
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 20 Signal Processing for Communications
Solutions to Homework 9 May 17, 2009

Problem 1.

1.

H(eiω) =

{

1 |ω| < ωc,

0 else

h[n] =
1

2π

∫ ωc

−ωc

H(ejωn)ejωndω

=
sin(ωcn)

πn
=

ωc

π
sinc(

nωc

π
)

2. We want to minimize ‖H(ejω) − HK(ejω)‖2. Using the Parseval’s Theorem, we have

‖H(ejω) − HK(ejω)‖2

2
=

1

2π

∫ π

−π

|H(ejω) − HK(ejω)|2dω =
∑

n

|h[n] − hK [n]|2

=
∑

n:|n|≤K

|h[n] − hK [n]|2 +
∑

n:|n|>K

|h[n] − hK [n]|2

=
∑

n:|n|≤K

|h[n] − hK [n]|2 +
∑

n

|h[n]|2.

Note that the second term does not depend on the choice of hK [n], and in order to
minimize the first term, we choose hK [n] = h[n] (to make all terms in the summation
equal to zero). Thus,

hK [n] =

{

h[n] |n| ≤ K

0 else
.

3. function [h,H] = wind(K,window_type,fr)

window = char(window_type);

n= -K:K;

if (nargin == 2)

% if we want to plot different windows on top of each other.

% Question 1.5

h = ones(1,2*K+1);

else

h = sinc(n*fr/pi)*fr/pi;

end

switch lower(window)

case(’rectangular’)

win = ones(1,2*K+1);

case(’triangular’)

win = conv(ones(1,K+1),ones(1,K+1))/(K+1);

case(’hamming’)

win = 0.54 - 0.46*cos(2*pi*(n+K)/(2*K));

case(’blackman’)

win = 0.42 - 0.5*cos(2*pi*(n+K)/(2*K)) + 0.08*cos(4*pi*(n+K)/(2*K));

end

h = h.*win;

w = linspace(-pi,pi,2048);

% implement fft

H = fftshift(fft(h,2048));

% another way to implement

% H = 0;

% for k=-K:K

% H=H+h(k+K+1)*exp(-j*k*w);

% end

if(nargin ==3)

figure;plot(w,abs(H));

title([’Window Type =’, window , ’ and Length =’,num2str(2*K+1)])

xlabel(’frequency [-pi,pi]’);

ylabel(’|H(e^{(jw)})|’)

end

end

4. Fig. 1 shows the frequency response of the filter for different length. It can be seen
that the larger length FIR filter gives a better approximation of H(ejω). The length
of transition band decreases. However, we can never get rid of the ripples. We can
see the jumps (ripples) at the cut-off frequencies (ω = ±π/4), which corresponds to
the Gibbs phenomenon. You can think of it as approximating a discontinuity with
linear combination of continuous functions, which is impossible for any finite K.

5. % Question 1.5

[r,R] = wind(12,’rectangular’);

[tr,TR] = wind(12,’triangular’);

[h,H] = wind(12,’hamming’);

[b,B] = wind(12,’blackman’);

plot(r,’-*’);

hold on

plot(tr,’-o’);

plot(h,’:’);

plot(b);

6. Already implemented in 3.

7. % Question 1.7

[r,R] = wind(12,’rectangular’,pi/4);

[tr,TR] = wind(12,’triangular’,pi/4);

[h,H] = wind(12,’hamming’,pi/4);

2

Figure 1: Approximation of low pass filter with rectangular function of different lengths

[b,B] = wind(12,’blackman’,pi/4);

plot(abs(R),’-r’);

hold on

plot(abs(TR),’g’);

plot(abs(H),’c’);

plot(abs(B));

w = linspace(-pi,pi,length(R));

plot(w,20*log10(abs(R)),’-r’);

hold on

plot(w,20*log10(abs(TR)),’g’);

plot(w,20*log10(abs(H)),’c’);

plot(w,20*log10(abs(B)));

xlabel(’frequency, [-pi,pi]’)

The choice of the window to be used depends on the application. There is a trade
off between the transition width and the side lobe amplitude(error). We can observe
in Figure 3 that rectangular window has the narrowest transition band whereas it
has the maximum rippling artifacts. On the other hand blackman window has less
attenuation in the stop band but it has a wider transition band. For example, if we
want to separate two sinusoidal signal which have similar frequencies then we can use
rectangular windows as it has narrower transition band(Note that, the amplitudes of

3

Figure 2: Different Window Types

the two signals should be comparable to each other). If two sinusoidal have different
frequencies, then using a wider transition band(lower ripples) may be more efficient.
In summary, the choice of the window type is the trade off between separating sig-
nals with similar frequencies(and comparable amplitudes) and separating signals with
dissimilar frequencies(and different amplitudes).

Problem 2. We will do everything on the file corrupt l.wav, the solutions for the other
files (corrupt o.wav, corrupt r.wav and corrupt t.wav) being similar.

