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Problem 1 (Antenna spacing and angular representation)

(a). The bin k (k ranging from 0 to nr−1) corresponds to the non resolvable paths that are within a
solid angle of ± 1

2Lr
of a path that subtends an angle φk with respect to the array. The φk satisfies

cosφk =
k
Lr

(mod
1
∆r

)

=
k
3
(mod2)

Note that ∆r = Lr
nr

= 0.5. We can explicitly solve the above equation for each φk to get φ0 =
cos−1 0 = 90◦,270◦, φ1 = cos−1 1

3 ,360◦−cos−1 1
3 , φ2 = cos−1 2

3 ,360◦−cos−1 2
3 , φ3 = cos−1 1 =

0 and φ3 = cos−1−1 = 180◦, φ4 = cos−1−2
3 ,360◦−cos−1−2

3 and φ5 = cos−1−1
3 ,360◦−cos−1−1

3 .
Note that for the case of k = 3, there are two solutions for cosφ3, namely 1 and −1.

The angular width of the 0th bin is given by 2 ∗ 2 ∗ (90◦− cos−1 1
6) = 38.38◦, the 1st and 5th

bin each is given by 2 ∗ 2 ∗ (cos−1 1
6 − cos−1 1

3) = 39.50◦, the 2nd and 4th bin each is given by
2 ∗ 2 ∗ (2cos−1 1

3 − cos−1 2
3 − cos−1 1

6) = 49.85◦ and the 5th bin is given by 2 ∗ 2 ∗ (2cos−1 2
3 +

cos−1 1
6 −2cos−1 1

3) = 142.9◦.

The width in radians increases as φ decreases from 90◦ to 0◦. This is because of the relatively
faster changes in the value of cosφ for higher values of φ and correspondingly, the relatively
slower changes in the value of cosφ for lower values of φ.

(b). For the case where ∆r = 3
5 , the φk satisfies

cosφk =
k
3
(mod

5
3
)

The solutions for the φk are given by φ0 = cos−1 0 = 90◦,270◦, φ1 = cos−1 1
3 ,360◦− cos−1 1

3 ,
φ2 = cos−1 2

3 ,360◦− cos−1 2
3 ,cos−1(−1) = 180◦, φ3 = cos−1(1),cos−1(−2

3),360◦− cos−1−2
3

and φ4 = cos−1−1
3 ,360◦− cos−1−1

3 .
The angular width of the 0th bin is given by 2 ∗ 2 ∗ (90◦− cos−1 1

6) = 38.38◦, the 1st and 4th

bin each is given by 2 ∗ 2 ∗ (cos−1 1
6 − cos−1 1

3) = 39.50◦, the 2nd and 3rd bin each is given by
2∗ (2cos−1 1

3 − cos−1 1
6) = 60.65◦ = 121.3◦.

For the case where ∆r = 3
2 , the φk satisfies

cosφk =
k
3
(mod

2
3
)

The solutions for the φk are given by φ0 = 90◦,270◦,cos−1 2
3 ,360◦− cos−1 2

3 ,cos−1 −2
3 ,360◦−

cos−1 −2
3 , and φ1 = 0◦,180◦,cos−1 1

3 ,360◦− cos−1 1
3 ,cos−1 −1

3 ,360◦− cos−1 −1
3 .

The angular width of the 0th bin is given by 38.38 + 2∗49.85 = 138.08◦ and that of the 1st bin
is given by 360−138.08 = 221.92◦.
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(c). For the case where ∆r = 3
10 , the φk satisfies

cosφk =
k
3
(mod

10
3

)

The solutions for the φk are given by φ0 = cos−1 0 = 90◦,270◦, φ1 = cos−1 1
3 ,360◦− cos−1 1

3 ,
φ2 = cos−1 2

3 ,360◦−cos−1 2
3 , φ3 = cos−1 1 = 0, φ7 = φ3 = cos−1−1 = 180◦, φ8 = cos−1−2

3 ,360◦−
cos−1−2

3 and φ9 = cos−1−1
3 ,360◦− cos−1−1

3 . Note there is no solution for k = 4,5,6.
The angular width of the 0th bin is given by 2 ∗ 2 ∗ (90◦− cos−1 1

6) = 38.38◦, the 1st and 9th

bin each is given by 2 ∗ 2 ∗ (cos−1 1
6 − cos−1 1

3) = 39.50◦, the 2nd and 8th bin each is given
by 2 ∗ 2 ∗ (2cos−1 1

3 − cos−1 2
3 − cos−1 1

6) = 49.85◦ and the 3rd and 7th bin each, is given by
2∗ (2cos−1 2

3 + cos−1 1
6 −2cos−1 1

3) = 71.45◦.

