
Information Theory and Coding EPFL Winter Semester 2008/2009
Prof. Suhas Diggavi Handout #16, Thursday, 4 November 2008

Homework Set #5
Due 12 November 2008, before 12:00 noon, INR 032 or INR 038

Problem 1

Consider the finite state machines shown in Fig. 1, with inputalphabetX = {a, b} and binary output
alphabet.

(a) For each of the finite state machines, determine whether it is

• uniquely docodable.

• information lossless.

Let we feed the input sequencebbabaababa to the FSM1 and assume that the initial state of the machine
is “S”.

(b) Find the output of the FSM. What is the length of the output?

(c) Find the maximum number of distinct words the sequence can be parsed into.

(d) Apply the Lempel-Ziv compression algorithm studied in the class to this sequence, with the initial
dictionaryD0 = {a, b}. What is the length of the output?

(e) Find the number of distinct words the sequence is parsed into using the LZ algorithm.

s

x y

a/01

a/1

b/1

b/0

b/0

a/1

(a) FSM1

s

yx

z

a/1

b/1

a/0

b/0

a/1

b/1

a/11b/0

(b) FSM2

Figure 1: Finite state machines

1



Problem 2 (CODING WITH LEMPEL-ZIV )

(a) Let symbolsx1, x2, . . . , xn come from alphabetX = {a, b, c, d}. Using the Lempel-Ziv algo-
rithm presented in class and the output alphabet{0, 1}, encode the sequenceabadcdadd.

(b) Decode the sequence00100000100011111 which was encoded using Lempel-Ziv algorithm.

Consider the following variant of Lempel-Ziv called “sliding window Lempel-Ziv” or LZ77.
Assume that the stringx1, x2, . . . , xn is already compressed until positioni − 1. Then, look for the

longest substringxi, . . . , xi+l−1 starting ati such that there exists somej ∈ {i − W, . . . , i − 1} and
the substringxj, . . . , xj+l−1 is the same asxi, . . . , xi+l−1, whereW is a positive integer. Hence, we
are looking at the longest match that started in the window oflengthW before the current position of
the cursor. Then, return a pointer to this past string (how many symbols before the current symbol the
match occurred) and the length of the match (i.e. returni − j andl).

For example, ifW = 4 the stringABBABBABBBAABABA will be parsed as follows:A,B,B,
ABBA,BB,BA,A,BA,BA, which we can represent as(0, A), (0, B), (1, 1), (3, 4), (3, 2), (4, 2),
(1, 1), (3, 2), (2, 2). The first number indicates how many symbols ago the match started, with the
convention that 0 means there was no match in the window (in which case the symbol is sent un-
compressed). Hence, we need⌈log(W + 1)⌉ bits to represent the first number. The second num-
ber indicates the length of the match. In general this lengthcan be longer than the size of the win-
dow but here we restrict ourselves to the case wherel ≤ W . We would begin the encoding by:
(000, 0), (000, 1), (001, 001), (011, 100), . . ..

(c) AssumeW = 7 andX = {a, b}. Using sliding window Lempel-Ziv algorithm, compress the
sequenceababababbbaabbaab.

(d) Decode the sequence00000001010010011110101100 which was encoded using the sliding win-
dow algorithm.

Problem 3 (LEMPEL ZIV WELCH ALGORITHM AND GIF COMPRESSION)

In problem 2, both the finite sequences you encode and decode were in a “good” form; i.e., the last
phrase could be parsed and be added to the dictionary or was already in the dictionary (in LZ78) or
equivalently, the last phrase could be parsed as seen previously in the sequence (in LZ77). Though it
is obvious that the last phrase does not affect the asymptotic optimality of Lempel-Ziv, it might be of
interest to see how the practical versions of Lempel-Ziv terminates the encoding of finite sequences in
GIF compression method for example. GIF is designed based ona variant of LZ78 modified by Welch
(and known as LZW), and we focus only on this variant in this problem.
The basic encoding algorithm used in GIF is as follows:

1) Initialize the dictionary byX ;

2) [.c.] := empty;

3) K := next character in charstream;

4) Is [.c.]K in the dictionary?

