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Error correction codes
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We now come to the last topic of this course. We will discuss how we can protect the information
which is stored on the disc from errors which are introduced either due to physical changes
(scratches on the disk, dust particles which block the laser beam, ...) or due to natural variations
which occur probabilistically (e.g., so called thermal noise which is introduced in the electrical
system). We will accomplish this by introducing redundant bits. These redundant bits can then
be used in the decoding process to reconstruct the original information even if some bits are
missing or have been changed.

For reasons of complexity it is useful to introduce the redundant bits in a linear manner. This
brings us into the realm of linear and modern algebra. Before we can therefore get started with
the task at hand, let us review some basic notions of algebra.

4.1 Some Useful Notions of Linear/Modern Algebra

4.1.1 Fields

You are all familiar with algebraic manipulations over the reals (R) or complex numbers (C).
Both of them are fields. Casually speaking, this means that you can perform all the familiar op-
erations (addition, multiplication, and their inverses, subtraction and division). More formally,
a field F is a set with the two basic operations + (addition) and ∗ (multiplication) which obey
the following basic rules (recall the notion of a group which we discussed in Section ??):

+ ∗

closure: ∀a, b ∈ F a + b ∈ F a ∗ b ∈ F
associativity: ∀a, b, c ∈ F a + (b + c) = (a + b) + c a ∗ (b ∗ c) = (a ∗ b) ∗ c

identity: ∃0, 1 ∈ F, 0 6= 1, so that 0 + a = a 1 ∗ a = a
inverse: ∀a ∈ F,∃(−a), a−1 ∈ F so that a + (−a) = 0 a ∗ (a−1) = 1, a 6= 0

commutativity: ∀a, b ∈ F a + b = b + a ∈ F a ∗ b = b ∗ a ∈ F

In addition we have the distributive law: for all a, b, c ∈ F , a ∗ (b + c) = a ∗ b + a ∗ c.

Information is inherently discrete (a set of bits). For our purpose it is therefore natural to work
with finite fields, i.e., with fields that have a finite number of elements. The simplest such fields
are the fields Fp, where p is a prime. Finite fields are also called Galois fields, in honor of
Jean-Baptiste Galois. As the story goes, he jotted down the basic theory of finite fields (and
much more) in the fortnight of a duel which ended his life at the young age of 21 (her name was
Stéphanie).

Example 1 (The Fields Fp). We encountered the field Fp already in Section ??. There we
denoted it as Zp. It is the set {0, · · · , p−1} under the standard integer arithmetic but modulo p.
In order to show that Zp indeed forms a field we need to verify all the above properties. Most of
them are quite straightforward and are inherited from the usual properties of integer arithmetic.
The only one that needs some thought is the existence of an inverse with respect to multiplication.
Let us repeat the argument here which shows that this inverse exists. Let a ∈ Zp, a 6= 0. Then
by the extended Euclidean algorithm there exist two integers α and π so that

aα + pπ = gcd(a, p) = 1,
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where we have used the fact that p is a prime and that 0 < a < p so that gcd(a, p) = 1. If we
take this relationship modulo p then we get aα = 1. In words, α is the multiplicative inverse of
a, a−1 = α.

Example 2 (The Field F2). The binary field is of particular importance. F2 consists of only
two elements, namely 0 and 1.

An alternative way of representing F2 is to think of the two elements 0 and 1 as logical values.
From this point of view “addition” corresponds to taking the XOR whereas “multiplication”
corresponds to taking the AND. This is shown in detail in the following tables. This point
of view is convenient since these operations can be implemented efficiently on a computer.

+ 0 1 ∗ 0 1
0 0 1 0 0 0
1 1 0 1 0 1

The field F2 has the following curious property. If a ∈ F2 then a + a = 0. Put differently,
a = −a. In words, addition and subtraction are the same and signs do not matter.

Everything you have learned in linear algebra (how to solve systems of equations using matrices,
the condition for a system to have a unique solution in terms of the rank of a matrix, ...) stays
valid if we use a finite field F instead of R or C.

Example 3 (System of Equations over F7). Consider the linear system of equations

3x1 + 4x2 = 2,

x1 + 2x2 = 0,

where all variables are elements of F7. To solve it we proceed in exactly the same manner as we
would if the equations were over R. We rewrite the system in matrix form as AxT = (2, 0)T ,
where

A =

(

3 4
1 2

)

, x = (x1, x2).

We know that the system has a unique solution if A has full rank. This in turn we can check
by computing the determinant of A. Indeed, in our case we get |A| = 3 · 2− 1 · 4 = 2 6= 0, where
all computations are in F7. We get

A−1 (i)
=

(

A22 −A12

−A21 A11

)

|A|
=

(

2 −4
−1 3

)

|A|
=

(

2 3
6 3

)

2

(ii)
=

(

2 3
6 3

)

4 =

(

1 5
3 5

)

.

In step (i) we have used Cramer’s rule to compute the inverse. This is easily verified: if |A| 6= 0
then

(

A11 A12

A21 A22

)(

A22 −A12

−A21 A11

)

|A|
=

|A|

(

1 0
0 1

)

|A|
=

(

1 0
0 1

)

.

In step (ii) we have used the fact that the multiplicative inverse of 2 is 4 (just try it: 2∗4 = 8 = 1
mod 7). Therefore, instead of dividing by 2 we can multiply by 4. It follows that the solution is
xT = A−1(2, 0)T = (2, 6).
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4.1.2 Vector Space

Just in case you forgot, let us review some basic notions of linear algebra.

Let V be a commutative group with respect to addition (see Section ??), whose elements u,v, . . .
are called vectors and let F be a field whose elements a, b, . . . are called scalars. The set V is a
vector space over F if it has the following properties: for all u,v ∈ V and all a, b ∈ F ,

(i) closure: av ∈ V

(ii) associativity for scalar multiplication: a(bv) = (ab)v

(iii) identity: 1v = v

(iv) distributivity: a(u + v) = au + av and (a + b)u = au + bu

The best known example of a vector space is the set R
n of real number tuples. Indeed, we can

show that V = R
n is a commutative group with respect to addition and that F = R is a field

and that the above properties (closure, associativity, identity, distributivity) are fulfilled.

A subset S of V is a subspace if S itself is a vector space over F , i.e., if it is a commutative
group which fulfills the above properties. Since S is a subset of V, which by assumption forms a
vector space, associativity and distributivity are already ensured; therefore, it suffices to check
that

au − v ∈ S for all a ∈ F and u,v ∈ S.

Taking u = v and a = 1, it follows that an additive identity exists; that an additive inverse
exists follows by setting u = 0; taking a = 1, additive closure is guaranteed; finally, by choosing
v = 0, multiplicative closure can be shown.

Example 4. We already know that R
2 is a vector space. Let us show that the set of vectors

S = (u, 3u) forms a subspace.

a · (u, 3u) − (v, 3v)
?
∈ S

(au − v, 3au − 3v) = (au − v, 3(au − v))

√
∈ S

This confirms, first of all, that S together with addition is a commutative group and, second,
that S is a vector space over F .

4.1.3 Metric Space

We need more than just a vector space. We also need the notion of a distance or metric.

A metric space (V, d(·, ·)) is a vector space V together with a distance (or metric) d(u,v) between
pairs of vectors u,v ∈ V. The distance is a map V×V → R satisfying the three following axioms:
for all u,v,w ∈ V,

(i) d(u,v) ≥ 0 and d(u,v) = 0 if and only if u = v
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(ii) symmetry: d(u,v) = d(v,u)

(iii) triangle inequality: d(u,v) ≤ d(u,w) + d(w,v)

Example 5. R
2 together with the Euclidean distance is a metric space, where if u = (u1, u2)

and v = (v1, v2), u1, u2, v1, v2 ∈ R,

d(u,v) =
√

(u1 − v1)2 + (u2 − v2)2.

4.1.4 Linear Combinations and the Notion of Basis

Let V be a vector space, and let {vi}
m
i=1 be a set of vectors of V. A linear combination of the

vectors vi ∈ V is a sum of the form

u =
m

∑

i=1

aivi, (4.1)

where the coefficients ai ∈ F . We claim that the set of vectors u generated by all linear
combinations of m vectors {vi} forms a subspace which we call span{vi}.

