the system function of an LTI system.
[8pts] (a) Is there a causal system with system function $H(z)$? If yes, give $h[n]$ and say whether the system is stable. If no, show why.
[3pts] (b) Is there an anticausal system with system function $H(z)$? If yes, give $h[n]$ and say whether the system is stable. If no, show why.
[2pts] (c) Consider the composition of two systems depicted in Figure 2, and assume that when $x[n]$ is the input to the system, then the output is $y[n]=p[n] * x[n]=8 x[n-3]+$ $20 x[n-2]-10 x[n-1]+3 x[n]$. Is the system causal?
[3pts] (d) Find the system function $G(z)$ such that $p[n]=h[n] * g[n]$.
[2pts] (e) Find the corresponding $g[n]$. Is the system corresponding to $g[n]$ stable?

Figure 2: Composition of two Systems

