
Information Theory and Coding EPFL Winter Semester 2008/2009
Prof. Suhas Diggavi Handout #18, Tuesday, 18 November 2008

Homework Set #7
Due Thursday, 27 November 2008, before 12:00 noon, INR 031/032/038

Problem 1 (JOINTLY TYPICAL SEQUENCES)

We consider a binary symmetric channel (BSC) with crossoverprobabilityp = 0.1.
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Figure 1: Binary symmetric channel with crossover probability 0.1

The input distribution that achieves capacity is the uniform distribution (i.e.p(x) = (1
2 , 1

2)), which
yields the joint distributionp(x, y)

x, y 0,0 0,1 1,0 1,1
p(x, y) 0.45 0.05 0.05 0.45

The marginal distribution ofY is also(1
2 , 1

2 ).

(a) The jointly typical setA(n)
ǫ (X,Y ) is defined as the set of sequencesxn ∈ {0, 1}n, yn ∈ {0, 1}n

that satisfy equations
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< ǫ. (3)

The first two equations correspond to the conditions thatxn andyn are inA
(n)
ǫ (X) andA

(n)
ǫ (Y ),

respectively. Consider the last condition, which can be rewritten as

−
1

n
log p(xn, yn) ∈ (H(X,Y ) − ǫ,H(X,Y ) + ǫ).
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Let k be the number of different places in which the sequencexn differs fromyn (k is a function
of the two sequences). Then we can write

p(xn, yn) =

n
∏

i=1

p(xi, yi)

=(0.45)n−k(0.05)k

=

(

1

2

)n

(1 − p)n−kpk.

An alternative way of looking at this probability is to look at the binary symmetric channel as
an additive channelY = X ⊕ Z, whereZ is a binary random variable that is equal to 1 with
probabilityp, and is independent ofX. In that case,

p(xn, yn) =p(xn)p(yn|xn)

=p(xn)p(zn|xn)

=p(xn)p(zn)

=

(

1

2

)n

(1 − p)n−kpk.

Show that the condition that(xn, yn) are jointly typical is equivalent to the condition thatxn is
typical andzn = yn − xn is typical.

(b) Now consider random coding for the additive channel. As in the proof of the channel coding
theorem, assume that2nR codewordsXn(1),Xn(2), . . . ,Xn(2nR) are chosen uniformly over
the2n possible binary sequences of lengthn. One of these codewords is chosen and sent over the
channel. The receiver looks at the received sequence and tries to find a codeword in the code that
is jointly typical with the received sequence. This corresponds to finding a codewordXn(i) such

thatY n −Xn(i) ∈ A
(n)
ǫ (Z). For a fixed codewordxn(i), what is the probability that the received

sequenceY n is such that(xn(i), Y n) is jointly typical?

(c) Suppose now that a fixed codewordxn(1) was sent andY n was received. Denote the eventEj:

Ej = {(Xn(j), Y n) ∈ A(n)
ǫ (X,Y )}, j ∈ {2, 3, . . . , 2nR}

to be the event that there is a codeword other thanxn(1) jointly typical with Y n. Use the union
bound to find an upper bound toPr{E2 ∪ E3 ∪ . . . ∪ E2nR |xn(1) was sent}.

(d) Given that a particular codeword was sent, the probability of error (averaged over the probability
distribution of the channel and over the random choice of codewords) can be rewritten as

Pr(error|xn(1) sent) =
∑

yn:yn causes error

p(yn|xn(1)).

There are two kinds of error: the first occurs if the received sequenceyn is not jointly typical with
the transmitted codeword, and the second occurs if there is another codeword jointly typical with
the received sequence. Using the results of the preceding parts, calculate this probability of error.
By the symmetry of the random coding argument, this does not depend on which codeword was
sent.
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Problem 2 (THE GILBERT-ELLIOTT CHANNEL)

In this problem we study a time varying problem. This channelhave two states,B (bad) andG (good),
and binary input alphabetX = {0, 1} and quaternary output alphabetY = {0, 1, 2, 3}. At each time
instance, the channel might be in bad or good state,Si ∈ {B,G}, and acts like a binary symmetric
channel as shown in Fig. 2.
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Figure 2: Two binary symmetric channels.

The state of the channel is random process distributed according to the first order Markov process
with transition probabilities shown in Fig. 2.
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Figure 3: Transition of the states of the channel.

(a) Find the capacity of each of the channels shown in Fig. 2. What is the optimal input distribution
for each of them?

(b) Compute the stationary distribution of the state of the channel.

(c) Assume that there is a genie who tells the state of the channel at each time instance to both of the
encoder and decoder. Compute the capacity of the channel,CSI (capacity with side information).

(d) Let the state of the channel be unknown to both encoder anddecoder. What can the decoder say
about the channel state?

(e) Compare the capacity of the channel when the states are known to the encoder/decoder,CNSI

(capacity without side information) to the capacity obtained in part (c).
Hint: Verify the following inequalities and equalities, and argue whether the inequalities are strict
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or tight.

CNSI = max
p(x)

1

n
I(Xn;Y n, Sn)

= max
p(x)

1

n
I(Xn;Y n|Sn)

= max
p(x)

1

n
(H(Y n|Sn) − H(Y n|Xn, Sn))

≤ max
p(x)

1

n

(

n
∑

i=1

H(Yi|S
n) −

n
∑

i=1

H(Yi|Xi, Si)

)

≤ max
p(x)

1

n

(

n
∑

i=1

H(Yi|Si) −

n
∑

i=1

H(Yi|Xi, Si)

)

≤ max
p(x)

1

n

n
∑

i=1

I(Xi;Yi|Si)

Problem 3 (PARALLEL CHANNELS AND CHANNELS WITH TWO INDEPENDENT LOOKS ATY )

(a) Consider two discrete memoryless channels (X1, p(y1|x1),Y1) and (X2, p(y2|x2),Y2) with capac-
ities C1 andC2 respectively. A new channel (X1 ×X2, p(y1|x1) × p(y2|x2),Y1 × Y2) is formed
in which x1 ∈ X1 andx2 ∈ X2 are sent simultaneously, resulting iny1, y2. Find the capacity of
this channel.

(b) LetY1 andY2 be conditionally independent and conditionally identically distributed givenX.

1. Show thatI(X;Y1, Y2) = 2I(X;Y1) − I(Y1;Y2).

2. Show that the capacity of the channel (X , p(y1, y2|x),Y1×Y2) is less than twice the capacity
of the channel (X , p(y1|x),Y1)

Problem 4 (ZERO-ERROR CAPACITY)

A channel with alphabet{0, 1, 2, 3, 4} has transition probabilities of the form

p(y|x) =

{

1/2 if y = x ± 1 mod 5

0 otherwise
(4)

This channel is shown in fig (4).

(a) Compute the capacity of this channel in bits.

(b) The zero-error capacity of a channel is the number of bitsper channel use that can be transmitted
with zero probability of error. Clearly, the zero-error capacity of this channel is at least1 bit
(consider the codebookC = 0, 1 for example). Find a block code that shows that the zero-error
capacity is greater that1 bit. Can you estimate the exact value of the zero-error capacity?
Hint: Consider codes of length 2 for this channel.
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(a) The channel of problem 4
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called pentagon channel

Figure 4: Channel of problem 4.
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