
Information Theory and Coding EPFL Winter Semester 2008/2009
Prof. Suhas Diggavi Handout #31, Friday, 16 January 2009

FINAL EXAM

Friday, January 16, 2009, 14:15-18:00
This exam has 4 problems and 100 points in total.

Instructions

• You are allowed to use 2 sheet of paper for reference. No mobile phones or calculators are
allowed in the exam.

• You can attempt the problems in any order as long as it is clear which problem is being
attempted and which solution to the problem you want us to grade.

• If you are stuck in any part of a problem do not dwell on it, try to move on and attempt
it later.

• Please solve every problem on separate paper sheets.

• It is your responsibility to number the pages of your solutions and write on the first
sheet the total number of pages submitted.

Some Preliminaries

• The capacity of a Gaussian channel Y = X + Z where Z ∼ N (0,N) with an input power
constraint is C = 1

2 log
(

1 + P
N

)

, which is achievable for a Gaussian input distribution
X ∼ N (0, P ).

• The rate-distortion function for Gaussian source X ∼ N (0, P ) and Euclidean distortion
measure d(x, x̂) = (x − x̂)2 is R(D) = 1

2 log
(

P
D

)

.

• The entropy two jointly Gaussian random variables (X,Y ) with covariance matrix

A = cov(X,Y ) = E

[[

X
Y

]

[

X Y
]

]

=

[

σ2
x ρσxσy

ρσxσy σ2
y

]

is given by h(X,Y ) = 1
2 log

(

(2πe)2 detA
)

= 1
2 log

(

(2πe)2σ2
xσ2

y(1 − ρ2)
)

.

• If X ∼ N (0, P ) and Y = aX + b where a and b are constants, then Y ∼ N (b, α2P ).

Good Luck!
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Problem 1 (20 pts)

Consider the channel shown in Fig. 1 which is formed by two binary symmetric channels. The
source S sends X ∈ {0, 1} through the first channel and the relay node R receives Y ∈ {0, 1}
where Pr(Y 6= X) = p ≤ 1

2 . Then the relay R produces U ∈ {0, 1} and feeds it to the second
channel and the destination D receives V ∈ {0, 1} where Pr(U 6= V ) = q ≤ 1

2 . We denote by
C(p) = 1 − H2(p) and C(q) = 1 − H2(q) the capacities of the first and the second channel,
respectively, where H2(·) is the binary entropy function. We use C to denote the capacity of
the whole channel from X to V .
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Figure 1: A cascade of system of two binary symmetric channels

(a) Show that C ≤ C(p) and C ≤ C(q). [4pts]

(b) Assume that there is no processing allowed at the relay, i.e., the relay node just forwards
its received bit to the destination. Find the capacity of the channel C = maxp(x) I(X;V ). [7pts]
Hint: Do the two channels create a single binary symmetric channel in this scenario?

(c) Now assume that the relay node can wait to receive an arbitrary number of bits, process
them, and produce a sequence of Y to transmit to the destination node. Show that [5pts]
C ′ = min{C(p), C(q)} is achievable.

(d) Compare C and C ′. Which one is larger? Explain why. [4pts]

Problem 2 (30 pts)

Consider a Gaussian channel as shown in Fig 2 with the input power constraint E[X2
1 ] ≤ P .

The receiver observes the noisy signal

Y1 = X1 + Z1,

where Z1 is Gaussian noise distributed as Z1 ∼ N (0,N) and independent of the channel inputs.
The receiver has also access to a Gaussian random variables U1 ∼ N (0,N) which is independent
of X1, but correlated with Z1, i.e., E[Z1U1] = µ1N .

(a) It can be shown that the capacity of the described channel is C = maxp(x) I(Y1, U1;X1).
Calculate C. [8pts]
Hint: Start by writing I(Y1, U1;X1) = h(Y1, U1) − h(Y1, U1|X1) = h(Y1, U1) − h(Z1, U1).