The set of vectors {vi}
m
i=1 is linearly independent if and only if u =

∑m
i=1 aivi = 0 implies that

all the coefficients ai are zero. In this case, the representation (4.1) is unique: there is only one
set of coefficients {ai} which allows us to write the vector u in this manner.

The vectors {vi} span the vector space V if and only if any vector of V can be written as a linear
combination of these vectors.

The set of vectors {vi} forms a basis of the vector space V if these vectors are linearly independent
and span the vector space V. The number m of elements of a basis is the dimension of this
vector space. If V has dimension m, then a set containing more than m vectors is necessarily
linearly dependent.

Example 6. We can see that the following set of vectors, taken in R
3

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

is linearly independent, because any linear combination will be of the form

(a1 + a2 · 0 + a3 · 0, a1 · 0 + a2 + a3 · 0, a1 · 0 + a2 · 0 + a3) = (a1, a2, a3)

and there is no way that the resulting vector is zero unless a1 = a2 = a3 = 0.

We can see that these three vectors span R
3 because any vector u = (u1, u2, u3) can be written

as a linear combination by choosing a1 = u1, a2 = u2 and a3 = u3. This set of vectors thus
forms a basis of R

3. This means that R
3 is of dimension 3.

We can easily see that adding a fourth vector to this set would make them linearly dependent,
because the fourth could always be written as a linear combination of the first three. For example

(3, 2, 0) = 3 · (1, 0, 0) + 2 · (0, 1, 0).

6



4.1.5 The Vector Space F
n and the Hamming Metric

We are interested in vector spaces over a finite field F . We therefore consider the vector space
V which is formed by vectors v = (v1, . . . , vn) where vi ∈ F . All our vectors are row vectors.
We will see in Exercise 1 that V is a vector space. Clearly, its dimension is n as it has the basis
of the n linearly independent vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . ., (0, 0, . . . , 1).

We define the Hamming weight or weight of v as

w(v) = |{i : vi 6= 0}|.

In words, the Hamming weight of a vector v is equal to the number of non-zero components in
the tuple v = (v1, . . . , vn).

The distance between two vectors u and v, called the Hamming distance, is the number of
positions in which ui and vi differ:

d(u,v) = w(u − v) = |{i : (ui − vi) 6= 0}|.

Example 7 (F = F2). Because u = (1, 0, 1, 1, 1, 0) and v = (1, 0, 0, 1, 1, 1) differ in their third
and last positions, we see that their Hamming distance is 2. Indeed,

d(u,v) = w(u − v) = w( (0, 0, 1, 0, 0, 1) ) = 0 + 0 + 1 + 0 + 0 + 1 = 2.

Remark: Note the different meanings of 0 and 1 in this equation. In the expression w( (0, 0, 1, 0, 0, 1) ),
0 and 1 are elements of F2, whereas on the right, in the expression 0 + 0 + 1 + 0 + 0 + 1, 0 and
1 are integers! Note also that for F = F2, d(u,w) =

∑n
i=1 |ui − vi|.

You will show in Exercise 1 that d(·, ·) is indeed a distance as defined in Section 4.1.3. Therefore,
Fn is a metric space as defined in Section 4.1.3.

4.2 What is a Code

In most of the following examples we use F = F2, i.e., the field with two elements, but all
statements are true for the general case.

We start with an example.

Example 8. Consider the following block code of length n = 7 over F = F2 with 8 codewords.

k = 3 n = 7 w(x)
000 7→ 0000000 0
001 7→ 0011100 3
010 7→ 0111011 5
011 7→ 0100111 4
100 7→ 1110100 4
101 7→ 1101000 3
110 7→ 1001111 5
111 7→ 1010011 4

7



Imagine that you want to store a file. To keep the exposition at a manageable level let us look
at a very short file, consisting of only three bits. Of course, any real file would be considerably
larger.

A priori we do not know what the contents of the file will be. We therefore have to provision for
all possible cases. There are 23 = 8 possible files consisting of 3 bits: these are, 000, 001, · · · ,
111. We map each of these 8 possible information vectors of length 3, each of them representing
one possible realization of the file, into a distinct codeword. For our case the codewords are
of length n = 7. This means we expand the length of the file from 3 to 7. We hope that we
can use the redundant information contained in the codeword at a later stage when we want
to reconstruct the original file from a possibly corrupted observation. The map which maps the
information (the file) to the codeword is called the encoding map.

The code C is the set of all codewords. We say that C is a block code since we map blocks of data
into blocks of codewords. We say that the code has length n = 7. We also say that the code has
rate r = k

n
= 3

7 , since we map blocks of length k = 3 into blocks of length n = 7. The code itself
as well as the map between the information vectors is fixed once and for all and it is known both
to the person that writes the data onto a disk (the sender) as well as the person that reads the
data back (the receiver).

Definition 1 (Block Code). A block code C of length n is a set of n-tuples over F . The rate of
the code is defined as r = 1

n
log|F | |C|.

Discussion: For our previous example we have r = 1
7 log2(8) = 3

7 , which is consistent with our
previous definition.

So far we have seen that a block code has the following parameters. It has a length n and a rate
r. How shall we choose the code? What makes a code good? We will see that the third most
important parameter of a block code is its minimum distance.

Definition 2 (Minimum Distance). The minimum distance of a block code C, denote it by
dmin(C), is given by

dmin(C) = min
x,x′∈C;x 6=x′

d(x,x′).

In words, the minimum distance of a code is the closest any pair of distinct codewords is to each
other. As we will see shortly: a good code is a code that has a large minimum distance.

Example 9 (Minimum Distance of Our Running Example). As we see from the previous defi-
nition, in order to determine the minimum distance of a given code with M codewords we need
to take the minimum over all distinct pairs of codewords. This means that we need to check
(

M
2

)

= M(M−1)
2 pairs. (Imagine that you are at a party and that everyone wants to shake hands

with everyone else; if there are M people at the party then the total number of handshakes re-
quired is

(

M
2

)

). For our running example we have M = 8, so that we need to check
(8
2

)

= 28
pairs. This is manageable and we get dmin(C) = 3. For larger codes a direct brute force check
might not be possible. E.g., we will soon learn Reed-Solomon codes. For the specific codes we
discuss the number of codewords are of the order of M = 256128. Clearly, we will need to think
in such cases of cleverer schemes of determining the minimum distance.
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4.3 Channel Models

The basic motivation for using coding is that when you store information on a compact disk and
read the information back at a later time it can happen that the result differs from what was
stored. The physical process that can lead to this change can be arbitrarily complicated and we
would like to avoid having to consider the exact such process. We therefore construct a so called
channel model. Such a channel model is a mathematical abstraction which describes only the
part of the physical channel which is important to us but abstracts from all unnecessary details.
We discuss two such models: the erasure channel and the symmetric channel.

Definition 3 (Erasure Channel). In the erasure channel we assume that each component of the
codeword is either received perfectly or is erased. Erasure means that the transmitted symbol
in the erased position is replaced by a special symbol, let us use the symbol “?”. The receiver
therefore knows which positions are erased and it has to guess the information that is contained
in these positions. In other words, the channel hides certain parts of the transmitted word.

Example 10 (Erasure Channel). Assume that the transmitted word is x = (0100111). Let y

denote the output of the channel (see Figure ??). Assume that y = (0?001?1): the channel has
erased bits 2 and 6. We say that the erasure pattern has weight 2.

Definition 4 (Symmetric Channel). In the symmetric channel each component of the codeword
is either received perfectly or it is changed to one of the other |F | − 1 symbols, uniformly. This
means some positions are changed. If F = F2, then this means that some positions are “flipped”
from a 0 to a 1 or vice versa.

Example 11 (Symmetric Channel). Consider again our running example. Assume that the
transmitted codeword is x = (0100111). Let y be the output of the channel. Assume we have
y = (0000101). If we compare this to x we see that the channel introduced two errors, namely
at position 2 and 6. Define e = y−x. For our example we have (0010010). We call e the error
vector. It is non-zero exactly at those positions in which the channel introduced an error. We
have w(e) = 2, i.e., the weight of e is equal to the number of errors that the channel introduced.
Also note that y = x + e. In words, the effect of the channel is to add an error vector to the
codeword.

