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Information Sciences: Signal Processing
Lecture 3: Sampling and Interpolation
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Introduction

• In this lecture we will talk about the possibility of using discrete-
time signals to process (and record) continuous-time signals 

• The intuitive idea is that a discrete-time signal should be a good 
approximation of a continuous-time signal, if the sampling 
frequency is large enough.

• However, how large should the sampling frequency be? What 
happens if it is not the case?
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Sampling and Interpolation

• Let’s consider the block diagram of the system that we are 
studying

• Input and output are continuous-time signal. However, we need 
to use discrete-time signals in order to work with optical disks

• We need an element to transform a signal from continuous-time 
to discrete-time. This is the sampler

• Conversely, we need to reconstruct a continuous-time signal 
from a discrete-time signal. We use an interpolator to do that  

Processing

Processing

Continuous-time

Continuous-time

Discrete-time

Discrete-time
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Sampling and Interpolation

• We can redraw the block diagram in the following way

• x(t) and y(t) are the input and output signal, i.e. the acoustic 
pressures measured by the microphone and produced by the 
loudspeaker

• We neglect any additional processing done by microphone, 
loudspeaker, amplifier, etc. and we concentrate on the 
conversions introduced by the sampler and the interpolator

• The block “Digital Processing” represents, in our case, the disk. 
So, we should have                             In general, it can be 
something ,more complicate like a moving average (we neglect 
quantization) 

Digital
ProcessingSampler Interpolator

x(t) x̄(n) ȳ(n) y(t)

ȳ(n) = x̄(n)
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Sampling

• The sampler measure the input signal x(t) only at certain 
instants multiple of the sampling period i.e. we map the 
temporal index n to the continuous time t according to

• Notation: in this lecture, we use the overline to denote the 
sampled version of a certain signal, e.g.            is the sampled 
version of

• Remember that                         is called the sampling frequency

Sampler
x(t) x̄(n)

n→ t = nTS

TS

x̄(n)
x(t)

fS = 1/TS
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Interpolation

• The interpolator maps a discrete-time signal into a continuous-
time signal. Ideally, we would like to have y(t)=x(t), i.e. perfect 
reconstruction 

• This is not possible, even if the disk is ideal, i.e.           
the discrete-time signal              is an ambiguous representation 
of

Interpolator
ȳ(n) y(t)

ȳ(n) = x̄(n)
x̄(n)

x(t)

Samples of x̄(n)

t

Is this the correct interpolation?

… or this one?
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Digital Signal Processing

• Why do we use digital systems? (“digital” is another word for 
discrete-time, probably better for marketing…)

• Theoretically, we can obtain the same result using analog 
systems (i.e. continuous-time) for example:

• However, it is much easier to work with digital signals on certain 
media (such as optical disks). Also, digital systems are more 
reliable and stable over time (the behavior of the system does 
not change). They are also more flexible (a new software can be 
installed to implement new features)

Edison’s phonograph ca. 1899 Philips compact cassette 1963 Philips Laserdisk 1969
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Aliasing

• Let’s study more in detail the ambiguity of a sampled version of
a continuous time signal. We consider initially the case of a 
single sinusoid, i.e.

• If we sample such a sinusoid we obtain a discrete time signal of
the form

where          is the sampling period
• The problem that we want to investigate is to find if there are 

other sinusoids of the form

such that when sampling              we obtain the same discrete
time signal           . Of course, we would like that           
Unfortunately, this is not the case…

y(t) = sin(2πft)

ȳ(n) = sin(2πfnTS)

TS

yP (t) = sin(2πfP t)
yP(t)

ȳ(n) fP = f
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Aliasing

• To develop an intuition, we imagine the following experience

• You are in a disco and the DJ is 
passing the latest hit of the “DSP,” 
your favorite band!