(b) Let us apply a function on Y1 and U1 at the receiver to obtain Ỹ1 = Y1 + γU1. Show that
I(Ỹ1;X1) ≤ I(Y1, U1;X1). Assuming X1 ∼ N (0, P ), find the value of γ, for which Ỹ1 [8pts]
would be a sufficient statistic for decoding X1, i.e., I(Ỹ1;X1) = I(Y1, U1;X1) .
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+ Ỹ1

U1

Figure 2: A Gaussian channel with side information at the receiver

(c) Define X̂1 = α1Y1+β1U1. Find the optimal values for α1 and β2 to minimize E[(X̂1−X1)
2]. [6pts]

Hint:

E[(X̂1 − X1)
2] = E[(α1Y1 + β1U1 − X1)

2]

= E[((α1 − 1)X1 + α1Z1 + β1U1)
2]

= E[((α1 − 1)X1)
2 + (α1Z1 + β1U1)

2]

= (α1 − 1)2E[X2
1 ] + α2

1E[Z2
1 ] + β2

1E[U2
1 ] + 2α1β1E[Z1U1]

Now Assume that we have two parallel channels each look like the channel we considered above,
as shown in Fig 3. The correlation between the Gaussian noises is of the form
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Figure 3: Two parallel Gaussian channel with side information at the receivers

It can be shown that

max
p(x1,x2):E[X2

1
]+E[X2

2
]≤P

I(X1,X2;U1, Y1, U2, Y2) = max
p(x1,x2)=p(x1)p(x2):E[X2

1
]+E[X2

2
]≤P

{I(X1;U1, Y1)+I(X2;U2, Y2)};

i.e., it is optimal to choose independent X1 and X2.
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(d) Find the capacity of this parallel channel with a total power constraint E[X2
1 ]+E[X2

2 ] ≤ P .
What is the optimal power allocation for this channel, i.e., the optimal values of P1 and
P2 such that E[X2

1 ] = P1 and E[X2
2 ] = P2 and P1 + P2 ≤ P . [8pts]

Hint: Use the result of part (d)

Problem 3 (30 pts)

Consider the Gaussian channel shown in Fig. 4 with

Y = X + Z,

where Z ∼ N (0, N) is a Gaussian noise independent of X, and X ∈ R and Y ∈ R are the input
and the output of the channel, respectively. Let ρ : X → R

+ be a cost function for the channel
input, and define the channel capacity for a given cost P as

C(P ) = max
p(x):E[ρ(X)]≤P

I(X;Y ).

X Y

Z

+

Figure 4: The Gaussian channel

Xm Y m

Zm

+
Sk

Ŝksource encoder decoder

Figure 5: Transmission with distortion

The source in Fig 5 produces Gaussian symbols S ∼ N (0, Q) with zero mean and variance
Q. The encoder maps a sequence of length k of the source symbols to a sequence of length
m of the channel input Xm, using the encoding function Xm = f(Sk) and Xm is fed to the
channel. The decoder uses the chanel output Y m to estimate the source sequence Ŝk = g(Y m).
The quality of this reconstruction is measured by a distance function d(·, ·) : S × Ŝ → R

+. The
rate-distortion function for a given distortion D is defined as

R(D) = min
p(ŝ|s):E[d(s,ŝ)]≤D

I(S; Ŝ).

(a) Prove that R(D) ≤ C(P ). [4pts]

(b) Evaluate the functions R(D) and C(P ) for d(s, ŝ) = (s − ŝ)2 and ρ(x) = x2. Use the [2pts]
inequality R(D) ≤ C(P ) to obtain a bound on D in terms of P , Q, and N .
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(c) Suppose we use m = k = 1 and take the source Sℓ and scale to obtain the channel input [8pts]
which satisfies the power constraint, i.e., Xℓ = αSℓ, such that E[X2

ℓ ] = P . Find the

value of α. Given Yℓ = αSℓ + Zℓ, the decoder finds Ŝℓ = βYℓ, such that E[(Sℓ − Ŝℓ)
2] is

minimized. Find the β, and show that E[(Sℓ − Ŝℓ)
2] ≤ D.

Hint: Compute E[(Sℓ− Ŝℓ)
2] in terms of P , Q, N , and β. Take the derivative with respect

to β.

The solution of part (b) shows that one achieve the optimal performance through uncoded
transmission. In class, we have proved a source-channel separation which showed that it is
optimal to separately encode the course and do channel coding on it. In parts (c), and (d) we
show that even when separation holds, one can get very simple scheme if we combine source
and channel coding, if the conditions of the matching theorem are satisfied.