4.4 Basic Principles of Error Correction

We now see why the minimum distance plays a key role in coding.

4.4.1 Error Detection

Assume an operator of a nuclear power plant wants to send a signal to the reactor to shut
down. Slightly less dramatic, assume you want to save your bank record on a disk. In both
cases we would like to ensure that the sent signal (the stored information) is received (read
back) correctly. In other words, you would like to make sure that errors in the transmission are
detected.
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Let the code C be given. Assume we choose a codeword x ∈ C and that x is sent over a
symmetric channel. The receiver observes the channel output which is called y. Of course, the
receiver does not know the sent codeword x. He only knows the received word y. If y 6∈ C then
the receiver knows that the channel introduced some errors. In this case the receiver can raise
a flag, alerting the user to the fact that something went wrong during transmission. We say in
this case that the receiver can detect the error.

Lemma 1 (Error Detection). A code C of minimum distance dmin = dmin(C) can detect all
errors of weight t ≤ dmin − 1 or less.

Proof. Let x be the transmitted word and y be the received word. Recall that we have y =
x + e, where e is the error vector. Assume that at most dmin − 1 errors occurred, i.e., that
w(e) ≤ dmin − 1. Then d(x,y) = w(e) ≤ dmin − 1. It follows that y can not be a codeword
(so that the error is detectable) since x is a codeword and by definition of the code any two
codewords have distance at least dmin.

Example 12 (Error Detection). Consider our running example. Assume that x = (0100111)
and that e = (0100010) so that y = (0000101). We have w(e) = 2 ≤ dmin − 1 = 2. By Lemma 1
we know that y can not be a codeword and that the error is detectable. Indeed, if we go down
the list of codewords for our running example, we see that y is not a codeword.

4.4.2 Erasure Correction

Lemma 2 (Erasure Correction). Let the code C be given. We choose a codeword x ∈ C and
send it over the erasure channel. Let y be the output of the channel. If y contains at most
t ≤ dmin − 1 erasures then we can reconstruct the transmitted codeword uniquely.

Proof. Given y which has t erasures find all codewords x′ ∈ C which agree with y in all known
positions. Clearly, the transmitted word x ∈ C is one of those. If it is the unique such codeword
then we can reconstruct x uniquely. But if x′ was another codeword that agrees with y on all
known positions then it can differ from x in at most t positions. This leads to a contradiction
since t(x,x′) ≤ t ≤ dmin − 1; but any two codewords must have distance at least dmin.

Example 13 (Erasure Correction). Consider our running example. Assume we receive y =
(0?001?1). Since t = 2 ≤ dmin − 1 = 2 we know that we can reconstruct the transmitted word
uniquely. Indeed, if we go down the list of all codewords we see that x = (0100111) is the only
codeword that is compatible with y.

4.4.3 Error Correction

Lemma 3 (Error Correction). We are given a code C. Choose a codeword x ∈ C and transmit
it over the symmetric channel. Let y be the output of the channel. If the channel introduces t
errors, where t ≤ dmin−1

2 , then we can correct the errors.
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(0, 0)

(a)

(0, 1)

(1, 0)

(1, 1)

(b)

(0, 0, 0)

(0, 1, 0)

(0, 0, 1)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 1)

(1, 1, 0)

Figure 4.1: (2, 1) (a) and (3, 1) (b) repetition codes

Proof. To correct the errors use the following procedure. Given y find all codewords x′ ∈ C so
that d(y,x′) ≤ dmin−1

2 . By hypothesis the transmitted word x is in this list. We claim that this

is the only one. Indeed, if there is another word x′ ∈ C so that d(y,x′) ≤ dmin−1
2 this would

imply by the triangle inequality that d(x,x′) ≤ d(x,y) + d(y,x′) ≤ dmin−1
2 + dmin−1

2 = dmin − 1,
a contradiction.

Example 14 (Error Correction). Assume we receive the word y = (0000111). If we go down
the list of all codewords we see that the only element of C which is within distance dmin−1

2 = 1
from y is the word x = (0100111). Hence, we declare x to be the transmitted word. If there was
at most one error in the channel then we decoded correctly.

From our previous discussion it is hopefully clear that the basic problem of coding theory is to
construct codes that have a large number of codewords (large rate) and at the same time a large
minimum distance (resilience against errors). If you look at Exercises 9 and 15 you will discover
that these are somewhat conflicting goals. Given a desired rate (and blocklength) the minimum
distance can not be increased beyond a certain point. Our aim is then to operate as close to the
optimum as possible.

4.5 Linear Codes and Some Simple Examples

So far a code C was simply a collection of n-tuples over some finite field F that were separated
by a distance of at least dmin from each other. In order to find efficient procedures to accomplish
the encoding and the decoding operation it is useful to require that the codewords have some
additional structure.

Definition 5 (Linear Code). We say that a code C over the field F is linear if for all x,x′ ∈ C
and all a ∈ F we have

ax − x′ ∈ C.
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This is important: As we have discussed in Section 4.1.5, Fn is a vector space over the field F .
The above condition therefore is equivalent to saying that a linear code is a subspace of Fn. In
the sequel, if the dimension of the code C of length n equals k and the minimum distance is dmin

then we say that the code has parameters [n, k, dmin].

Example 15 (Our Running Example is a Linear Code). We can check that the above condition
is fulfilled for our running example. We conclude that this code is linear.

The first important simplification that arises when we consider a linear code is that its minimum
distance can be computed much more efficiently.

Lemma 4. Let C be a linear code. Then

dmin = min
x∈C;x 6=0

w(x).

Proof. Starting from Definition 2 we have

dmin = min
x,x′∈C,x6=x′

d(x,x′) = min
x,x′∈C,x 6=x′

w(x − x′) = min
x∈C,x6=0

w(x),

where in the last step we have made use of the fact that due to the linearity of the code x − x′

is again a (non-zero) codeword.

Let us look at a few simple linear codes.

Example 16 ((n, n − 1) Single Parity-Check Code.). The words of the code are obtained by
adding a single parity-check bit ri to each message ui which is chosen so that the number of
non-zero bits in the codeword yi is even. For example, u = (1, 0, 1, 1, 0, 0, 1) becomes y =
(1, 0, 1, 1, 0, 0, 1, 0). The distance dmin of this code is thus 2, and according to our previous
discussion this code can detect any single error, can correct any single erasure, but can not
correct any errors. (In fact, we notice that this code detects any odd number of errors and
erroneously decodes any configuration which has an even number of errors.)

Example 17 ((n, 1) Repetition Code.). Here there is only one information bit and n−1 control
bits, which are generated by repetition of the information bit. The distance of this code is thus
dmin = n, which allows detection of any configuration of n − 1 errors, any correction of n − 1
erasures, or any correction of configurations of no more than (n− 1)/2 errors. Obviously, while
the detection/correction capacity of this code is very high, its rate is very low. As an example,
we have represented the (2, 1) and (3, 1) repetition codes in Fig. 4.1, which graphically illustrates
the error correction and detection capacities of these codes.

4.5.1 Generator Matrix of a Linear Code

Since a linear code C is a subspace it has a basis: any codeword x ∈ C can be written in a unique
way as a linear combination of these basis vectors. It is convenient to write this relationship
in terms of matrix notation. The codewords of an (n, k) linear code over F2 are the 2k tuples
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spanned by a generator matrix G of k rows and n columns. The k row vectors of the matrix G
are chosen so as to be linearly independent. In particular, the rows of G are k vectors of the
code and the null vector belongs to the code.