• The disk rotates on the turntable at 
constant speed corresponding to a 
frequency of rotation f (rotations per 
second)

• You observe the rotation of the 
label. At time t, the angle of the label 
is 2πft

y(t)

• If you follow the movement of the 
point P, on the border of the disk, 
you see that the y coordinate of P is 
exactly the signal y(t) defined 
previously (we assume the radius of 
the disk equal to 1) 

P
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Aliasing

• All the lights are switched off and a stroboscopic spot is blinking 
at constant rate fS

• Assume, for simplicity, f=1 (one rotation of the disk in one 
second) and fS =20. What would you observe?

• You observe the disk  only 20 
times during one rotation.

• The position of the point P is 
the signal           defined 
earlier

• We have the impression that 
we can easily follow the 
movement of the disk, despite 
sampling

ȳ(n)
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Aliasing

• What happens if the DJ changes the speed of rotation f of the 
disk? The number of positions that we observe is reduced 

• If f=2, 10 positions…
• If f=5, 4 positions…

• If f=20/3, 3 positions…

• If f=10, 2 positions… 
Here we may hesitate.. Is the 
disk rotating clockwise or 
counterclockwise?

• If f=15, … the rotation seems 
to be clockwise now and the 
speed of rotation 5 (4 position) 
i.e. same result of f=-5
What happens?
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Aliasing

• Explanation:
– We don’t know the movement of the disk when the light is 

switched off. Our visual system perceives motion as if it 
occurred in the direction of the minimum angle, but there is 
an ambiguity.

– Between two consecutive positions, the disk may do any 
number of additional complete rotations, either clockwise or 
counterclockwise

– If f is the actual frequency of rotation there are several 
frequencies fP that explain the observations, i.e. produce the 
same sampled positions. The values of fP are given by

Where N is an arbitrary integer

fP = f +NfS
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Aliasing

• Proof:
– The true frequency f produces sampled positions at angles

– The frequency fP corresponds to the angles

• This ambiguity on the disk rotation corresponds to an ambiguity 
on the frequency a sinusoid:

2πfTSn, n ∈ Z

2πfPTSn= (2πfTS +2πNfSTS)n = 2πfTSn

Number of (presumed) 
complete rotations 

between consecutive 
blinks

ȳ(n) = sin(2πfTSn) = sin(2πfPTSn)
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Aliasing

• If we choose one of the valid frequencies fP, we can define a 
continuous time sinusoid

This sinusoid, when sampled, gives the same samples of the 
sinusoid y(t)

• We call this phenomenon aliasing, since the sinusoid yP(t) takes 
the “identity” of y(t) when it is sampled (i.e. it is an alias of y(t))

yP (t) = sin(2πfP t)
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Aliasing

• Example: audio CD are recorded using a sampling frequency 
fS=44.1 KHz, which corresponds to a sampling period 
TS=22.7µs/sample. A sinusoid of frequency 47.1 KHz, when 
sampled, is indistinguishable from a sinusoid  of frequency 
3KHz, since 47.1 KHz = 3 KHz + fS
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Sinusoid at 47.1 KHz
Samples at f

S
=44.1 KHz
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Aliasing

• How can we avoid aliasing? Let’s draw a diagram where for 
each frequency f of the sinusoid, we show the possible 
frequencies fP

f

fP

N=0 N=-1N=1N=2N=3

N=-2
N=-3

N=-4
N=-5

f=F1

If f=F1, the possible 
values of fP are given by 
the dots
We would like to have 
only the value 
corresponding to the line 
N=0

To obtain that, we 
restrict the range of the 
frequency f
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Aliasing

• How should we reduce the range of f to avoid ambiguity?

f

fP

N=0 N=-1N=1N=2N=3

N=-2
N=-3

N=-4
N=-5

We restrict the range of f 
until there is only one 
possible frequency fP

The frequency f has to 
be in the range

f ∈ (−fS2 ,
fS
2 )

fS
2

The frequency fS/2 is 
the limit of the input 
frequency and it is 
called Nyquist
frequency
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Antialiasing filter

