
Information Theory and Coding EPFL Winter Semester 2008/2009
Prof. Suhas Diggavi Handout #8, Thursday, 16 October 2008

Notes on the Lempel-Ziv Algorithm
(taken from the Information Theory and Coding course given by Prof. Emre Telatar)

Universal Source Coding — Lempel-Ziv Algorithm

Our experience with data compression so far has been of the following type: We are
given the statistical description of an information source, we then try to design a system
which will represent the data produced by this source efficiently.

In this note we depart from this model, and consider a method which will represent
a sequence efficiently without knowing by which means the sequence was produced. For
this purpose, rather than assuming a statistical model for the sequence, it makes more
sense to imagine that there is only a single sequence: an infinite string x which we wish
to represent.

The approach we will describe here considers the compressibility of an infinite string
with a finite state machine. For our purposes, a finite state machine is a device that reads
the input sequence one symbol at a time. Each symbol of the input sequence belongs to a
finite alphabet X with K symbols (K ≥ 2). The machine is in one of a finite number s of
states before it reads a symbol, and goes to a new state determined by the old state and
the symbol read. We will assume that the machine is in a fixed, known state z1 before it
reads the first input symbol. The machine also produces a finite string of binary digits
(possibly the null string) after each input. This output string is again a function of the
old state and the input symbol. That is, when the infinite sequence x = x1x2 · · · is given
as the input, the decoder produces y = y1y2 · · · , while visiting an infinite sequence of
states z = z1z2 · · · , given by

yk = f(zk, xk), k ≥ 1

zk+1 = g(zk, xk), k ≥ 1

where the function f takes values on the set of finite binary strings, so that each yk is
a (perhaps null) binary string. A finite segment xkxk+1 · · ·xj of a sequence x will be
denoted by xj

k, and by an abuse of the notation, the functions f and g will be extended
to indicate the output sequence and the final state. Thus, f(zk, x

j
k) will denote yj

k and
g(zk, x

j
k) will denote zj+1.

To make the question of compressibility meaningful one has to require some sort of
a ‘unique decodability’ condition on the finite state encoders. The decoder, armed with
the knowledge of the description of the finite state machine that encoded the string, and
the starting state z1, but (of course) without the knowledge of the input string should
be able to reconstruct the input string x from the output of the encoder y. A weaker
requirement than this is the following: for any two distinct input sequences ws

r and xt
r, and

for any zr, if f(zr, w
s
r) = f(zr, x

t
r) then g(zr, w

s
r) 6= g(zr, x

t
r). An encoder satisfying this

1

........

........
.........
...........

.................
..

............
.........
.........
........
.

........

........
.........
...........

.................
..

...........
.........
.........
........
..

...
.......

..................
..................

..................
..................

..................
..................

..................
........................
..........................

...................................
...

.....................
..............

..........
..........
.........
.........
.........
...........
...........
..............
..................

...
...............................
.......

..........
...........
..........
...........
.............
..................

..

..
............
............
..........
...........
.........
.........
........
..........
..........
.............

...
......................................

...
...........
..........
.........
.........
.........
.........
.........
....
........
........
......................

........

........
.........
...........

.................
..

............
.........
.........
........
.

a / λ

b / 1

A

B

S

b / λ

a / 0

b / 0 a / 1

A finite state machine with three states S, A and B. The notation i /output means
that the machine produces output in response to the input i. λ denotes the null
output.

Figure 1: An IL encoder which is not uniquely decodable.

second requirement will be called information lossless (IL). It is clear that if an encoder
is not IL, then there is no hope to recover the input from the output, and thus every
‘uniquely decodable’ encoder is IL. However, as illustrated in Figure 1, an IL encoder is
not necessarily uniquely decodable. Starting from state S, two distinct input sequences
will leave the encoder in distinct states if they have different first symbols, otherwise
they will lead to different output sequences. Thus, the above encoder is IL. Nevertheless,
no decoder can distinguish the input sequences aaaa · · · and bbbb · · · by observing the
output 000 · · · .

We will first derive a lower bound to the the number of bits per input symbol any
IL encoder will produce when encoding a string x. This lower bound will apply to IL
encoders which may have been designed with the advance knowledge about x. We will
then show that a particular algorithm (the Lempel-Ziv algorithm) the description of which
does not depend on x, does as well as this lower bound. That is to say, a machine that
implements the LZ algorithm will compete well against any IL machine in compressing
any x. (However, note that a machine that implements LZ will not be a finite state
machine.)