The matching theorem states that using encoding and decoding functions of block length 1
(m = k = 1) is optimal if and only if the following conditions hold.

(i) I(S, Ŝ) = I(X;Y ),

(ii) ρ(x) = aD(pY |X=x(y|x) ‖ pY (y))+ b, where a and b are constant, and D(· ‖ ·) denotes the
Kullback-Leiber divergence,

(iii) d(s, ŝ) = −c log p
S|Ŝ(s|ŝ) + d(s), where c is a constant and d(s) is an arbitrary function of

s (does not depend on ŝ).

Using this theorem, we seek conditions to have optimal code block length 1 for this problem.

(d) Let ρ(x) = x2 be the cost function and x = f(s) = α′s be the encoding function. Show [8pts]
that condition (ii) is satisfied.

(e) Let the distance function is d(s, ŝ) = (s − ŝ)2 and the decoding function is of the form [8pts]
ŝ = g(y) = β′y. For given α′ =

√

P/Q find the value of β′ such that condition (iii) is
satisfied. Compare β′ to β you have found in part (c). How can you explain it?
Hint: You can use the facts that Ŝ ∼ N (0, β′2(P + N)), i.e.,

p
Ŝ
(ŝ) =

1
√

2π(P + N)β′
exp

[

− ŝ2

2β′2(P + N)

]

,

and Ŝ|s ∼ N (α′β′s, β′2N), i.e,

p
Ŝ|S(ŝ|s) =

1√
2πNβ′

exp

[

−(ŝ − α′β′s)2

2β′2N

]

.

Use the Bayes’ rule

p
S|Ŝ(s|ŝ) =

p
Ŝ|S(ŝ|s)pS(s)

p
Ŝ
(ŝ)

.

to find p
S|Ŝ(s|ŝ).
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Problem 4 (20 pts)

Consider a DMC with cross-over probability WY |X(·|·) with input x ∈ X and output y ∈ Y. It
costs c(x) to send symbol x ∈ X over the channel. Assume that c(x) > 0 ∀x ∈ X .

For some x ∈ X , let us define the information divergence between WY |X=x and PY as

D(WY |X ‖ PY )
△
=

∑

y∈Y

WY |X(y|x) log
WY |X(y|x)

PY (y)
.

(a) Given any distribution PY , show that for any choice of input distribution P̃X(x), [7pts]

∑

x∈X P̃X(x)D(WY |X ‖ PY )
∑

x∈X P̃X(x)c(x)
≤ max

x∈X

D(WY |X ‖ PY )

c(x)

Hint: You may use the following fact. For a, b, c, d > 0 with a
b
≤ c

d
, we always have

a
b
≤ a+c

b+d
≤ c

d
.

(b) Let P̃X and PX be arbitrary input distributions and let P̃Y (y) =
∑

x∈X P̃X(x)WY |X(y|x) [8pts]
and PY (y) =

∑

x∈X PX(x)WY |X(y|x) be the resulting output distributions. Show that

∑

x∈X

P̃X(x)D(WY |X ‖ PY ) −
∑

x∈X

P̃X(x)D(WY |X ‖ P̃Y ) ≥ 0

and conclude that

∑

x∈X P̃X(x)D(WY |X ‖ P̃Y )
∑

x∈X P̃X(x)c(x)
≤ max

x∈X

D(WY |X ‖ PY )

c(x)

Hint: Use properties of information divergence (Kullback-Leibler distance) or Jensen’s
inequality.

(c) Suppose we are given an input distribution P ∗
X(X) such that [5pts]

D(WY |X ‖ P ∗
Y )

c(x)
≤ λ, ∀x ∈ X

and
D(WY |X ‖ P ∗

Y )

c(x)
= λ, ∀x : p∗(x) > 0

where P ∗
Y (y) =

∑

X P ∗
X(x)WY |X(y|x).

Using part (b) show that for any P̃X(x), and P̃Y (y) =
∑

X∈X P̃X(x)WY |X(y|x),

∑

x∈X P̃X(x)D(WY |X ‖ P̃Y )
∑

x∈X P̃X(x)c(x)
≤ λ

with equality iff P̃Y (y) = P ∗
Y (y).
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