• How can we avoid that the frequency goes out of the range?
• In the previous lecture we saw that filters can transform signals 

For example, a tone control can attenuate some frequencies, 
leaving unchanged some other ones

• We use a filter that suppress completely frequencies larger than
the Nyquist frequency. Such a filter is called an antialiasing filter

• It can be shown that the impulse response of the ideal
antialiasing filter is given by

where                                   is called the sinc function
• The ideal antialiasing filter is non causal (i.e. it can “see” the 

input in the future) and cannot be realized. The solution is to 
approximate the ideal filter and tolerate some aliasing 

h(t) = sin(πfSt)
πt = fSsinc(fSt)

sinc(x) = sin(πx)
πx
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Antialiasing filter

• Example: audio CD are recorded using a sampling frequency 
fS=44.1 KHz. The Nyquist frequency is fN=22.05 KHz. To avoid 
aliasing, we need an ideal filter that suppress sinusoids of 
frequency f outside of the range (-22.05 KHz, 22.05 KHz).

• A sinusoid of frequency f=3KHz is left unchanged by the filter 
and can be reproduced by the CD player. A sinusoid of 
frequency f=47.1 KHz is suppressed by the antialiasing filter and 
cannot be reproduced. 

Ideal 
Antialiasing

Filter
Sampler

47.1KHz

3 KHz fS=44.1KHz
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Interpolation

• Now that we solved the ambiguity on the sampled sinusoid, we 
can consider again the original block diagram and address the 
problem of interpolation

• Assume that the processing (i.e. the recording of the disk) is 
ideal and                           . We would like to interpolate the 
samples            such that the resulting signal y(t) is equal to the 
input signal x(t) (or at least it should be a good approximation)

Digital
ProcessingSampler Interpolator

x(t) x̄(n) ȳ(n) y(t)

ȳ(n) = x̄(n)
x̄(n)
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Interpolation

• The interpolator should be able to generate a continuous time 
signal y(t) such that:
I. The signal passes through the interpolated samples, i.e

• Again, if we consider the case of a single sinusoid, we would 
like that 
II. If the samples are taken from a sinusoid of frequency f in the 

range (-fS/2, fS/2), then the interpolator reconstructs a 
sinusoid of frequency f

Interpolator
x̄(n) y(t)

y(nTS) = x̄(n)
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Zero-Order Hold

• Let’s consider a very simple interpolation method, called the 
zero-order hold

• Very rough assumption: we interpolate with a piecewise 
constant function passing through the samples, e.g.: 
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Zero-Order Hold

• Let’s define the function rect(t) as 

i.e. the graph is

• We want to express the interpolation by using a sum of 
translated rect functions 
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rect(t) =

(
1 if −1/2 < t < 1/2
0 otherwise
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Zero-Order Hold

• Each sample is associated to a rect function:

TS

TS

x̄(1)

x̄(1)rect(t−TSTS
) + . . .

TS

2TS

y(t) =
∞X

n=−∞
x̄(n)rect(

t− nTS
TS

)

x̄(2)
x̄(2)rect(t−2TSTS

) + . . .

3TS

TS

x̄(3)

x̄(3)rect(t−3TSTS
) + . . .
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Zero-Order Hold

• The zero-order hold produces a signal that passes through the 
samples; however, the results is very far from a sinusoid. How 
can we do better?

• Remark that the interpolation has the structure:

where h is the rect function. However, we can use any function 
h we want, provided that h(n)=δ(n) (to satisfy condition I)

• You can verify that this type of interpolator is a linear system (for 
every function h). This will be useful later.