YES:{

[.c.] := [.c.]K;

go to [3];

2



}

NO:{

output the code for [.c.] to the codestream;

add [.c.]K to the dictionary;

[.c.] := K;

go to step 3;

}

Charstream is the sequence to be encoded, codestream is the encoded sequence, and [.c.] is the “current
prefix” which is empty at the beginning and is formed to contain the largest sequence of symbols which
is already in the dictionary. Afterwards, this prefix in encoded to codestream, [.c]K (K being the next
character) is added to he dictionary and [.c] is set to K. The algorithm stops in step [3] when there is no
next character in the charstream and just outputs the code for [.c.] . Note that since nothing is deleted
from the dictionary (as opposed to the method studied in class), the last phrase would either be added to
the dictionary or is already in the dictionary.
The decoding algorithm is as follows:

1) Initialize the dictionary byX ;

2) get the first code: CODE;

3) output the string for CODE to the charstream;

4) OLDCODE := CODE;

5) CODE := next code in codestream;

6) does CODE exist in the dictionary?

YES:{

output the string for CODE to the charstream;

[...] := translation for OLDCODE;

K := first character of translation for CODE;

add [...]K to the dictionary;

OLDCODE:= CODE;

}

NO:{

[...] := translation for OLDCODE;

K := first character of [...];

output [...]K to charstream and add it to the dictionary;

OLDCODE := CODE;

}

7) go to step 5;

Use the above algorithms to encode and decode the sequenceABACABAB (X = {A,B,C,D}).

Problem 4 (LEMPEL-ZIV ALGORITHM IS ASYMPTOTICALLY OPTIMAL )

Consider a first order 2-state Markov process with the transition matrix

[

1

3

2

3
1

2

1

2

]

.

3



(a) Find the stationary distribution of this Markov process([p0, p1]).

(b) Imagine that the Markov process is in the state0. How many steps does it take on average for the
process to return to the state0 again? (See that it is equal to1

p0
)

(c) Now consider blocks of lengthn of Xi’s (Xn−1

0
) to construct an extended Markov process. Imag-

ine that the a block of lengthn moves1 bit at a time to form the extended Markov process
states. Forexample forn = 3, the sequence00111010110 consists of the following extended
states: 001, 011, 111, 110, 101, 010, 101, 011, 110. Find the stationary distribution of this ex-
tended Markov process.

(d) How many steps does it take on average for the extended Markov process to return to the state
xn−1

0
starting from the statexn−1

0
? (Use (b) to guess the answer even if you didn’t prove it.)

(e) Consider each sequence which is to be encoded as a state ofan extended Markov process and as-
sume a LZ77 algorithm with infinite-length sliding window. Then to encode the blockx0x1 · · · xn−1,
the last time we have seen thesen symbols should be communicated. Call itRn(x0x1 · · · xn−1).
Explain that the requested average number of steps in (d) is indeed

E{Rn(X0X1 · · ·Xn−1)|(X0X1 · · ·Xn−1) = x0x1 · · · xn−1}.

(f) Verify the following inequalities and equalities.

lim
n→∞

1

n
El(Xn−1

0
) = lim

n→∞

1

n
E(log Rn + 2 log log Rn + O(1))

= lim
n→∞

1

n

∑

x
n−1

0

p(xn−1

0
)E(log Rn(Xn−1

0
)|Xn−1

0
= xn−1

0
)

≤ lim
n→∞

1

n

∑

x
n−1

0

p(xn−1

0
) log E(Rn(Xn−1

0
)|Xn−1

0
= xn−1

0
)

= H(X )

Hint: If k ≤ m is to be encoded,log m bits are needed. How about the case when there is no
upper bound onk? This is exactly the case for encodingRn. Think about the following encoding
for Rn:

C(Rn) = 00 · · · 01x1x2 · · · xl

where there are⌈log Rn⌉ zeros preceding1, andx1 · · · xl is Rn in binary. The length of this code
is then2⌈log Rn⌉+ 1. But00 · · · 01 is the most inefficient code to describe⌈log Rn⌉!! What if we
use the proposed encoding scheme, to encode⌈log Rn⌉ (instead of coding by00 · · · 01)?! How
many bits in total would then be required to describeRn?

4