Bin numbers 4,5 and 6 do not correspond to any angular direction and are hence empty.

(d),(e). For the four cases, we identify the receiver bins in which the paths fall into.

Path No.(i) Solid angle at Rx ant.(Ωr,i) Case nr = 6 (a) Case nr = 2 (b) Case nr = 10 (c)
1 -0.40 4 0 8
2 0.0 0 0 0
3 0.80 2 0 2
4 0.10 0 0 0
5 -0.90 3 1 7
6 0.10 0 0 0
7 -0.40 4 0 8
8 0.20 1 1 1
9 -0.60 4 0 8

10 0.70 2 0 2
11 -0.45 4 0 8
12 -0.80 4 0 8

Since there is a single transmit antenna, there is only physical bin at the transmitter into which
all the paths fall. The resultant Ha matrix is a nr×1 matrix with coefficients given by Eq(7.72).
Notice that the paths belonging to a bin are aggregated together.

Observe that in the densely spaced case, the bins l = 3,4,5,6,9 are empty and therefore the
corresponding coefficients Ha

l will be negligible. When the antenna spacing is increased, the
bins l = 3,9 are empty and the corresponding coefficients Ha

l will be negligible. The effect of
increasing the length is to reduce the beam width of the angular lobes and thereby paths which
previously fall into the same physical bin now fall into different physical bins. This increases
the number of degrees of freedom in the channel.

Problem 2 (Coherent capacity: Fast Fading SIMO channel)

(a). (i) follows from the independence of x and h. (ii) follows since removing terms from the condi-
tioning cannot reduce the differential entropy and because y[i] is independent of everything else
given (h[i],x[i]).
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R =
1
n

I(x;y,h)

=
1
n

I(x;h)+
1
n

I(x;y|h)

(i)
=

1
n

I(x;y|h)

=
1
n

h(y|h)− 1
n

h(y|x,h)

=
1
n

n

∑
i=1

h(y[i]|y[1], . . . ,y[i−1],h)−h(y[i]|y[1], . . . ,y[i−1],x,h)

(ii)
≤ 1

n

n

∑
i=1

h(y[i]|h[i])−h(y[i]|h[i],x[i])

=
1
n

n

∑
i=1

h(y[i]|h[i])−h(z[i])

(iii)
≤ h(y|h)−h(z)
= I(x;y|h)

We explain the last inequality. Notice that h(y[i]|h[i]) is a concave function of the distribution
pi(·) on the letter x[i]. Therefore, 1

n ∑
n
i=1 h

(
pi(·)

)
≤ h

(1
n ∑

n
i=1 pi(·)

)
. The convex combination

of the distributions {pi(·)} is the distribution with respect to which the differential entropy is
calculated. This rate is achievable using random coding sampling each letter of the codeword
from the above distribution.

(b). (i) follows since the circularly symmetric Gaussian has the maximum differential entropy among
random variables with a given second moment. (ii) follows since det |I +AB|= det |I +BA|. and
(iii) follows since the log(·) is an increasing function of the input power which is constrained by
P.

(c). Since the information x[m] is multiplied by the vector h[m], there is no information carried by
any of the vectors in a direction orthogonal to h[m]. The operation of premultiplying by h∗[m]

‖h[m]‖
extracts the component of the received vector in the direction of h[m] and annuls the components
in the orthogonal direction. Since there is no loss of information, ỹ[m] is a sufficient statistic.

(d). The equivalent scalar channel is

ỹ[m] = ‖h[m]‖x[m]+ z̃[m]

where z̃[m]∼ Cη(0,σ2). The capacity of this channel is also Eh log
(

1+ P
σ2 ‖h‖2

)

Problem 3 (Coherent capacity: Fast fading MISO channel)

(a). (i) follows since the circularly symmetric Gaussian has the maximum differential entropy among
random variables with a given second moment. (ii) follows since Kx is Hermitian and therefore
has a SVD into U∗ΛxU. (iii) follows since Uh has the same distribution as h.

(b). (i) follows since ΠT h has the same distribution as h. (ii) follows since log(·) is a concave
function. The entries in Λ̃x are equal. Since log(·) is an increasing function the maximum is
attained when the diagonal entries are all P

t and (iii) follows.
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Problem 4 (Beamforming)

(a). From the Cauchy-Schwarz inequality, the received SNR

||h∗[m]x[m]||2

σ2 ≤ ||h[m]||2 ||x[m]||2

σ2

If we need to transmit x̃ the strategy x[m] = h[m]
||h[m]|| x̃[m] achieves the upper bound in the equation

above. Hence this strategy maximizes the received SNR.