• The idea is to use a function h smoother than the rect

y(t) =
∞X

n=−∞
x̄(n)h(

t− nTS
TS

)
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Linear Interpolation

• Let’s take for example

now the graph of h(t) is

• This is a valid function h, since h(n)=δ(n) and it is smoother than 
the rect

• What is the interpolated signal?

h(t) = tri(t) =

(
1− |t| if −1 < t < 1
0 otherwise
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Linear Interpolation

• By summing all the contributions… 

• The interpolating function is piecewise linear and passes 
through the sampling points. This is called a linear 
interpolation. Don’t confuse this with linear systems! 
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Ideal Interpolation

• Linear interpolation takes into account pairs of consecutive
samples to produce the interpolating function, while the zero-
order hold considered only one point (the nearest). Can we do 
better by considering more and more consecutive points for the 
interpolation?

• The answer is yes. We can consider the interpolator that passes 
through N points and then take the limit of the interpolating 
function h, when N goes to infinity 

• The result is the ideal interpolator. It can be shown that the 
function h for the ideal interpolator is given by

Surprisingly it is the same function that is used to build the ideal 
antialiasing filter! This is not a coincidence, but you will need 
some more math to see that

h(t) = sinc(t)
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Ideal Interpolation

• The graph of the sinc function is given by

• The sinc function is a good interpolator since it passes through 
the all samples (h(n)=δ(n)  and it is smooth (actually it can be 
considered the “smoothest” interpolator)
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Sampling and Interpolation

• If we reconsider the complete chain…

• We are able to sample, record, and reproduce perfectly any 
sinusoid of frequency f such that 

• Too good to be (completely) true. The ideal interpolator, as the
ideal filter, cannot be constructed but only approximated

Ideal 
Antialiasing

Filter 

Ideal
Interpolatorx(t) x̄(n) y(t)

Sampling

f ∈ (−fS2 ,
fS
2 )
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Sampling of other signals

• What happens if we have something else than a sinusoid?
• Suppose that the input signal is the sum of 2 sinusoids, i.e.

– The antialiasing filter, the sampler, and the interpolator are 
linear systems; hence, we can study the response for each 
sinusoid and sum the result!

– If both f1 and f2 are in the range (-fS/2, fS/2), then the two 
sinusoids are represented with no ambiguity by the sampled 
signal and the ideal interpolator is able to reconstruct them

– Conclusion: we can sample and interpolate the sum of two 
sinusoids if their frequencies are such that

– B is called the bandwidth of the input signal

y(t) = P1 sin(2πf1t+ φ1) + P2 sin(2πf2t+ φ2)

B = max(f1, f2) <
fS
2
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Sampling of other signals

• We can do the same for a sum of several sinusoids:
– Suppose that y(t) is the sum of N sinusoids of frequency f1, 

f2,…, fN, we define the bandwidth B as 

– Then, for the linearity of the system, if B<fS/2, then the 
sampled signal represents the input signal without ambiguity 
and the ideal interpolator reconstruct it perfectly

– If                    then the sinusoids with frequency larger than 
fS/2 are suppressed by the system, while the others are 
reconstructed perfectly  

B = max(f1, f2, . . . , fN)

B ≥ fS/2
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Sampling of other signals

• Example
– The C major chord (Do+) is composed by the note C, E, and 

G (Do, Mi, Sol) which can be played by summing 3 sinusoids 
at frequencies 

fC=523.2511 Hz,  fE=659.2551 Hz, fG=783.9909 Hz
– If fS=1600Hz, the chord is reproduced perfectly by 

interpolating the sampled signal. In fact, the bandwidth is 
B=783.9909 and B<fS/2

– If fS=1400Hz, the C and the E are reproduced, but not the G, 
which is suppressed by the antialiasing filter

– If we keep fS=1400Hz and we suppress the antialiasing filter, 
then aliasing appears for the component at frequency fG. The 
ideal interpolator reconstructs it with a sinusoid at frequency 
fG-fS,=-616.0091 Hz. In fact,

sin(2πfGTSn) = sin(2π(fG − fS)TSn)
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Sampling of other signals

• What happens for the signals that are not sinusoids? 
– It can be shown that every signal can be expressed by a 

