
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 17 Signal Processing for Communications
Graded Homework 8. Due: May 4 April 27, 2009

Matlab has comprehensive documentation. Don’t forget to use it whenever you need
help!

Problem 1. In this problem, we are going to design FIR filters using the windowing
method. Consider the ideal low-pass filter with cut-off frequency ωc ∈ [0, π],

H(eiω) =

{
1 |ω| < ωc

0 else
.

1. What is the impulse response h[n] of this filter?

2. What is the best FIR approximation of length 2K + 1 for H(ejω)? That is, an FIR
filter hK [n] for which hK [n] = 0 for |n| > K, and minimizes ‖H(ejω)−HK(ejω)‖2.

3. Write a Matlab m-file rectangular window.m that produces a vector of length 2K+1
that holds the coefficients of the filter hK [n] and then takes the Fourier transform
of the produced vector. (You can either write your own code to implement Fourier
transform or you can use the fft command. Make sure that you compensate the
shift in frequency if you use fft command).

4. Plot the frequency response of your filter for ωc = π/4, K = 10, 50, 100, 1000 on
top of each other (use plot, hold on, plot with different colors and line styles (don’t
forget to use Matlab help). What happens as K increases in the passband, stopband
and transition band? Can we get rid of the peaks near the transition region? How
well is the approximation in comparison to the ideal filter? What happens at the
cut-off frequency? How can you explain this phenomenon?

We will now use different windows to design the low-pass filter. Recall that

ĥ[n] = h[n]w[n],

where h[n] is the ideal impulse response and w[n] is the window.

5. Plot the rectangular, triangular, hamming and blackman windows on top of each
other. Set the window length to 25.

6. Write Matlab m-files (triangular window.m, hamming window.m and blackman window.m)
to compute the frequency response Ĥ(ejω).

7. Plot the frequency response of all of the above filters on top of each other in normal
scale and in log scale (20 log10(Ĥ)) to compare different windows. Comment on the
results. What are the effects of different windows?

Problem 2.

1. Download the file corrupt r.wav from the course website (under ‘Additional Reading
Material’). Read the samples of the .wav file using the Matlab function wavread. Play
the file using soundsc. You should be able to notice a high frequency noise on top
of the original music.

Now plot the DFT magnitude of the file, using fft (don’t forget to shift the frequen-
cies in order to better view the response: use fftshift). In the DFT plot, indicate
the parts corresponding to the original signal and the noise. What is the bandwidth
of the original music (that is, the bandwidth where the DFT magnitude is not neg-
ligibly small)? What about the bandwidth of the noise? What kind of filter would
you need to design in order to remove the noise from the original signal? What is an
acceptable passband for this filter?

2. You will implement the (ideal) filter in the previous part using windowing. Use your
favorite window to truncate the ideal filter. In order to be able to keep the transition
band to a minimum, you might have to use a wide window (possibly in the order of
hundreds of taps). Plot the DFT of the resulting filter. Remove the noise from the
file using your filter (either in the time domain using the convolution function conv

or in the frequency domain by simple multiplication). Plot the DFT of the resulting
file. Play the file using soundsc.

3. We will now implement the same filter using Parks-McClellan algorithm. Matlab has
a built-in function, firpm, that does this. The usage is as follows:

>>[hpm, err] = firpm(40, [0 0.6 0.75 1], [0 0 1 1], [10 1]);

The first argument of firpm specifies that the resulting filter should be of length 41.
The second argument says that there is one frequency band between 0 and 0.6π and a
second band between 0.75π and π. The third argument says that the filter frequency
response should be close to 0 in the first frequency band and close to 1 in the second
frequency band. Between the two bands, we do not care. The fourth argument says
that the precision in the first frequency band is 10 times more important than in the
second frequency band.

Use the function firpm to construct a filter that gets rid of the noise in the original
file. The return value ‘err’ gives you the error (how far the filter is from the ideal
filter). Play the filtered file. You can play a bit with the filter-length parameter to
find a good filter. Plot the DFT of your filter, and the resulting sound after filtering.

4. Which of the above methods is better in terms of the resulting sound file? Briefly
explain the differences (e.g., which methods is good for what error criterion etc.) in
the above methods, and comment on the causes of the possibly different results you
obtained above. Comparing the DFTs of the filters you used above might be of help.

5. We are now interested in recovering the noise. How can you do this using only the
original and the filtered files? What kind of filter does this operation correspond to?

6. The noise, y[n], you extracted above was created as follows:

y[n] = w[n] cos(0.2πn),

where w[n] is the samples of an audio file. You will recover w[n] from y[n] as follows:
First shift y[n] to baseband. Plot the resulting signal’s DFT. You should be able to

2

observe unwanted frequency content. Now filter these out to obtain w[n]. Play the
result. What do you hear?

3

