
Problem 1 (Problem 5.6 in the book).

• y[n] = x[−n]

Linearity: H{ax1[n]+bx2[n]} = ax1[−n]+bx2[−n] = aH{x1[n]}+bH{x2[n]}. There-
fore, H is linear.

Time-invariance: H{x[n − n0]} = x[−n − n0] 6= y[n − n0]. Therefore, H is not
time-invariant.

Stability: If |x[n]| ≤ M , then |H{x[n]}| ≤ M . Therefore, H is BIBO stable.

Causality: For negative time indices, the output depends on the future values of the
input. Therefore, H is not causal.

• y[n] = ejωnx[n]

Linearity: H{ax1[n] + bx2[n]} = ejωn(ax1[n] + bx2[n]) = aH{x1[n]} + bH{x2[n]}.
Therefore, H is linear.

Time-invariance: H{x[n− n0]} = ejωnx[n− n0] = ejωn0y[n− n0]. Therefore, H is not
time-invariant (unless ω = 0).

Stability: If |x[n]| ≤ M , then |H{x[n]}| ≤ M . Therefore, H is BIBO stable.

Causality: The output at any given time depends only on the current input. There-
fore, H is causal.

• y[n] =
∑n+n0

k=n−n0
x[k].

Linearity: H{ax1[n] + bx2[n]} =
∑n+n0

k=n−n0
(ax1[k] + bx2[k]) = aH{x1[n]}+ bH{x2[n]}.

Therefore, H is linear.

Time-invariance: H{x[n − n0]} =
∑n+n0

k=n−n0
x[k − n0] =

∑n

k=n−2n0
x[k] = y[n − n0].

Therefore, H is time-invariant.

Stability: If |x[n]| ≤ M , then |H{x[n]}| ≤ |2n0 + 1|M . Therefore, H is BIBO stable.

Causality: H is not causal.

Impulse response: For x[n] = δ[n], y[n] = h[n]:

h[n] =

{

1 if |n| ≤ |n0|,

0 otherwise.

• y[n] = ny[n − 1] + x[n], such that if x[n] = 0 for n < n0, then y[n] = 0 for n < n0.
Since H is recursive, we can not use the same technique as before. Note that all
inputs x[n] can be expressed as a linear combination of delayed impulses: x[n] =
∑

∞

k=−∞
x[k]δ[n − k]. Therefore, to show that H is linear or time-invariant, we can

restrict the input to delayed impulses. If x[n] = δ[n], we can obtain y[n] by recursion:

h[n] = y[n] = n!u[n] (1)

If x[n] = aδ[n] + bδ[n]:
y[n] = (a + b)n!u[n]

Therefore, H is linear.

To check if H is time-invariant, consider x[n] = δ[n − 1]. It is easy to check that
Hδ[n − 1] 6= h[n − 1].
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Stability: It is clear from (1) that the system is unstable.

Causality: H is causal.

Problem 2. For a low pass filter with cutoff frequency ωb, we have h[n] = sin(ωbn)
πn

. Thus
by the modulation theorem the DTFT of 2h[n] cos(ω0n) would be Hbp(e

jω).

Problem 3.

• x[n] = δ[n − 3] + δ[n + 3]

X(z) =
∑

x[n]z−n = z−3 + z3

There are 3 poles at z = 0 and 3 poles at z = ∞, so ROC is all z except 0 and ∞.

• x[n] = nanu[n]. From Z-Transform properties,

x[n] ↔ X(z) with ROC = R

⇒ nx[n] ↔ −z
∂X

∂z
with ROC = R

Then, let us define x1[n] = anu[n].

X1(z) =

∞
∑

n=0

(az−1)n

This series converges to 1
1−az−1 if |az−1| < 1. Hence its ROC is: |z| > a. The

Z-transform of x[n] is

X(z) = −z
∂X1

∂z

=
az−1

(1 − az−1)2
ROC = {|z| > a}

• x[n] = −nanu[−n − 1] This problem is similar to the previous one. Define x1 =
−anu[−n − 1]. Then X1(z) is computed as:

X1(z) =

−1
∑

n=−∞

−(az−1)n =

∞
∑

n=1

−(za−1)n

This series converges to 1
1−az−1 if |za−1| < 1, hence ROC= {|z| < a}. The Z-transform

of x[n]:

