
Principles of Wireless Networks EPFL Spring Semester 2009
Prof. Suhas Diggavi Handout # 5, Tue, Mar 17, 2009

Homework Set # 2
Principles of Wireless Networks

Problem 1 (Coherent capacity: Symmetric assumption)

Consider the angular representation Ha of the MIMO channel H = UrHaU∗t . We statistically model
Ha as a Mr×Mt random matrix with independent columns, the distribution of whose entries is jointly
symmetric with respect to zero.

(a). Starting with the expression for the capacity of the MIMO channel with receiver CSI, show that

C = max
Kx:Tr(Kx)≤P

E
[

logdet
(

IMr +
1

N0
HaU∗t KxUtHa∗

)]
(b). Show that we can restrict the input covariance Kx to be of the following structure

Kx = UtΛU∗t

where Λ is a diagonal matrix with non negative entries that sum to P. Hint: Start with defining
a diagonal matrix Πi with −1 in the ith position and 1 in the remaining positions.

Problem 2 (Universal code design criterion for the MISO channel)

Consider the slow fading fading MISO channel with Mt transmit antennas and a single receive antenna,
i.e.,

y[m] = h∗x[m]+ z[m] (1)

where h =
(
h1, . . . ,hMt

)> with h∼ CN (0,I) while z[m]∼ CN (0,1) is i.i.d. over time. The pairwise
error probability (of confusing codeword XA with XB) conditioned on a specific channel realization is
given by

Pr(XA→ XB|h) = Q
(‖h∗(XA−XB)‖√

2

)
The worst case error probability over all channels not in outage is given by

max
h:‖h‖2≥Mt (2R−1)

SNR

Q
(‖h∗(XA−XB)‖√

2

)
(a). Show that this probability can be explicitly written as

Q
(√1

2
λ2

1Mt(2R−1)
)

where λ1 is the smallest singular value of the normalized codeword difference matrix 1√
SNR

(XA−
XB).

(b). Let λ̂1 be the smallest singular value of (XA−XB). What is the minimum value of λ̂1 so that the
worst case error still goes down exponentially with the SNR?
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Problem 3 (Diversity-Multiplexing tradeoff - Alamouti scheme over the
2×Mr MIMO)

[Exercise 9.4 from the same text.]
Consider using the Alamouti scheme over a 2×Mr i.i.d. Rayleigh fading MIMO channel, given as

y[t] = Hx[t]+w[t].

The transmit codeword matrix spans two symbol times t = 1,2:[
u1 −u∗2
u2 u∗1

]
.

(a). With this input to the MIMO channel, show that we can write the output over the two time
symbols as [

y[1]
(y[2]∗)t

]
=
[

h1 h2
(h∗2)t −(h∗1)t

][
u1
u2

]
+
[

w[1]
(w[2]∗)t

]
. (2)

Here we have denoted the two columns of H by h1 and h2.

(b). Observing that the two columns of the effective channel matrix in (2) are orthogonal, show that
e can extract simple sufficient statistics for the data symbols u1 and u2 as

vi =‖H ‖ ui +wi, i = 1,2. (3)

Here ‖H ‖2 denotes ‖ h1 ‖2 + ‖ h2 ‖2, and the additive noises w1 and w2 are i.i.d. CN (0,1).

(c). Conclude that the maximum diversity gain seen by either stream (u1 or u2) at a multiplexing rate
of r per stream is 2Mt(1− r).

Problem 4 (Diversity-Multiplexing tradeoff over L parallel channels)

[Exercise 9.2 from the text “Fundamentals of Wireless Communications” by Tse-Viswanath.]
Consider the repetition scheme where the same codeword is transmitted over the L i.i.d. Rayleigh
sub-channels of a parallel channel. Show that the largest diversity gain this scheme can achieve at a
multiplexing rate of r per sub-channel is L(1−Lr).

Problem 5 (Diversity-Multiplexing tradeoff - V-Blast with nulling)

[Exercise 9.5 from the same text.]
Consider the V-BLAST architecture with a bank of decorrelators for the Mt×Mr i.i.d. Rayleigh fading
MIMO channel with Mr ≥Mt . Show that the effective channel seen by each stream is a scalar fading
channel with distribution χ2

2(Mr−Mt+1). Conclude that the diversity gain with a multiplexing gain of r
is (Mr−Mt +1)(1− r/Mt).

Problem 6 (Diversity multiplexing tradeoff using superposition codes)

Consider a scalar block fading channel,

y(b)(k) = h(b)x(b)(k)+ z(b)(k) k = 0, . . . ,T −1 (4)

where the channel h(b) remains constant for T time units. Let z(b)(k) ∼ CN (0,1) be i.i.d. Gaussian
noise and we have a transmit power constraint E|x(k)|2 ≤ SNR. The channel is assumed to be Rayleigh
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fading i.e. h(b) ∼ CN (0,1) and varies independently from block to block. Assume that the coding
interval is T i.e., we do not code across fading blocks. The transmission codebook is Gaussian and
we transmit at a rate R(SNR) = r log(SNR). We have a sequence of codebooks for each SNR level
and we are interested in characterizing the diversity multiplexing tradeoff for some strategies over this
channel. Note that we assume the receiver knows {h(b)} accurately whereas the transmitter does not
have access to it.

(a). Characterize the diversity multiplexing tradeoff for the scalar channel given in (4).

Hint: You do not need lengthy calculations, just prove the outage diversity order and state the
achievable coding strategy

(b). Now consider a superposition scheme which uses

x(b)(k) = x(b)
H (k)+ x(b)

L (k) (5)

where {x(b)
H (k)} and {x(b)

L (k)} are designed for two message sets MH and ML. These messages
can be delivered to the receiver though the same (common) channel {h(b)}. Therefore (4) is
modified to,

y(b)(k) = h(b)x(b)
H (k)+h(b)x(b)

L (k)+ z(b)(k) k = 0, . . . ,T −1 (6)

If we use Gaussian codebooks for both message sets and allocate power SNRH to message MH

and SNRL to message ML, we see that SNRH +SNRL ≤ SNR is needed. Let

SNRH
.= SNR , SNRL

.= SNR1−β (7)

If we want to decode both MH and ML, characterize the outage diversity order versus multiplex-
ing tradeoff, in terms of the multiplexing rates of MH and ML, i.e., RH(SNR) = rH log(SNR),
RL(SNR) = rL log(SNR),

d̃ = lim
SNR→∞

logPout(MH ,ML,SNR)
logSNR

(8)

and Pout(MH ,ML,SNR) is the outage probability for the joint decoder.

(c). Suppose we use a successive decoder, where we decode MH first considering ML as part of the
noise. Find an expression for Pout(MH ,SNR) the outage probability for such a system.

(d). Characterize the outage diversity order for the system in (c) in terms of β,rH , i.e. find,

dH = lim
SNR→∞

logPout(MH ,SNR)
logSNR

(9)

(e). Is there a choice of β, β 6= 1, such that dH is the same as in (a)?

3


