Principles of Wireless Networks EPFL Spring Semester 2009
Prof. Suhas Diggavi Handout # 10, 10 May 2009

Solutions: Homework Set # 2
Principles of Wireless Networks

Problem 1 (Coherent capacity: Symmetric assumption)

(a). The capacity of the MIMO channel with receiver CSI is given by
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(i) follows from the identity det(/ +AB) = det(I + BA).

(b). We can always consider the covariance matrix of the form K, = U,I~(XU;‘ where I~(x is also a
covariance matrix satisfying the total power constraint.
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Define a diagonal matrix IT; with —1 in the i position and 1 in the remaining positions. The
entries of Hif(xij equal those of K, except in the off diagonal positions in the i™ row and the
i" column where the sign is reversed. The matrix H,-KXH;‘ is a covariance matrix satisying the
power constraint, i.e., Tr{IL;K,IT'} = Tr{K,}. If we denote R(K,) to be
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where (ii) follows from the fact that, since the columns of H? are independent and their distri-
bution symmetric, H* and H*I1; have the same distribution. From the concavity of the logdet(-)



function, it follows that
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The entries of the matrix %(f(x + HinH;-*) are equal to those in I~(x except in the off diagonal
positions in the i row and column, where the entries are zero. Iterating the above process M,
times for i = 1,...,M;, we find that the optimal K, is diagonal which proves our claim.

Problem 2 (Universal code design criterion for the MISO channel)

(a). The Q(+) function is decreasing in its argument. The error probability is maximum for the h for

which ||h*(X4 — Xp)|| is minimum subject to ||h||> > M’g@;l)
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where A; is the smallest singular value of (X4 — Xp). The minimum error probability is given
by
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where A, is the smallest singular value of 1 (X4 —X3).

SNR
(b).
MM, (2R —1) ERSUACAS)
— 4SNR
O(\ = eng ) <

~ o MSNR™ U7

where the approximation is made on the scale of SNR. As long as A3 > SNR!~", the error
probability goes down exponentially with SNR.



Problem 3 (Diversity-Multiplexing tradeoff - Alamouti scheme over the
2 x M, MIMO)

().

(b).
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The received vector at the first time instant is given by
y[1] =hju; +houy + 2[1]
and at the second time instant is given by
¥[2] = hi(—uz) +houj +2[2]

This can be rewritten as
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Define H to be the matrix with columns h; and h, and let |[H||? = ||h;||? + ||h,||? Projecting the

output along the direction of < (hI:I)T> gives
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where wi ~ Cn(0, 1). Likewise projecting the output along the direction of B (hT)T gives
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where wy ~ Cn(0,1). We have made use of the fact that the two columns of H are orthogonal
to separate the signals u; and u, at the receiver.

The channel corresponding to either stream ; is a scalar channel with gain ||H|| and by reasoning
similar to the previous two questions, the diversity gain at rate rlog SNR is given by 2M,.(1 —r).

Problem 4 (Diversity-Multiplexing tradeoff - Repetition coding over L

parallel channels)

The output of the i channel is given by

yi = hiu+z
Collecting the L outputs, we have
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Projecting the output vector in the direction of | .. | gives
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where 7z ~ (n(0,1) and ||h||?> = ¥, |ly|>. The outage probability at rate rlogSNR for this effective
scalar channel is given by
SNR" — 1

SNR }
~Pr{||h|* < SNR~(17)]
~ SNRfL(lfr)

Pr{log(1+ ||h|*SNR) < rlogSNR} = Pr {||h||* <

where the two approximations follow for large enough SNR and since [|h||> ~ x3,, so Pr(||h[|> < &) ~
eL. Since r is the rate achievable over L channel uses, the effective rate 7 = % In terms of this effective
rate, the diversity gain is given by L(1 — LF).

Problem 5 (Diversity-Multiplexing tradeoff - V-Blast with annuling)

The output at the receiver is given by
y =hpxg + Zh,-xi—i-z
i#k
The decorrelator projects the output in the subspace orthogonal to the columns {h;}; .. If we call the
projection matrix Qy, the projection is given by

Vi = Qry
= Qrhyxi +Qyz

Projecting y; along Q;hy gives the equivalent scalar channel where the achievable rate per stream k is
given by log(1+ % |Qxhy||?). In problem 3 of homework 2, we saw that Q. has rank n, — (n; — 1).
Therefore HQkth2 ~ X%(nr—n;-&-])'
by (n, —n, +1)(1 —ri). Since we assume the streams to have equal rate, the net rate r = Y rg, or
equivalently, 7, = ;-. So the diversity gain is equivalently given by (n, —n, +1)(1 — ;).
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Therefore the diversity gain at multiplexing gain of r; is given

Problem 6 (Diversity multiplexing tradeoff using superposition codes)

(a). We can assume that T — oo, and therefore get the D-M tradeoff d(r) = 1 — r. Note that in fact
we do not need T to be too large. As we have seen in the class uncoded QAM achieves the D-M
tradeoff of this channel with 7' = 1.
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(c). Since we use successive decoder, we have to consider the weak message as noise when we
decode the first one. Let [4(?)|> = SNR™* for some o € R. Therefore we have
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It is clear that for B = 1, we get
Pou(rs,SNR) = Pr [log (1 +SNR'™%) < rylog SNR] = SNR~ =),
For B < 1, we can write
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(d). Itis clear that
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(e). For B > ry, we have dy = 1 — ry, which is the same as in part (a).