“sum” (actually an integral) of sinusoids of frequencies 
varying from zero to infinity. This is called the Fourier 
transform of the signal

– Again, we can define the bandwidth B as the maximum 
frequency of the components of the signal

– If B is not infinite, than we say that the signal is bandlimited
– Due to the linearity of the whole system, we can study 

independently each component of the input signal

This is summarized in the following theorem… 
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Sampling Theorem

Theorem (Whittaker-Nyquist-Kotelnikov-Shannon)

Let x(t) be a continuous time signal of bandwidth B and
a sampled version of x(t). If the sampling 

frequency                     is such that 

then x(t) can be reconstructed perfectly from the samples 
by  using an ideal interpolator                        

x̄(n) = x(nTS)

fS = 1/TS

B <
fS
2

x̄(n)
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Conclusion

• A digital system process sampled versions of continuous time 
signals

• The sampler and interpolator allow to convert continuous time 
signal into discrete time signals and reconstruct them

• Sampled signals cannot represented unambiguously continuous 
time signals, since many (infinite) continuous time signals are 
mapped onto the same discrete time signal

• To avoid the ambiguity, the range of frequencies processed by 
the system is limited by using an antialiasing filter. The range of 
frequencies is proportional to the sampling frequency

• The ideal interpolator is able to reconstruct perfectly sinusoids in 
the admitted range of frequencies

• Signals other then sinusoids can always be represented as an 
infinite sum of sinusoids. If all the components are in the valid 
range of frequencies, then the signal can be reconstructed 
perfectly 
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Aliasing on Images

• What we have for a sinusoid is valid also for images. In addition, 
we sample along 2 dimensions

• Remember that an image represents light intensity as a function 
of position

• Each sampling step may potentially give aliasing  

Continuous image Discrete image

Y sampling X sampling
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Aliasing on Images

• What you have seen for a sinusoid remains valid for an image 
line, e.g.

f=4 CPW
fS=32 CPW
f=8 CPW
fS=32 CPW
f=12 CPW
fS=32 CPW
f=16 CPW
fS=32 CPW
f=20 CPW
fS=32 CPW
f=24 CPW
fS=32 CPW
f=28 CPW
fS=32 CPW
f=32 CPW
fS=32 CPW

The intepolator is often a zero-order hold (very poor results)
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Aliasing on Images

• We obtain the same effect if the sinusoid is along the Y axis
• If the sinusoid is tilted, we may have aliasing on X, Y or both.

This gives some patterns called Moire patterns

Angle = 0
f=20 fX=20 fY=0

fSX = 32 fSY=32
Aliasing along X

Angle = 15
f=20 fX=19 fY=5.2

fSX = 32 fSY=32
Aliasing along X

Angle = 30
f=20 fX=17 fY=10

fSX = 32 fSY=32
Aliasing along X

Angle = 45
f=20 fX=14 fY=14

fSX = 32 fSY=32
No Aliasing

Angle = 60
f=20 fX=10 fY=17

fSX = 32 fSY=32
Aliasing along Y

Angle = 75
f=20 fX=5.2 fY=19

fSX = 32 fSY=32
Aliasing along Y

Angle = 90
f=20 fX=0 fY=20

fSX = 32 fSY=32
Aliasing along Y
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Aliasing on Images 

• Do you remember this picture from the 1st lecture?

These artifacts are due to 
aliasing. The regular structure 
of the bricks gives a Moire
pattern after sampling
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Aliasing on Images

• To avoid Moire patterns, camera optics include a low pass filter. 
However, this is far from being ideal and some amount of 
aliasing is always present 

Original Image

With low pass

Without low pass
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Aliasing on Images

• In computer graphics, scenes are described with mathematical 
models representing planes, lines, etc. The rendered images 
are obtained by sampling the continuous space description at 
the pixel positions. Aliasing artifacts may appear if antialiasing
filters are not used  

Without antialiasing With antialiasing