Let u be a k-tuple to be encoded. The corresponding codeword x is

x = uG. (4.2)

Example 18. A generator matrix which produces our running example is

G =





1 1 1 0 1 0 0
0 1 1 1 0 1 1
0 0 1 1 1 0 0



 . (4.3)

The subspace spanned by the rows of G is not changed by a permutation of the rows or by adding
one row to the other. Therefore, we can apply elementary row operations to get G in row-reduced
echelon form. But we can do more. Assume that we also allow column permutations. Strictly
speaking this changes the subspace. But the main characteristics of the code (the rate and the
minimum distance) stay unchanged. Using column permutations if necessary, we can write G

in systematic form:
G = [Ik P ], (4.4)

where Ik is the identity matrix of order k (a matrix where all the diagonal elements are 1 and
all the non diagonal elements are 0) and P is a matrix whose size is k × (n − k). For instance,
the matrix G given in (4.3) can be written in the form

G =





1 0 0 1 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 0 0



 (4.5)

by using elementary operations on its rows (add the first row to the second). The codewords
remain the same, but their mapping onto the k-tuples ui is modified. The linear code is then
said to be systematic and simply consists in leaving the k information carrying bits unchanged
and adding the n − k control bits ri onto the end:

x = (x1, . . . , xn) = (u1, u2, . . . , uk, r1, r2, . . . , rn−k).

The parity-check bits are thus calculated as follows from the information bits:

r1 = u1 + u3,

r2 = u1 + u2 + u3,

r3 = u1 + u2,

r4 = u1 + u2.

A systematic linear code has the advantage of being easy to implement with logical circuits and
shift registers, as we only need to store the k × (n − k) matrix P .
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4.5.2 Parity-Check Matrix

The parity-check matrix H of an (n, k) code generated by G is a (n−k)×n matrix whose (n−k)
rows are independent, and has the property that for any x belonging to the code, we have

xHT = 0. (4.6)

It is easy to check that such a matrix always exists: if G is written in systematic form, then H
can be constructed as

H = [−P T In−k]. (4.7)

Note that we have

GHT = [Ik P ]

[

−P
In−k

]

= −P + P = 0.

In the case that the code is binary, signs do not matter and the parity-check matrix has the
form H = [P T In−k].

Example 19. The matrix H corresponding to the matrix G given by (4.5) is

H =









1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1









. (4.8)

The relations given by (4.6) are the parity-check relations:

x1 + x3 + x4 = 0

x1 + x2 + x3 + x5 = 0

x1 + x2 + x6 = 0

x1 + x2 + x7 = 0.

4.5.3 Syndrome

Let us recall that x is the emitted codeword and y = x + e is the received word. A common
technique to detect or correct errors is to calculate the vector s of n − k bits, called syndrome
and defined by

s = yHT . (4.9)

We see that
s = xHT + eHT = eHT (4.10)

is zero if there are no errors. On the other hand, all the errors represented by a vector which is
not orthogonal to the rows of H are detected.

Suppose we use the systematic code given in example 19 and that y = (1, 0, 1, 0, 1, 1, 1) is the
received vector. The syndrome s = (0, 1, 0, 0) shows that the received word is incorrect.
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Error detection can thus be very easily achieved by computing the syndrome.

Error correction is more complex. If H = (h1,h2, . . . ,hn) where hi is the ith column vector of
H, (4.10) can be rewritten in the form

s = e1h1 + e2h2 + . . . + enh1 =

n
∑

i=1

eihi (4.11)

and the syndrome is a linear combination of the column vectors of the parity-check matrix. This
relation can be used to correct the received word, if it is possible to compute the coefficients ei

which satisfy (4.11) in a unequivocal way.

So we can see that if the n columns of H are all distinct and non-zero, a linear code can correct
all simple errors for binary codes. Indeed, an error in the kth position produces a syndrome
which is simply the hk column, according to (4.11), and the error can be localized and thus
corrected.

Example 20. In the preceding example, we see that s = (0, 1, 0, 0) = h5. Consequently, e5 = 1
and e = (0, 0, 0, 0, 1, 0, 0), so the emitted word was x = y + e = (1, 0, 1, 0, 0, 1, 1).

4.5.4 Hamming Code

In order to maximize the rate r = k/n of such a code, we can wonder what is the maximum
length n of codewords for which any simple error can be corrected, if the number n − k of
parity-check bits remains fixed. Indeed, n − k = n(1 − r). So if n − k is fixed and n increases,
then r increases.

As the column vectors of the matrix H are (n−k)-tuples, we can form at most 2n−k −1 of them
such that they are all non-zero and distinct. We saw in the preceding section that a code can
correct any simple error if the n columns are non-zero and distinct. We must therefore have

n ≤ 2n−k − 1

and the maximum word length is reached when n = 2n−k − 1. The code is then a Hamming
code. The following table gives a few Hamming codes and their rates:

n 3 7 15 31 63 127
k 1 4 11 26 57 120

n − k 2 3 4 5 6 7
r 0.333 0.571 0.733 0.839 0.905 0.945

By encoding long messages, we can see that it is possible to get a large rate.

The parameters of a Hamming code are [n, k, dmin] = [2m−1, 2m−m−1, 3], where m represents
the number of parity-check bits m = n − k. The minimal distance is dmin = 3, i.e., we can
correct single errors. The proof of this fact is in Section 4.5.3
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Example 21. Take the following generating matrix of a (7, 4) Hamming code:

G =









1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1









such that if x is a codeword matching the message u,

x1 = u1

x2 = u2

x3 = u3

x4 = u4

x5 = u1 + u2 + u3

x6 = u2 + u3 + u4

x7 = u1 + u3 + u4

The parity-check matrix is

H =





1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1



 .

The encoding of u = (0, 1, 1, 0) is x = (0, 1, 1, 0, 0, 0, 1). Suppose that the received word is
y = (0, 1, 1, 1, 0, 0, 1). We then compute the syndrome s = yHT = (0, 1, 1). Assuming that
there is only one error, we know from Section 4.5.3 that if the syndrome is to be found in the
kth column of H, then the error is in the kth position. From this, we can tell that the simple
error is situated in position 4.

Another way of understanding this is to view the parity bit x5 as checking the parity of u1, u2,
and u3, the parity bit x6 as checking the parity of u2, u3, and u4, and the third parity bit x7

as checking the parity of u1, u3, and u4. This can be visualized in the following Venn diagram,
with each circle containing the elements of one parity group. Note that u3 is checked by all
three parity bits and is thus in the middle.

5

5

3

4

7

1

2
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We now place the bits of the word we wish to encode in positions 1, 2, 3 and 4.

5

6

3

4

7

1

2

Within each circle, the number of “1” bits must be even. So the bits in positions 5, 6 and 7 are
computed to fulfill this constraint.

5

6

3

4

7

1

2

Suppose an error occurs during transmission and the bit in fourth position is incorrect.

5

6

3

4

7

1

2

On receiving the codeword, we place it in the diagram and analyze each circle in turn. We
assume that there is only a simple error. This error is either inside or outside each circle. The
first circle is consistent (it has an even number of “1” bits) so all the bits inside this circle must
be correct.
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5

6

3

4

7

1

2

The next circle is not consistent. This means that the error is somewhere inside the circle, which
implies that all bits outside the circle are correct.

5

6

3

4

7

1

2

The last circle is also inconsistent. We can again be certain that all bits outside that circle are
correct, leaving us with only one possible incorrect bit, the bit in position 4.

5

6

3

4

7

1

2

All that remains now is to correct this bit in order to get the corrected codeword.
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5

6

3

4

7

1

2

This gives us the corrected codeword, x = (0110001), thus informing us that the original word
u must have been 0110.

An applet with demonstrates this method can be found http://www.systems.caltech.edu/EE/Faculty/rjm/
under the Hamming Code Animation link.

4.6 Reed-Solomon Codes

The best code we have seen so far has a minimum distance of 3. This is good enough to show
the basic idea of coding but next to useless for any real application. On a compact disk you can
make a 1mm radial cut and still the code is powerful enough to recover the information. Given
that a bit occupies roughly 10−6 meters on the disk this means that such a cut covers on the
order of thousand bits along each track. How can we construct codes with a large minimum
distance? This is not a simple problem and researchers have spent considerable effort in the last
60 years to find better and better codes. The problem is difficult for binary codes, i.e., codes
over F2. But if we look at larger alphabets then an optimal solution has been proposed already
in the 1950’s by Irvine Reed and Gus Solomon. The codes are called Reed-Solomon (RS) codes
in their honor and they are one of the most used codes to date. At any given second there
are hundreds of millions of RS codes which are in operation and they ensure that most of our
communications takes place (essentially) error free.

