ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 13	Introduction to Communication Sy	vstems
Homework 7	October 30	, 2008

PROBLEM 1. A source has an alphabet of 4 letters, a_1, a_2, a_3, a_4 , with corresponding probabilities p_1, p_2, p_3, p_4 and we have the condition $p_1 > p_2 = p_3 = p_4$. Let n_1 be the length of the codeword for a_1 in a Huffman code.

- 1. Find the smallest number q such that $p_1 > q$ implies that $n_1 = 1$.
- 2. Let $p_1 = q$ (where q is your answer in part 1.). Show by example that a Huffman code exists for $n_1 = 1$ and $n_1 = 2$.
- 3. Now assume the more general condition, $p_1 > p_2 \ge p_3 \ge p_4$. Does $p_1 > q$ still imply that $n_1 = 1$? Justify your answer.
- PROBLEM 2. 1. Consider a source with 2^n symbols having probabilities $p_i = \frac{1}{2^n}$ for all $1 \le i \le 2^n$.
 - (i) Let n = 3. Construct the Huffman code for this case and draw the corresponding tree.
 - (ii) Using Huffman procedure, what is the tree for general n?
 - (iii) What is the entropy of this source? Knowing just the entropy for this source, can you construct an optimal code? Note that for a code to be optimal, we first need it to be prefix-free and secondly we have to minimize the average length of the code.
 - 2. Consider an alphabet of n letters with corresponding probabilities $q_i = \frac{1}{2^i}$ if $1 \le i \le n-1$ and $q_n = \frac{1}{2^{n-1}}$. How does the tree of the corresponding Huffman code look like? What is the length of each codeword?

PROBLEM 3. A source S outputs symbols from an alphabet of n letters with probabilities p_1, p_2, \ldots, p_n . You want to construct a Huffman code for this source, but by mistake you think that the probabilities are q_1, \ldots, q_n as defined in Problem 2.2, instead of p_1, \ldots, p_n .

- 1. What is the average length L of your code?
- 2. Consider the functional $\sum_{i} p_i \log(\frac{p_i}{q_i})$. This is called the Kullback-Leibler distance and it is usually denoted by $D(p_i||q_i)$. Show that $D(p_i||q_i) \ge 0$ with equality if and only if $p_i = q_i$ for all *i*.
- 3. Show that $L = H(S) + D(p_i||q_i)$. This means that we pay a penality for designing the code for the wrong distribution. This penality is given by the Kullback-Leibler distance.

PROBLEM 4. A source S_1 outputs letters from the English alphabet (which contains 26 letters) with probabilities p_1, p_2, \ldots, p_{26} . You construct an optimal prefix-free code C_1 for this source. Let the average length of this code be L_1 . Suppose now the Canton de Vaud is taken over by Bern and hence the source becomes Swiss German. Call it S_2 . Thus, instead of outputting u with probability p_{21} , S_2 outputs u with probability p'_{21} and ü with probability p'_{21} , where $p'_{21} + p''_{21} = p_{21}$. You construct an optimal code C_2 for S_2 . Let the average length of C_2 be L_2 .

- 1. Is $H(S_2)$ smaller, larger or equal to $H(S_1)$? Justify your answer.
- 2. Is L_2 smaller, larger or equal to L_1 ? Justify your answer.

Since it is inconvenient to change the whole code, assume that instead we just simply adapt the code C_1 to the source S_2 . You construct the code C'_1 by expanding the codeword corresponding to u with a 0 for u and a 1 for \ddot{u} . Denote the average length of C'_1 by L'_1 .

- 1. Is C'_1 still prefix free? Justify your answer.
- 2. What is the difference between the average length of your new code C'_1 and the average length of the original code C_1 , i.e., $L'_1 L_1$?
- 3. Can you bound the difference between the average length of C_2 and the average length of the original code C_1 ?