We can now define the compressibility of an infinite string x. Given an IL encoder
E, the compression ratio for the initial n symbols xn

1 of x with respect to this encoder is
defined by

ρE(xn
1) =

1

n
L(yn

1),

where L(yn
1) is the length of the binary sequence yn

1 . (Note that since each yi is a
possibly null binary string L(yn

1) may be more or less than n.) The minimum of ρE(xn
1)

over the set of all IL encoders E with s or less states is denoted by ρs(x
n
1). Observe that

ρs(x
n
1) ≤ dlog2Ke. The compressibility of x with respect to the class of IL encoders with

2

s or less states is then defined as

ρs(x) = lim sup
n→∞

ρs(x
n
1).

Finally the compressibility of x with respect to IL encoders (or simply the compressibility)
is defined as

ρ(x) = lim
s→∞

ρs(x).

Note that since ρs(x) is non-increasing in s, the limit indeed exists.
Let us define c(xn

1) as the maximum number of distinct strings that xn
1 can be parsed

into, including the null string. It turns out that c(xn
1) plays a fundamental role in the

compressibility of x.
Let c be the number of distinct strings that xn

1 can be parsed into. As any integer, c
can be written as

c =
m−1∑
j=0

Kj + r

with 0 ≤ r < Km. If c is the number of different strings that xn
1 can be parsed into, the

minimum n will result if we choose these distinct strings as the shortest ones possible.
Since there are Kj strings of length j, for such a c

n ≥
m−1∑
j=0

jKj +mr.

Since

m−1∑
j=0

Kj =
Km − 1

K − 1
and

m−1∑
j=0

jKj = m
Km

K − 1
− K

K − 1

Km − 1

K − 1
,

we see that

n ≥ m(c− r + 1/(K − 1))− (K/(K − 1))(c− r) +mr

≥ m(c+ 1/K − 1)− (K/K − 1)c

≥ (m− 2)c

On the other hand, since c < (Km+1− 1)/(K− 1), we see that Km+1 > (K− 1)c+ 1 > c,
which implies m− 2 > logK(c/K3) and see that

n > c logK(c/K3),

and so
n > c(xn

1) logK(c(xn
1)/K3). (1)

Now we can state the following

Theorem 1. []For any IL-encoder,

L(yn
1) ≥ c(xn

1) log2

c(xn
1)

8s2
. (2)

3

Proof. Let xn
1 be parsed into c = c(xn

1) distinct words, x = w1 . . . wc, and let cij be the
number of words which find the machine in state i and leave it in state j. Because the
machine is IL, the corresponding output sequences must be distinct, and their total length
Lij must satisfy (from (1), using K = 2 since y is a binary string)

Lij ≥ cij log2(cij/8).

The total length L(yn
1) is the sum of the Lij’s, thus

L(yn
1) ≥

∑
1≤i,j≤s

cij log(cij/8).

Since
∑

i,j cij = c(xn
1), and since subject to this constraint the minimum of the right

hand side occurs at cij = c(xn
1)/s2, (right hand side is a symmetric convex function) we

get (2).

From (1) one can see that c(xn
1) = O(n/ log n). [Proof: Set c′ = c/K3 and n′ =

n/K3. Note that (1) is equivalent to c′ log2 c
′ < n′. Take n large enough so that

√
n′ ≤

2n′/ log2 n
′. Now, either c′ <

√
n′ or c′ ≥

√
n′. In the first case c′ < 2n′/ log2 n

′ by
assumption. In the second, by (1), c′ < n′/ log2 c

′ ≤ n′/ log
√
n′ = 2n′/ log2 n

′. Thus, in
either case c′ ≤ 2n′/ log2 n

′, and thus c ≤ 2n/ log2(n/K
3).]

Using this and (2), we see that

ρs(x) ≥ lim sup
n→∞

1

n
c(xn

1) log2(c(x
n
1)/8s2)

= lim sup
n→∞

1

n
c(xn

1) log2 c(x
n
1)− lim

n→∞

1

n
c(xn

1) log2(8s
2)

= lim sup
n→∞

1

n
c(xn

1) log2 c(x
n
1)

and since the right hand side is independent of s,

ρ(x) ≥ lim sup
n→∞

1

n
c(xn

1) log2 c(x
n
1). (3)

Now, let us describe the Lempel-Ziv algorithm. The algorithm proceeds by generating
a dictionary for the source and constantly updating it. It starts up with a dictionary
just consisting of the words of length 1, and operates in the following manner: When
the dictionary has D words, each of its words is assigned a binary codeword of length
dlog2De in lexicographic order. When a word in the dictionary is recognized in the input
sequence, the encoder generates the binary codeword of that word on its output, and
enlarges the dictionary by replacing the just recognized word with all its single letter
extensions. The dictionary can be represented as a tree, whose leaves are the current
dictionary entries. Figure 2 shows an example of the operation of the algorithm. Since
the recognized words are encoded before the dictionary is modified, the decoder can keep
track of the encoder’s operation. Suppose that the algorithm parses the sequence xn

1 into
clz(xn

1) words w1, . . . , wclz
. Then we can write:

xn
1 = λw1w2 · · ·wclz

,

4

...