Given how powerful RS codes are, their definition is remarkably simple.

Definition 6 (Reed-Solomon Codes). Given a finite field F , choose n and k such that n ≤ |F |
and 1 ≤ k ≤ n. To construct a Reed-Solomon (RS) code with parameters n and k over the
field F choose n distinct elements from F , call them a0, · · · , an−1. Let F [x] denote the set of
polynomials with coefficients in F in the indeterminate x equipped with the standard addition
and multiplication of polynomials. Then C is defined as

C = {(A(a0), · · · , A(an−1)) : A(x) ∈ F [x] s.t. deg(A(x)) < k}.

In words, we consider the set of polynomials with coefficients in F and degree at most k − 1.
We evaluate each such polynomial at the n distinct points ai, i ∈ [n], and the result of these
evaluations forms the n components of a codeword.
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This is best explained by an example.

Example 22 (Reed-Solomon Codes over F5). Let us build a RS code over F5. We can choose
any blocklength n between 1 and 5 = |F5|. Let us choose the maximum possible, namely n = 5.
Next we can choose the dimension k of the code. We choose k = 2. This gives us a code of
rate r = k/n = 2/5. We start by writing down the set of all polynomials A(x) of degree at most
k− 1 = 1 with coefficients in F5. This set of polynomials is {0, 1, 2, 3, 4, x, 1 + x, 2 + x, 3 + x, 4 +
x, 2x, 1+2x, 2+2x, 3+2x, 4+2x, 3x, 1+3x, 2+3x, 3+3x, 4+3x, 4x, 1+4x, 2+4x, 3+4x, 4+4x}.
Since we can choose each of the two coefficients from F5 and the choice of the two coefficients
is independent, we get in total 52 = 25 such polynomials. According to the definition we need
now 5 distinct field elements ai. Since in total there are only 5 distinct elements we let ai = i,
i = 0, · · · , 4. We now take in turn each of the 25 polynomials. Each we evaluate at the 5 field
elements ai. E.g., take the constant polynomial A(x) = 0. If we evaluate it at the 5 field elements
we get the all-zero vector 00000. This is one codeword. In the same manner if we take any of
the constant polynomials we get the constant vectors. As a further example, take the polynomial
A(x) = 3 + 2x. If we evaluate at the 5 field elements we get 30241. In this way we get a total
of 25 codewords.

Lemma 5 (Reed-Solomon Codes). A RS code as defined above with parameters n and k over the
field F has dimension k and minimum distance dmin = n − k + 1. This is the largest minimum
distance any code with parameters n and k can have.

Proof. To see this claim, first note that the code is linear since the evaluation map is a linear
map. In more detail, if A(x) and B(x) are two elements of F [x] of degree at most k − 1 and
if α, β ∈ F , then C(x) = αA(x) + βA(x) is also an element of F [x] of degree at most k − 1.
Further, for any ai ∈ F , αA(ai) + βB(ai) = C(ai). This shows that any linear combination of
codewords is again a codeword.

Before we can proceed we need to review one fact. Recall that if you have a polynomial of degree
d with complex coefficients then such a polynomial has exactly d complex roots, no more and
no less. This is called the fundamental theorem of algebra. For general fields it can happen that
you have less. E.g., the polynomial 1+x2, considered as a polynomial over the reals has no real
roots (its roots are complex). But over any field (so also for any finite field) the number of roots
(in F ) of a polynomial of degree d over a field F is at most d. This is not a completely trivial
fact. Unfortunately we do not have time to prove this fact here so that we have to take it by
faith. Now we can proceed.

To see that the code has dimension k first note that there are exactly |F |k distinct elements
A(x) of F [x] of degree at most k − 1. It remains to verify that the evaluation of two distinct
polynomials results in distinct codewords. Let A(x) and B(x) be two distinct polynomials of
degree at most k − 1 and let C(x) = A(x) − B(x), which is also a polynomial in F [x] of degree
at most k − 1. If

(A(a0), · · · , A(an−1)) = (B(a0), · · · , B(an−1)),

then
(C(a0), · · · , C(an−1)) = 0.
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But by the fundamental theorem of algebra the polynomial C(x) can have at most k − 1 < n
zeros since it has degree at most k − 1. It follows that any non-zero codeword has weight at
least n − k + 1. Therefore, dmin(C) ≥ n − k + 1. But as discussed in Problem 15, the minimum
distance of any code of length n and dimension k is upper bounded by n − k + 1. This bound
is called the Singleton bound. We therefore conclude that dmin(C) = n − k + 1.

For the purpose of implementation it is convenient to give a slightly more traditional represen-
tation of the code in terms of its generator matrix.

Example 23. Consider the RS code over F5 with n = 5 and k = 2 considered in Example 22.
We can rewrite the evaluation map which takes a polynomial A(x) and evaluates at the five
points ai to give rise to the codeword x: we have x = uG, where u is the vector of length
k which contains the information, and G is the generator matrix. Set u = (A0, A1), i.e., the
components of the information word are the coefficients of the polynomial A(x). Further, define
the matrix G as

G =

(

a0
0 a0

1 a0
2 a0

3 a0
4

a1
0 a1

1 a1
2 a1

3 a1
4

)

=

(

1 1 1 1 1
0 1 2 3 4

)

.

Now the evaluation map has just the standard form x = uG. E.g., if we start with A(x) = 3+2x
then u = (3, 2). The corresponding codeword is then (3, 2)G = 30241, the same result we got in
the previous example.

According to Lemma 5, a RS code of parameters n and k has a minimum distance of dmin =
n − k + 1. For our example we get dmin = 5 − 2 + 1 = 4. We conclude that such a code can
correct any erasure pattern of weight at most dmin − 1 = 3 erasures.

Example 24 (Erasure Correction for RS Codes). Assume that we use the RS code which we
constructed in Example 23 and that we receive the word y = (??2?1). There are three erasures.
Since 3 ≤ dmin − 1 = n− k = 3, we know that we can uniquely reconstruct the transmitted word.
Let x be the transmitted word. We know that x = uG. Further, we know that x and y agree on
positions 3 and 5. We therefore have the system of equations

(y3y5) = (21) = (u1u2)

(

1 1
2 4

)

.

We can solve this system of equations (over F5) in the same manner as we discussed in Example
3. We determine that

A−1 =

(

2 2
4 3

)

,

which gives us (u1u2) = (32). We have therefore recovered the sent information. If we want to
we can also determine the corresponding transmitted codeword. We get x = uG = 30241.

For more realistic examples the matrix equation is typically quite large and we have to solve a
lets say 100×100 system of equations. In these cases we can no longer use Cramer’s rule but we
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have to resort to Gaussian elimination. Over finite fields Gaussian elimination is considerably
easier than over the reals or complex numbers. There are no issues of ill-conditioned matrices or
precision of the computation. Bring the matrix into an upper triangular form by suitable basic
row operations (and switching of columns if necessary). Then use back-substitution to solve the
system.

When we construct a RS code we typically have a large degree of freedom. Once the field has been
fixed and the blocklength n has been chosen, any choice of n distinct field elements a0, · · · , an−1

will do. In order for different devices to be interoperable we need to fix these choices once and
for all. The following choice is used often since it leads to very efficient implementations. This
is also the choice that you should use for your project.

Example 25. Consider the field F7. As discussed in Exercise 14, take the field element 3 and
consider the powers {30, 31, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5}. As you can see the set of powers of
3 covers all non-zero field elements. In other words, the field F7 contains an element so that
{a0, a1, · · · , a|F |−2} covers all non-zero field elements. This is not a special property of F7. In
fact, any finite field has at least one such element. We call such an element a generator of the
field.

Given a finite field F , a blocklength n, where n ≤ |F | − 1, a dimension k, 1 ≤ k < n, and a
generator of the field a, the canonical RS code is defined as follows: pick the n distinct field
elements to be ai = ai, i = 0, · · · , n − 1.