1. We first read the samples of corrupt l.wav:

>> [corr, fs] = wavread(’corrupt_l.wav’);

In the above, corr holds the samples, and fs holds the sampling frequency (44100
Hz in this case). We can now listen to the file:

>> soundsc(corr, fs);

On top of the piano, there is a higher frequency noise. Plot the DFT of the samples
to locate the noise:

>> plot(abs(fftshift(fft(corr))))

By visually inspecting the DFT plot, we see that a significant portion of the original
music lies roughly in the frequency range [−0.4, 0.4] (that is, [−0.127π, 0.127π]), and
the positive portion of the noise DFT is centered at π/4 ≈ 0.785, with a bandwidth of
roughly π/5 ≈ 0.63. We need a lowpass filter to get rid of the noise, whose passband
is the frequncy range where the original music lies, i.e., roughly [−0.127π, 0.127π].

2. The ideal lowpass filter h[n] with passband [−0.127π, 0.127π] has coefficients

h[n] =
sin(0.127πn)

πn
, n ∈ Z.

Using a rectangular window of width 1001, we obtain the filter h500[n] with

h500[n] =

{

h[n] if |n| ≤ 500

0 otherwise
.

We will do the filtering in the frequency domain. First generate the filter in the time
domain:

4

Figure 3: Frequency Responses in normal(up) and log scale(bottom)

5

−4 −3 −2 −1 0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

noise
noise

music

Figure 4:

>> n = -500:500;

>> filter = sin(0.127*pi*n)./(pi*n);

Set the value of filter for n = 0:

>> filter(501) = 0.127;

Pad the filter to generate a filter vector of the correct length (equal to the length of
the audio file)

>> filter = [zeros(1, (length(corr’) - length(filter))/2), filter,

zeros(1, (length(corr’) - length(filter))/2)];

Now plot the DFT:

>> plot(N, abs(fftshift(fft(filter))))

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5:

>> FILTER = fft(filter);

>> CORR = fft(corr’);

>> CLN = FILTER .* CORR;

>> plot(fftshift(abs(CLN)))

Recover the filtered signal:

>> cln=fftshift(ifft(CLN));

6

−4 −3 −2 −1 0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 6: DFT of the filtered signal

Upon listening to the resulting signal (after taking the inverse DFT, of course), one
will note that most of the noise content has been removed. However, one can still
hear the low frequency content of the noise in the background.

3. Keeping in mind that the cutoff frequency of the target filter is 0.127π, one way of
generating a filter of length 800 for our purpose is the following:

>> [lowpass,e] = firpm(800, [0 0.125 0.135 1], [1 1 0 0], [1 10]);

The DFT of the filter lowpass is given in the following figure:

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 7:

Now filter out the noise in the time domain:

>> cln = conv(lowpass, corr);

The DFT of the filtered signal is given in Figure 8. Upon listening to the filtered
sound file, one will note again that the low frequency content of the noise is still
present in the background.

4.

5. Assuming that the sequences corr and cln hold the original and the filtered signals
respectively, the noise signal is obviously equal to corr− cln. If we wanted to extract
the noise from the original signal in the first place, we would use a high pass filter with
cutoff frequency equal to 0.127π. Note that such an ideal filters frequency response
is given by 1−H(ejω), where H(ejω) is the ideal lowpass filter we implemented above
(hence, the noise is given by corr− cln). That is, an implementation of a lowpass
filter leads automatically to an implementation of a highpass filter as well.

7

−4 −3 −2 −1 0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 8:

6. Let y = corr − cln. We have

y[n] = w[n] cos(0.25πn).

We first move y[n] to the baseband:

>> y = corr - cln’;

>> N = 1:length(y’);

>> y_bb = y .* cos(0.25*pi*N’);

>> plot(abs(fftshift(fft(y_bb))))

We then filter out the high frequency content using a lowpass filter whose cutoff
frequency is π/5, roughly the bandwidth of y.

>> [lowpass2,e] = firpm(800, [0 0.2 0.21 1], [1 1 0 0], [1 10]);

>> y_bb_cln = conv(y_bb, lowpass2);

>> L= -pi:2*pi/length(y_bb_cln’):pi-2*pi/length(y_bb_cln’);

>> plot(abs(fftshift(fft(y_bb))))

>> plot(abs(fftshift(fft(y_bb_cln))))

The DFTs of y bb and y bb cln are plotted in Figure 6.

−4 −3 −2 −1 0 1 2 3 4
0

500

1000

1500

2000

2500

3000

−4 −3 −2 −1 0 1 2 3 4
0

500

1000

1500

2000

2500

3000

Figure 9:

Listen to y bb cln:

>> soundsc(y_bb_cln’, fs);

You will hear a cello playing (with some background noise from the original signal
remaining). If you go through the above steps for the other files you should be able to
hear a piano (corrupt o.wav), a guitar (corrupt r.wav) or a clarinet (corrupt t.wav)
playing.

8