X(z) = −z
∂X1

∂z

=
az−1

(1 − az−1)2
ROC={|z| < a}

• x[n] = 2nu[n] − 3nu[−n − 1]

x[n] = x1[n] + x2[n]

From previous results we know that

X1(z) =
2z−1

(1 − 2z−1)2
and X2(z) =

3z−1

(1 − 3z−1)2

where ROC1 = {|z| > 2} and ROC2 = {|z| < 3}. So the Z-transform of x[n] is
X(z) = X1(z) + X(z) with ROC=ROC1∩ROC2 = {2 < |z| < 3}.
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• x[n] = en4

[cos( π
12

n)]u[n] − en4

[cos( π
12

n)]u[n − 1]

x[n] = en4

[cos(
π

12
n)](u[n] − u[n − 1])

= en4

[cos(
π

12
n)]δ[n]

= e04

[cos(
π

12
0)]δ[n] = δ[n]

⇒X(z) = 1 =⇒ ROC= all z.

Problem 4. 1.

H(z) =
Y (z)

X(z)
=

1 − 0.6z−1 − 2.35z−2 − 0.9z−3

1 − z−1 + 0.49z−2 − 0.49z−3

Taking inverse z-transforms yields:

x[n] − 0.6x[n − 1] − 2.35x[n − 2] − 0.9x[n − 3]

= y[n] − y[n − 1] + 0.49y[n − 2] − 0.49y[n − 3]. (2)

2. Poles of the system are: z = ±j0.7, 1, zeros of the system are: z = −0.5,−0.9, 2. Since
the system is causal, therefore right sided, ROC would be the region outside the outermost
pole. Thus ROC is |z| > 1.
3. Since ROC does not contain the unit circle, the system is not stable. Also ROC contains
complex numbers with absolute value greater that 1. This implies that the impulse response
must tend to zero as n → ∞. For the last statement to be true, a little thought shows that
ROC of the inverse system should be 0.9 < |z| < 2 (due to stability). But this implies that
the system is two-sided contradicting the fact that it is causal, so the statement is false.

Problem 5. (i). Find the system response H(z) = Y (z)/X(z), and plot its pole-zero
diagram.

Y (z) = Y (z)(
9

2
z−1 +

5

2
z−2) + X(z)(z−1 + 1)

Y (z)(1 −
9

2
z−1 −

5

2
z−2) = X(z)(z−1 + 1)

⇒Y (z)/X(z) =
1 + z−1

1 − 9
2
z−1 − 5

2
z−2

Y (z)/X(z) =
1 + z−1

(1 + 1
2
z−1)(1 − 5z−1)

Y (z)/X(z) =
12/11

(1 − 5z−1)
+

−1/11

(1 + 1
2
z−1)

Y (z)/X(z) = H1(z) + H2(z)

There are two poles at z = 2 and z = −1/2 and one zero at z = −1.

(ii). There are 3 different regions of convergence of H(z), ROC(H(z)) = ROC(H1(z)) ∩
ROC(H2(z)) when |z| < 1/2, 1/2 < |z| < 5 and |z| > 5

– anticausal, unstable.
For the system to be anticausal the ROC should point inwards and for the system
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to be unstable the ROC should not contain the unit circle. Then, ROC= {|z| <
1/2}. This means that the ROC of both H1 and H2 should point inwards(i.e.,
both h1 and h2 are anticausal).Therefore,

h[n] = −
12

11
(5)nu[−n − 1] +

1

11
(−

1

2
)nu[−n − 1]

– causal, unstable.
For the system to be causal the ROC should point outwards and for the system to
be unstable the ROC should not contain the unit circle. Then the ROC= {|z| >
5}. This means that the ROC of both H1 and H2 should point outwards(i.e.,
both h1 and h2 are causal).Therefore,

h[n] =
12

11
(5)nu[n] −

1

11
(−

1

2
)nu[n]

– causal, stable.
The system can not be both causal and stable, because the region where the
system is defined as causal does not include the unit circle.

– noncausal, stable.
The sytem is stable and noncausal when ROC = {1/2 < |z| < 5}. This means
that h1 is anticausal h2 is causal. Therefore,

h[n] = −
12

11
(5)nu[−n − 1] −

1

11
(−

1

2
)nu[n].
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