Consider again a RS code over F5 (see Example 23). We can verify that a = 2 is a generator
of the field since {20 = 1, 21 = 2, 22 = 4, 23 = 3} are all distinct. Note that the largest length we
can pick is n = 4 since a only generates the non-zero elements of the field. If we pick k = 3 the
generator matrix has the form

G =





a0
0 a0

1 a0
2 a0

3

a1
0 a1

1 a1
2 a1

3

a2
0 a2

1 a2
2 a2

3



 =





a0·0 a1·0 a2·0 a3·0

a0·1 a1·1 a2·1 a3·1

a0·2 a1·2 a2·2 a3·2





=





a0 a0 a0 a0

a0 a1 a2 a3

a0 a2 a4 a6



 =





1 1 1 1
1 2 4 3
1 4 1 4



 .

Exercise 14 hints at why it is convenient to use a canonical RS code. In this case the evaluation
of the polynomial A(x) at the positions x = ai corresponds to computing a Fourier transform
and such a Fourier transform can be computed very efficiently.

4.7 The Field F256

Now that we know how to construct RS codes for any given finite field F there is only one thing
left to do. We want to construct the field F256. This is the field that is used in most systems
today. Why F256? As we can see from its name, F256 has 256 field elements. This is convenient
since 256 = 28. This means that we can label the 256 field elements by 8 bit values. But 8 bits
is exactly one byte, which is the fundamental information quantity in any digital system.
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We will keep our exposition of F256 to the bare minimum. There are many beautiful properties
of finite fields that you will learn at later stages of your studies. But for now we are content to
learn how to construct this field and how to perform computations in it.

First note that we can not define F256 as the set of integers modulo 256, since 256 is not prime
and so in general there is no multiplicative inverse of a given element. Instead we will use the
following construction.

Definition 7 (The Construction of F256). Define f(x) = x8 + x4 + x3 + x2 + 1, where f(x) is
a polynomial in the indeterminant x with coefficients in F2.

The field F256 consists of the 256 distinct binary polynomials of degree at most 7, i.e., all the
polynomials {0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1, · · · , x7 + x6 + x5 + x4 + x3 + x2 + x+ 1}.
It remains to define the two basic operations, namely addition and multiplication.

Addition is the usual polynomial addition, where the binary components are added over the field
F2.

To perform a multiplication of the two polynomials a(x), b(x) ∈ F256, first perform a standard
polynomial multiplication. This gives lets say the polynomial c̃(x) which might have degree
as high as 14. Reduce this polynomial c̃(x) modulo f(x). This means, write c̃(x) as c̃(x) =
f(x)α(x) + c(x), where c(x) is a polynomial of degree at most 7. Note that there is a unique
such way of writing c̃(x). Define the result of multiplying a(x) with b(x) to be c(x).

All this is best understood by an example.

Example 26. Let a(x) = x4 + x2 + 1, b(x) = x7 + x4. Then

a(x) + b(x) = x7 + x2 + 1.

Note that any time we add two polynomials of degree at most 7 we get a polynomial of degree at
most 7, which is again a field element.

Multiplication is a little bit more complex. To compute a(x) · b(x), where both are considered
to be elements of the field F256, we first compute the ordinary polynomial multiplication, let us
denote it by a(x) ∗ b(x). We get

a(x) ∗ b(x) = (x4 + x2 + 1) ∗ (x7 + x4) = x11 + x9 + x8 + x7 + x6 + x4.

The right hand side is not an element of F256 since its degree is 11. We need to “reduce” it.
This means we want to subtract from it a suitable multiple of f(x) so that the remainder is a
polynomial of degree at most 7. This is done by what is called long division. We have

x11 + x9 + x8 + x7 + x6 + x4 = (x8 + x4 + x3 + x2 + 1)(x3 + x + 1) + (x4 + x3 + x2 + x + 1).

Therefore, we say that x11 + x9 + x8 + x7 + x6 + x4 modulo f(x) = x8 + x4 + x3 +x2 + 1 is equal
to x4 + x3 + x2 + x + 1.

Let us explain what we mean by long division in more detail. For integers one can perform
division with remainder: for any two integers a and b we can find uniquely q and r such that
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a = qb+r with r < b. Similarly, given two polynomials a(x) and b(x), with coefficients in a field,
we can find polynomials q(x) and r(x) with degr(x) < degb(x) such that a(x) = q(x)b(x)+r(x).
We do not formally prove this fact but just remark that the important condition is to have
coefficients of the polynomials belonging to a field. This is fulfilled for our construction of F256

where the coefficients of the polynomials belong to the filed F2. Let us illustrate the process of
long division on our example:

x11 + x9 + x8 + x7 + x6 + x4 x8 + x4 + x3 + x2 + 1

x11 + x7 + x6 + x5 + x3 x3

x9 + x8 − x5 + x4 − x3

x9 + x8 + x5 + x4 + x3 + x

x9 + x5 + x4 + x3 + x

x8 − x
x8 + x + 1

x8 + x4 + x3 + x2 + 1

−x4 − x3 − x2 + x − 1
x4 + x3 + x2 + x + 1

We see that the division operation is very similar to the one for integers.The analogy can be
pushed further and one can define the greatest common divisor for two polynomials gcd(a(x), b(x))
as the (monic) polynomial c(x) which divides both of them and such that any other d(x) which
divides them also divides c(x). The gcd can be found by the Euclidean algorithm:

a(x) = q(x)b(x) + r(x) deg(r(x)) < deg(b(x))

b(x) = q1(x)r(x) + r1(x) deg(r1(x)) < deg(r(x))

r(x) = q2(x)r1(x) + r2(x) deg(r2(x)) < deg(r1(x))

r2(x) = q3(x)r2(x)

Since the degree of the remainder decreases the process will terminate (here we have assumed
it terminates at the fouth step). This is best illustrated on our example:

(x11 + x9 + x8 + x7 + x6 + x4) = (x3 + x + 1)(x8 + x4 + x3 + x2 + 1) + (x4 + x3 + x2 + x + 1)

(x8 + x4 + x3 + x2 + 1) = (x4 + x3 + 1)(x4 + x3 + x2 + x + 1) + (x3 + x)

(x4 + x3 + x2 + x + 1) = (x + 1)(x3 + x) + 1

(x3 + x) = (x3 + x).1 + 0

This also shows that

gcd(x11 + x9 + x8 + x7 + x6 + x4;x8 + x4 + x3 + x2 + 1) = 1.

As for integers, by reverting the process, it can be checked that the gcd can be written in the
form

gcd = α(x)a(x) + β(x)b(x).
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In the example above you can check that

gcd = r2(x) = (1 + q2(x)q1(x))a(x) − (q(x)(1 + q2(x)q1(x)) − q2(x))b(x).

Most of the properties that a field has to fulfill (see the table in Section 4.1.1) are very easy to
verify. The most difficult one is to ensure that every non-zero field element has an inverse with
respect to multiplication. This means, we need to check that for each a(x) ∈ F256 there exists a
polynomial, call it a−1(x) ∈ F256 such that a(x) ·a−1(x) = 1. One tedious, albeit straightforward
way, to verify this is to multiply a given element a(x) ∈ F (x) by all field elements b(x) ∈ F (x)
and to check that there is one such b(x) so that a(x) · b(x) = 1.

The reason why this is guaranteed to work is that the modulo operation is done with respect to
an irreducible polynomial f(x). Irreducible polynomials play a similar role to prime numbers.
By definition we cannot decompose them into factors of smaller degree. Moreover as for integers
we have the following two lemmas.

Lemma 6 (Divisor Property). If f(x) is irreducible and divides the product a(x)b(x) then it
must divide a(x) or b(x) or both.

Proof. Suppose f(x) divides a(x). Then we are done. If f(x) does not divide a(x) then
gcd(f(x), a(x)) = 1 since f(x) is irreducible. Thus by the Euclidean algorithm there exist
φ(x) and α(x) such that 1 = φ(x)f(x) + α(x)a(x). Multiplying by b(x) we get

b(x) = φ(x)f(x)b(x) + α(x)a(x)b(x)

Now it suffices to note that f(x) divides the right hand side of the equation (by the hypothesis)
so that it must divide the left hand side also.