.........
.........
.........
.........
.........
.........
.........
..

..
.........
.........
.........
.........
.........
.........
..

...
..........

..........
..........

..........
..........

..........
...

.........
.........
.........
.........
.........
.........
.........
. ...

..
.........
.........
.........
.........
.........
.........
..

...
..........

..........
..........

..........
..........

..........
.....

..........
..........

..........
..........

..........
..........

..........
... ...

...
..........

..........
..........

..........
..........

..........
...

..........
..........

..........
..........

..........
..........

..........
.... ...

...
..........
..........
..........
..........
..........
..........
.... ...

..........
..........
..........
..........
..........
..........
..........
...

..........
..........

..........
..........

..........
..........

..........
.... ..

..........
..........
..........
..........
..........
..........
...

..........
..........

..........
..........

..........
..........

..........
...

cbccbbcba

(e)(d)
..........

..........
..........

..........
..........

..........
..........

......

ca

a

cb cc

b

abac

aaa aab aac aac

ac

b

cccaab

aaa aab

(c)(b)(a)

acab

cc bb

aacaabaaa

acabaa

cb

The parsing of the sequence aaaccb with the Lempel-Ziv algorithm. The fig-
ure shows the evolution of the dictionary. The sequence is parsed into the
phrases a, aa, c and cb. Figure 2(a) shows the initial dictionary. In 2(b) we
see the dictionary after reading a, 2(c) shows after aaa has been read, etc. At
each stage one might assign each dictionary entry a fixed length binary code-
word. If the assignment is done in lexicographic order, at stage (a) it will be
{a → 00, b → 01, c → 10}, at stage (b) {aa → 000, ab → 001, . . . , c → 100},
at stage (c) {aaa → 000, aab → 001, . . . , cc → 110}, and at stage (d) {aaa →
0000, aab → 0001, aac → 0010, . . . , cc → 1000}, and the output sequence will be
00,000,110,0111. (Commas are put in to aid the reader, they will not appear at the
output.)

Figure 2: Operation of the Lempel-Ziv algorithm

where λ denotes the null sequence. By construction, the first clz − 1 of the parses are
distinct. (The last word wclz

may not be distinct from the others.) If we concatenate the
last two parses, and count in λ we get a parsing of xn

1 into clz(xn
1) distinct words. Thus

clz(xn
1) ≤ c(xn

1). Since each parse extends the dictionary by K − 1 entries, the size of the
dictionary at the end of parsing xn

1 is

K + (clz − 1)(K − 1),

and since each parsing increases the number of nodes (leaves and intermediate) of the
tree by K, the number of nodes in the dictionary tree is

clz(xn
1)K ≤ c(xn

1)K.

Even if we had provided codewords for all the nodes, the total number of binary digits
we have sent would be less than

Llz(yn
1) ≤ clz(xn

1)dlog2(clz(xn
1)K)e ≤ clz(xn

1) log2(2Kclz(xn
1)) ≤ c(xn

1) log2(2Kc(x
n
1)).

5

Dividing by n, and taking the lim sup as n gets large we see that the LZ algorithm will
achieve the lower bound previously derived (3) in the limit of n → ∞. However, the
algorithm uses up infinite memory, since it keeps track of an ever growing tree.

One can perhaps express the tradeoff we have seen as follows: suppose we want to
compress an infinite string x, and we were given the choice of using the “off the shelf”
Lempel-Ziv, versus designing a machine tuned to x with a finite (but arbitrary) number
of states. Then, we might as well pick the Lempel-Ziv: In the long run (i.e., for long
strings) the Lempel-Ziv algorithm will do as well as the best finite state machine.

In particular, if one knew that the string x is the output of an information source which
is stationary and ergodic, one could have designed a finite state machine that implements,
for example, the Huffman algorithm for a large enough block length that will compress
the source output with high probability, arbitrary close to its entropy. Combined with
the above paragraph we see that for such sources, the Lempel Ziv algorithm will compress
them to their entropy too.

6

