Homework Set #2
Due 9 October 2008 (Before 14:00 p.m., INR 038)

Problem 1 (Pure Randomness and Biased Coins)
Let X_1, X_2, \ldots, X_n denote the outcomes of independent flips of a biased coin. Thus, $P\{X_i = 1\} = p$, $P\{X_i = 0\} = 1 - p$ where p is unknown. We wish to obtain a sequence Z_1, Z_2, \ldots, Z_K of fair coin flips from X_1, X_2, \ldots, X_n. Towards this end, let $f : X^n \rightarrow [0, 1]^*$ (where $[0, 1]^*$ is the set of all finite-length binary sequences, where Λ is the null string) be a mapping $f(X_1, X_2, \ldots, X_n) = (Z_1, Z_2, \ldots, Z_K)$, where $Z_i \sim$ Bernoulli $(\frac{1}{2})$, and K may depend on (X_1, X_2, \ldots, X_n). In order that the sequence Z_1, Z_2, \ldots appear to be fair coin flips, the map f from biased coin flips to fair coin flips must have the property that all 2^k sequences Z_1, Z_2, \ldots, Z_k of a given length k have equal probability (possibly 0), for $k = 1, 2, \ldots$. For example, for $n = 2$ the map $f(01) = 0, f(10) = 1, f(00) = f(11) = \Lambda$ has the property that $P\{Z_1 = 1|K = 1\} = P\{Z_1 = 0|K = 1\} = \frac{1}{2}$. Give reasons for the following inequalities:

\[nH(p) \overset{(a)}{=} H(X_1, X_2, \ldots, X_n) \]
\[\overset{(b)}{=} H(Z_1, Z_2, \ldots, Z_K, K) \]
\[\overset{(c)}{=} H(K) + H(Z_1, Z_2, \ldots, Z_K|K) \]
\[\overset{(d)}{=} H(K) + \mathbb{E}[K] \]
\[\overset{(e)}{=} \mathbb{E}[K], \]

where \mathbb{E} is the expectation operator. Thus, no more than $nH(p)$ fair coin tosses can be derived from (X_1, X_2, \ldots, X_n), on the average. Exhibit a good map f on sequences of length 4.

Problem 2 (Inequalities)
Let X, Y, and Z be joint random variables.

(a) Prove the following inequalities and find conditions for equality.

1. $H(X; Y; Z) - H(X; Y) \leq H(X; Z) - H(X)$.
2. $I(X; Z|Y) \geq I(Z; Y|X) - I(Z; Y) + I(X; Z)$.

(b) Give examples of X, Y, and Z such that

1. $I(X; Y|Z) < I(X; Y)$.
2. $I(X; Y|Z) > I(X; Y)$.
Problem 3 (Huffman Sub-tree)

Let S be a source with alphabet $\{x_1, \ldots, x_n\}$, with associated probabilities $P = (p_1, \ldots, p_n)$. We compress this source using a binary Huffman code, where a source symbol x_i is associated with a codeword $c_i(x_i)$ of length ℓ_i. Denote the corresponding binary tree by T.

(a) Write expressions for the $L(P)$, average length of the code, and $H(P)$, the entropy of the source, in terms of ℓ_i's and p_i's.

Denote the corresponding binary tree by T. Let u be an intermediate node in the tree of distance ℓ from the root, and denote by T_u the sub-tree below u, and by S_u the set of source symbols located on the leaves of this sub-tree, as shown in Fig. 3. Assume $S_u = \{x_k + 1, \ldots, x_n\}$. Also let T^u be the same tree unless the sub-tree below u is merged in a node u, with probability $q = \sum_{i=k+1}^n p_i$.

(b) Argue that Huffman tree T^u is a valid Huffman code tree for the source $S^u = \{x_1, \ldots, x_k, u\}$, with probability distribution $P^u = (p_1, \ldots, p_k, q)$.

(c) Express the $L(P^u)$ and $H(P^u)$, the average length and entropy of the source S^u, in terms of ℓ_i's, p_i's, ℓ, and q.

(d) Argue that the sub-tree T_u is a valid Huffman code tree for the source S_u, with probability distribution $P_u = (\frac{p_{k+1}}{q}, \frac{p_{k+2}}{q}, \ldots, \frac{p_n}{q})$, where $q = \sum_{i=k+1}^n p_i$.

(e) Express $L(P_u)$ and $H(P_u)$, the average length and entropy of the source S_u, in terms of ℓ_i's, p_i's, ℓ, and q.

(f) How can we relate the entropy of the sources S_u and S^u to the entropy of the original source, S? Form a similar expression to relate the average lengths.

Problem 4 (Sufficient Statistics)

Suppose that we have a family of probability mass functions $\{f_{\theta}(x)\}$ indexed by θ, and let X be a sample from a distribution in this family. Let $T(X)$ be any statistic (e.g. sample mean or sample variance is a possible statistic.)

(a) Show that

$$I(\theta; T(X)) \leq I(\theta; X)$$

for any distribution on θ.

A statistic $T(X)$ is called sufficient if equality holds for any distribution on θ, or equivalently if $\theta \rightarrow T(X) \rightarrow X$ forms a Markov chain for all distributions on θ.

(b) Let X_1, X_2, \ldots, X_n, $X_i \in \{0, 1\}$, be an independent and identically distributed (i.i.d.) sequence of coin tosses of a coin with an unknown parameter $p = pr(X_i = 1)$. Show that the number of 1's ($\sum_{i=1}^n X_i$) is a sufficient statistic for p.

2