Lemma 7 (Unique Factorization Property). Any polynomial with coefficients in a field can be
decomposed in to a product of irreducible factors. This decomposition is unique up to the order
of the factors and a choice of global coefficients for the factors.

We do not use this lemma explicitly so we omit the proof but just point out that it is a direct
corollary of the divisor property.

We are now ready to explain why it is guaranteed that each non-zero element has a unique
inverse. If we are only interested in the existence of such an element we can proceed as follows.
We first claim that there can be at most one such inverse. Assume to the contrary that for
a given non-zero field element a(x) both b(x) and c(x) are inverses, b(x) 6= c(x). Then from
a(x) · b(x) = a(x) · c(x) we conclude that a(x) · (b(x) − c(x)) = a(x) · d(x) = 0, where d(x) is
a non-zero element of the field. This means that a(x) ∗ d(x) must be a multiple of f(x), i.e.,
a(x)∗d(x) = f(x)∗ e(x) for some binary polynomial e(x). From the divisor property this would
imply that f(x) divides a(x) or d(x) or both. But this is not possible since f(x) is irreducible so
that gcd(f, a) = gcd(f, d) = 1. This would imply that either a(x) or b(x) (or both) must share
a factor in common with f(x). That f(x) is irreducible in our running example can be checked
by dividing it by all polynomials of degree at most 4 (there are 32 of them)
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Here comes the punch line: since by our previous argument the multiplication of a given non-
zero field element a(x) with the set of all field elements must each yield a distinct element of
the field, one of them must be the field element 1. This proves that the inverse exists.

If we want to efficiently compute the inverse we use exactly the same technique as for computing
the inverse of an element of Fp. This means for a given non-zero field element we use the
extended Euclidean algorithm to compute two polynomials α(x) and φ(x) so that

a(x) ∗ α(x) + f(x) ∗ φ(x) = gcd(a(x), f(x)) = 1.

where gcd(a(x), f(x)) = 1 since f(x) is irreducible. If we now consider this equation modulo
f(x) we see that α(x) is the sought after inverse.

Finally we explain how one can set a table in order to efficiently do operations in a field
like F256. But we do this for the smaller field F16 (note that 16 = 24) to keep the discus-
sion manageable. This field consists of all binary polynomials of degree smaller or equal to
3 {0, 1, x, x2, x3, x + 1, x2 + 1, ...x3 + x2 + x + 1} where multiplication is defined modulo the
irreducible polynomial f(x) = x4 + x3 + 1. In this representation addition is very easy since
we add the polynomials as usual by adding the coefficients modulo 2. This can also be easily
in binary notation with the obvious correspondence {0000, 0001, 0010, 0100, 0011, 0101, ....1111}.
However it is less convenient for multiplication or for finding an inverse. For these operations it
is better to represent the field elements by {0, 1, x, x2, x3, x4, x5, ..., x14}. Since we work modulo
x4 + x3 + 1 we have

x4 = −x3 − 1 = x3 + 1

x5 = x.(x3 + 1) = x4 + x = x3 + x + 1

x6 = x4 + x2 + x = x3 + x2 + x + 1

x7 = x4 + x3 + x2 + x = 2x3 + x2 + x + 1 = x2 + x + 1

etc.

You are also advised to check that x15 = 1. Therefore we can set up a table:

We can now perform multiplication and inversion easily. For example

(1110).(0101) = x8.x9 = x17 = x2 = (0100)

(0111)−1 = x−7 = x−7.x15 = x8 = (1110)

Conclusion: there is a general theory of finite fields along the lines above. In fact, one can prove
that all finite fields have pk elements where p is prime and k is an integer. Further, such a field
can be constructed as the set of polynomials with coefficients in Fp modulo an irreducible (does
not factor over Fp) polynomial of degree k. Addition of two polynomials is done component-wise
and multiplication is regular polynomial multiplication followed by a reduction by the irreducible
polynomial.
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multiplication addition binary representation

0 0 0000
1 1 0001
x x 0010

x2 x2 0100
x3 x3 1000
x4 x3 + 1 1001
x5 x3 + x + 1 1011
x6 x3 + x2 + x + 1 1111
x7 x2 + x + 1 0111
x8 x3 + x2 + x 1110
x9 x2 + 1 0101

x10 x3 + x 1010
x11 x3 + x2 + 1 1101
x12 x + 1 0011
x13 x2 + x 0110
x14 x3 + x2 1100

x15 1 0001

Table 4.1: Operations in F16.
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4.9 Exercises

Exercise 1. Let F = F5. Consider the system of linear equations

x1 + 2x2 + 3x3 = 2,

3x1 + 2x2 + 4x3 = 1,

3x1 + x2 + x3 = 0.

a) Write this system in matrix form as AxT = uT . What are A, x, and u, and what are their
dimensions?

b) Assume that you know that the determinant of A considering it as a matrix with elements
over the integers is 7. What is the determinant of A, considering it as a matrix over F5?

c) Show that the system can be solved uniquely over F5?

d) Solve the system over F5 by using Gaussian elimination.

e) If you had to solve a n × n system. How complex is Gaussian elimination, i.e., how many
elementary operations (addition, multiplication, etc.) will you need?

Hints: a) This is a 3 × 3 system; b) It is 2; c) |A| = 2 6= 0; d) The solution is (1, 0, 2); e) n3;

Exercise 2. Let V be the set formed by the vectors v = (v1, . . . , vn) where vi is equal to 0 or
1, and the field F be the Galois field F2.

a) Show that this set is a vector space. What is its dimension? Repeat the same for vi are taken
over Fp, where p is prime.

b) Show that the Hamming distance between two vectors u and v,

d(u,v) =

n
∑

i=1

|ui − vi|.

defines a metric on this vector space.

Hint: b) We want to show that d(u,v) ≤ d(u,w) + d(w,v); It suffices to consider a single
component, call them ui, wi, and vi; fix ui and consider the four possible cases where wi and
vi are either the same or differ from ui;

Exercise 3. Let S be a subspace of the vector space W over the field F . The set

S⊥ = {w ∈ W : w • s = 0 for all s ∈ S}

is called the dual space. Here, w • s is defined
∑

i wisi, where all computations are done in F .

a) Show that S⊥ is a subspace.

b) Show that if S is a subspace of dimension k then S⊥ is a subspace of dimension n − k.

b) Take F = F2 and S = {0000, 0011, 1100, 1111}. Determine the dual S⊥.

Hint: a) Take w,w′ ∈ W. Show that αw − w′ ∈ W; b) We need to show that if A is a
k × n matrix, k ≤ n, with independent rows then the set of solutions AwT = 0 has dimension
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n − k; bring this equation into upper triangular form by Gaussian elimination; show that you
can choose the lowest n − k components of w in an arbitrary manner and that the remaining
components are then fixed;

Exercise 4. We consider a binary code generated by the matrix

G =





1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 1



 .

This means that

C = {x : x = uG,u ∈ F 3
2 }.

a) Is the word (1, 0, 1, 0, 1, 0) a codeword ?

b) How many words are generated by this code? Give a list of them.

c) The first two bits of the word (x, x, 0, 1, 1, 0) were deleted. What was the emitted word?
What is the maximum number of binary symbols which can be removed while still being able
to find the emitted codeword.

d) Let C be the vector space of the words generated by this code, C⊥ is its orthogonal complement;
find C⊥ (give the list of all its elements.)

e) C⊥ is also a vector space. Give a basis for this space. Such a basis is usually denoted by the
matrix H. It is called the parity-check matrix (see Section 4.5.2).

f) Let ŷ be the received word. The vector given by s = ŷHT is called the syndrome (see Section
4.5.3). If the received word is (0, 0, 1, 1, 0, 1), what is the resulting syndrome? What is the word
which was most likely emitted?

g) What is the smallest number of errors (Hamming distance) which could change one codeword
into another codeword?

Hints: a) combine the first and third row of G; b) 8; c) (1, 1, 0, 1, 1, 0); dmin = 3, dmin − 1 = 2,
so we can tolerate at most two erasures; d+e) G is in systematic form; it is therefore easy to
find H ; f) (0, 0, 1, 1, 1, 1) g) dmin = 3

Exercise 5. Let n be the blocklength. a) What are the generating matrices and parity-check
matrices of a single parity-check code? b) What about a repetition code?