(b). The equivalent scalar channel between x̃[m] and y[m] is given by

y[m] = ‖h[m]‖x̃[m]+ z[m]

The optimal strategy is given by waterfilling across time as

x[m] =
h[m]
||h[m]||

x̃[m]

with |x̃[m]|2 = Pm such that

Pm =
(

α− σ2

||h[m]||2

)+

with α chosen such that
T

∑
m=1

Pm = T P

Problem 5 (Degrees of Freedom)

Let h1, . . . ,hk be k columns, each generated from C nr η(0, I). Let A ⊂ C nr be the l dimensional sub-
space (l ≤ k) spanned by h1, . . . ,hk. Let u1, . . .ul be the l basis vectors of A . Extend the basis vectors
to bases for C nr . Let U be the matrix with columns u1, . . .unr .

We can express hk+1 = ∑
nr
1 h̃k+1(i)ui. The vector h̃k+1 is distributed as U∗hk+1, which in turn is

distributed as hk+1, i.e, as C nr η(0, I). The probability that hk+1 ∈ A is the probability that h̃k+1(i) = 0
for i = l + 1, . . . ,nr. Since h̃k+1(i) is distributed as a circularly symmetric Gaussian variable, and is
in particular continuous, this probability is zero. For k < nr, therefore, the probability that hk+1 is in
the linear span of {h1, . . . ,hk} is zero. Applying this argument for k = 1, . . . ,nt −1 gives the required
result.

Problem 6 (MMSE Successive Interference Cancellation)

(a). Assume that the first k−1 streams have already been decoded without error and subtracted out.

⇒ y(k)[m] = hkxk[m]+
Mt

∑
i=k+1

hixi[m]+ z[m]

= hkxk[m]+ z(k)[m]
Kk = E(z(k)[m]z(k)∗[m])

= N0IMr +
Mt

∑
i=k+1

hih∗i Pi

= Kz[m]
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Processing the output (after subtracting the decoded streams) with the MMSE filter results in a
scalar channel with SNR Pkh∗kK−1

k hk. The maximum rate at which stream k can reliably carry
information is therefore

Rk = log(1+Pkh∗k(N0IMr +
Mt

∑
i=k+1

hih∗i Pi)−1hk)

(b).

RMt = log
(

1+
PMt

N0
h∗Mt

hMt

)
= log

(
IMr +

PMt

N0
hMt h

∗
Mt

)
[using det(I +AB) = det(I +BA)]

Similarly
RMt = log |IMr +PMt−1(N0IMr +PMt hMt h

∗
Mt

)−1hMt−1h∗Mt−1|

Therefore,

RMt +RMt−1 = log
(

1+
PMt

N0
h∗Mt

hMt

)
+ log(1+PMt−1h∗Mt−1(N0IMr +PMt hMt h

∗
Mt

)−1hMt−1)

= log
∣∣∣∣(IMr +

PMt

N0
hMt h

∗
Mt

)
(IMr +PMt−1(N0IMr +PMt hMt h

∗
Mt

)−1hMt−1h∗Mt−1)
∣∣∣∣

= log
∣∣∣∣IMr +

PMt

N0
hMt h

∗
Mt

+
PMt−1

N0
(N0IMr +PMt hMt h

∗
Mt

)(N0IMr +PMt hMt h
∗
Mt

)−1hMt−1h∗Mt−1

∣∣∣∣
= log

∣∣∣∣IMr +
PMt

N0
hMt h

∗
Mt

+
PMt−1

N0
hMt−1h∗Mt−1

∣∣∣∣
Continuing in a similar manner we get

Mt

∑
k=1

Rk = log

∣∣∣∣∣IMr +
1

N0

Mt

∑
i=1

Pihih∗i

∣∣∣∣∣
(c). If Pi = P

Mt
, the above expression becomes,

Mt

∑
k=1

Rk = log

∣∣∣∣∣IMr +
P

N0Mt

Mt

∑
i=1

hih∗i

∣∣∣∣∣
= log

∣∣∣∣∣IMr +
SNR
Mt

Mt

∑
i=1

hih∗i

∣∣∣∣∣
= log

∣∣∣∣∣IMr +
SNR
Mt

Mt

∑
i=1

HH∗
∣∣∣∣∣
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