Problem 1. 1. We see that

\[4^2 = 16 \equiv 1 \pmod{15} \]

Thus by exponentiating the above congruence we get

\[(4^2)^4 \equiv 1 \pmod{15} \]

2. We have that \(180 = 3 \times 5 \times 3 \times 4 \). First notice that

\[26 \equiv -3 \pmod{29} \]

Thus

\[(26)^3 \equiv (-3)^3 \equiv -27 \equiv 2 \pmod{29} \]

Now taking the fifth power we get

\[((26)^3)^5 \equiv 2^5 \equiv 32 \equiv 3 \pmod{29} \]

Taking the third power we get

\[(((26)^3)^5)^3 \equiv 3^3 \equiv 27 \equiv -2 \pmod{29} \]

Finally taking the fourth power we get

\[26^{180} = (((26)^3)^5)^3 \equiv (-2)^4 \equiv 16 \pmod{29} \]

Thus

\[26^{180} \equiv 16 \pmod{29} \]

3. The last two digits of any number belongs to the set \(\{00, 01, 02, 03, 04 \ldots, 97, 98, 99\} \). This set can be easily identified as the set of numbers modulo 100. Thus to find the last two digits \(7^{20} \) we must find its modulo w.r.t 100. We have

\[7^4 = 2401 \equiv 1 \pmod{100} \]

Thus

\[7^{20} = (7^4)^5 \equiv 1 \pmod{100} \]

Thus the last two digits of \(7^{20} \) are 0, 1.
Problem 2. We know from the Bezout’s theorem that for any integers \(a, b\)
\[
\gcd(a, b) = \alpha a + \beta b
\]
for some integers \(\alpha, \beta\). Note that if the \(\gcd(a, b) = 1\), then we have that
\[
aa = -\beta b + 1
\]
Thus
\[
aa \equiv 1 \pmod{b}
\]
As a result we have that \(\alpha = (a)^{−1} \pmod{b}\).

1. Using the extended Euclid’s algorithm we have
\[
\gcd(7, 26) = 1 = (−11)7 + (3)26
\]
Thus \(-11 \equiv 15 \equiv (7)^{−1} \pmod{26}\).

2. Using the extended Euclid’s algorithm we have
\[
\gcd(13, 37) = 1 = (−17)13 + (6)37
\]
Thus \(-17 \equiv 20 \equiv (13)^{−1} \pmod{37}\).

Problem 3. 1. Since \(m\) is a prime number the only integers in \(1, 2, \ldots, m^3\) which have a factor common with \(m\) are the multiples of \(m\). The multiples of \(m\) less than \(m^3\) are \(\{1 \cdot m, 2 \cdot m, 3 \cdot m, \ldots, m^2 \cdot m\}\). Thus there are \(m^2\) multiples of \(m\). As a result
\[
\phi(m^3) = m^3 - m^2 = m^2(m - 1).
\]

2. In general we again apply the same trick and count the number of integers less than \(m^n\) which are multiples of \(m\), since they are the only numbers with a factor common to \(m\). These are \(\{1 \cdot m, 2 \cdot m, 3 \cdot m, \ldots, m^2 \cdot m, \ldots, m^{n-1} \cdot m\}\). There are \(m^{n-1}\) such numbers, thus
\[
\phi(m^n) = m^n - m^{n-1} = m^{n-1}(m - 1).
\]

Problem 4. 1. \(30 = 2 \times 3 \times 5\). We know that if \(m, n\) are relatively prime then \(\phi(mn) = \phi(m)\phi(n)\). Thus \(\phi(30) = \phi(2)\phi(3)\phi(5)\). And for any prime number \(m\), \(\phi(m) = m - 1\).
Thus \(\phi(30) = (2 - 1)(3 - 1)(5 - 1) = 8\).

2. We know from the Euler’s theorem that if \(a, m\) are relatively prime then
\[
a^{\phi(m)} \equiv 1 \pmod{m}.
\]
This implies that
\[
a^{\phi(m)-1}a \equiv 1 \pmod{m}.
\]
Thus \(a^{\phi(m)-1} \equiv a^{-1} \pmod{m}\). In this problem since \(13, 30\) are relatively prime (since \(13\) is a prime number), we have
\[
13^{\phi(30)-1} = 13^7 \equiv \pmod{30}
\]
using the fact that \(\phi(30) = 8\). But
\[
13^2 = 169 \equiv -11 \pmod{30}
\]
\[
13^4 \equiv (-11)^2 \equiv 121 \equiv 1 \pmod{30}
\]
\[
13^6 = (13^4)(13^2) \equiv (-11)(1) \pmod{30}
\]
\[
13^7 = (13^6)(13) \equiv (-11)(13) \equiv 7 \pmod{30}
\]
Thus \(7 \equiv 13^{-1} \pmod{30}\).
Problem 5. 1. We enumerate x starting from 0 to see that $x = 7$ satisfies the congruence equation.

2. This congruence equation does not have a solution for x. To prove this let us assume that there exists a number $x \geq 0$ such that $2^x \equiv 3 \pmod{12}$. This implies that 12 divides $2^x - 3$. This is not possible since $2^x - 3$ is an odd number and 12 is an even number.