Hint: a) G has dimensions (n− 1)× n; b) G has dimensions 1× n; We have not learned this in
class but the two matrices are actually the dual of each other;

Exercise 6. The two words of a (3, 1) repetition code, (0, 0, 0) and (1, 1, 1), have the same
probability.

a) The code works as an error detection code. if p is the probability of error on one bit, what is
the probability that an incorrect word not being detected? Evaluate this probability for p = 1/3.

b) The code now works as an error correction code. Depending on the received word, when do
we decide that the word (0, 0, 0) was emitted? What is the probability that an incorrect word
be corrected to the wrong value? Evaluate this probability for p = 1/3.
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Exercise 7. The 16 codewords of a (7, 4) code are (0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1), and all
cyclic permutations of (0, 0, 0, 1, 0, 1, 1) and (0, 0, 1, 1, 1, 0, 1).

a) What is the systematic generating matrix of this code?

b) What is the corresponding parity-check matrix?

c) What is the minimal distance of this code? What is its rate? Is this code equivalent to a
(7, 4) Hamming code, given in Section ???

Exercise 8. In practice, a systematic generating matrix of a linear code never has a column of
zeros. Why?

Hint: Assume you scratch this column, i.e., assume you do not transmit the corresponding
component. What changes for the receiver? Does the receiver loose any information?

Exercise 9. Take a binary block code which has m words of length n. That is, each codeword
is a sequence of n bits. We suppose that this code can correct up to e errors.

a) For a codeword x, we call S the set of binary sequences for which the decoder returns x.
Show that the total number of sequences contained in the set |S| has the following lower bound:

|S| ≥
e

∑

i=0

(

n

i

)

where
(

n
i

)

is a binomial coefficient, giving the number of possible combinations for placing i
elements in n places.

b) Show that the number M of codewords satisfies:

M ≤
2n

∑e
i=0

(

n
i

)

This upper bound is known as the “sphere packing bound”. Because it is equivalent to consid-
ering a sphere (of dimension n) with radius e, centered on each codeword and filling in the space
of possible sequences without overlapping of spheres.

c) We have seen in the course (Section ??) that Hamming codes can correct up to 1 error. Fir a
bloc length of n = 2m − 1 these codes contain 22m−m−1 codewords. Show that Hamming codes
satisfy the previous bound by equality. Such codes are called perfect.

Exercise 10. Show that in a linear binary code, either all the codewords contain an even
number of 1’s or half the codewords have an even number of 1’s and the other half has an odd
number of 1’s.

Hint: Note that the sum of two words of odd weight gives a word of even weight, the sum of
two words of even weight gives a word of even weight and the sum of a word of even weight and
a word of odd weight gives a word of odd weight. Assume therefore that not all codewords have
an even number of ones. Pick one codeword of odd weight, call it w. Pair up all codewords. To
every codeword x ∈ C associate the codeword x + w. Argue that this proves the claim.

Exercise 11. Construct a RS code of length n = 7 and dimension k = 3 over F7.

30



a) What is its generating matrix G?

b) Assume that the information word is u = (123). What is the corresponding codeword?

c) Assume that a codeword is sent over the erasure channel and that you observed (64?4?0?).
Can you recover the transmitted odored? If so, what is it.

Hint: a) The rows of G are ((1, 2, 3, 4, 5, 6, 0), (1, 4, 2, 2, 4, 1, 0), (1, 4, 2, 2, 4, 1, 0)); b) (6, 1, 6, 0, 4, 4, 0);
c) (6, 4, 1, 4, 6, 0, 0)

Exercise 12. Consider the field F256 generated by the primitive polynomial f(x) = x8+x4+x3+
x2 +1. As discussed in class this means the following: the field elements are the 256 polynomials
of degree at most 7 with binary coefficients. Addition is the usual polynomial addition, where
the binary components are added over the field F2. To perform a multiplication of the two
polynomials a(x) and b(x) first perform a standard polynomial multiplication. This gives lets
say the polynomial c̃(x) which might have degree as high as 14. Reduce this polynomial c̃(x)
modulo f(x). This means, write c̃(x) as c̃(x) = f(x)α(x) + c(x), where c(x) is a polynomial of
degree at most 7. Note that there is a unique such way of writing c̃(x). Define now the result
of multiplying a(x) with b(x) to be c(x).

a) What is (a(x) + b(x))c(x), where a(x) = 1 + x4 + x7, b(x) = x + x2 + x6, and c(x) = 1 + x3.

Without proof we note that the field has the property that the set {x0, x1, · · · , x254} if reduced
modulo the primitive polynomial f(x) consists of all non-zero elements of the field and that
x255 = x0 = 1. In principle you verify this by direct computation. There is therefore a one-to-
one correspondence between the non-zero field elements and the first 255 powers of x.

b) Using this property, what is x−247 if written as an element of F256?

c) Assume you store a table in which each (non-zero) field element is written both as a polynomial
a(x) of degree at most 7 as well as xi, where 0 ≤ i ≤ 254. Write down the first 10 rows of this
table, corresponding to the entries xi, 0 ≤ i ≤ 9.

d) Assume you want to compute the multiplication of two generic elements a(x) and b(x). How
can you do this efficiently using the above table? Demonstrate this with the simple example
a(x) = x3 and b(x) = x5 + x4 + x3 + x.

Exercise 13. Construct the RS code over F11 of length n = 8 and with k = 4. Use the non-zero
field elements xi = i, i = 1, · · · , 8 for the construction.

a) Write down the corresponding generator matrix G.

b) Assume that you want to transmit the information vector u = (1407). What is the corre-
sponding codeword?

c) Assume you received the word (62?90???). You want to determine the received codeword.
Write down the corresponding system of equations. Now use the Gaussian elimination algorithm
to recover the transmitted information. What was the transmitted codeword?

Exercise 14 In the first module of this course you have encountered the N -point Fourier
transform over the complex numbers. Fourier transforms play a fundamental part in much of
signal processing and you will encounter them as a basic tool throughout your studies. This
exercise will show you in terms of a concrete example that the concept of Fourier transforms is
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very general.

a) Consider the field F7. Compute explicitly the set {3i mod 7}, i = 0, · · · , 5. What is 36

mod 7? A field element a such that its powers ai, i = 0, · · · , |F | − 2, cover all the non-zero
elements of the field is called a generator. We have seen already in Exercise 12 that x is a
generator for the field F256 produced by the primitive polynomial f(x) = x8 + x4 + x3 + x2 + 1.

b) Consider a vector u of length 6 whose components are elements of F7. Define the following
“Fourier Transform Pair” between the vectors u and û of length 6 with components in F7. We
have

ûi =
∑

j=0,··· ,5
uj3

ij ,Fourier transform

uj = 6
∑

i=0,··· ,5
ûi5

ij , inverse Fourier transform

where all computations are done over F7. Note that 5 is the multiplicative inverse of 3.

c) Start with u = (123456). Compute û. Then verify that you get back u by computing the
inverse transform.

d) Compute the cyclic convolution of the two vectors u = (123456) and v = (121212). Then
compute the Fourier transform of the result. Alternatively, compute the Fourier transform of u

and v and then take the component-wise multiplication. Any comments?

e) (Bonus Question) Can you show in general that if you start with u and compute first û by
applying the Fourier transform and then compute the inverse Fourier transform of û that you
get back u?

Exercise 15 Consider a binary linear code C of length n and dimension k. This means that C
is a subspace of {0, 1} of dimension k. Let dmin be the minimum distance of the code C.

a) Prove the following fundamental inequality due to Singleton

d ≤ n − k + 1.

Hint: Write down the 2k codewords in a (2k) × n binary matrix. Delete all except the first
k columns of this matrix. Note that the distance between two codewords is the sum of the
difference among the first k components and the difference among the last (n− k) components.

b) Give an example of a code which achieves the preceding upper bound with parameters n and
k = 1.

Hint: repetition code
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